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The linear stability of the incompressible axisymmetric flow in a buoyant-

thermocapillary liquid pool is considered which is heated from above by a heat flux

with a parabolic radial profile. Buoyancy forces and radial thermocapillary stresses due

to the inhomogeneous surface temperature distribution drive a toroidal vortex. In the

absence of buoyancy and for low Prandtl numbers the basic flow becomes unstable typi-

cally by a stationary centrifugal instability. At moderate Prandtl numbers the rotational

symmetry is broken by hydrothermal waves. In the limit of vanishing Prandtl number

two other critical modes are found if the pool is very shallow. One mode is a centrifugally

destabilised rotating wave with high azimuthal wave number. The other mode is steady

and it is driven by the deceleration of the radial inward return flow as it approaches

the axis. The deceleration results from an entrainment of fluid into the thin layer of

rapid radial outward surface flow. The centrifugal instability of the toroidal vortex flow

is assisted by buoyancy in the low Prandtl number limit, because the cooling from the

sidewall augments the thermocapillary driving. For moderately high Prandtl numbers a

stable thermal stratification suppresses the hydrothermal-wave instabilities.
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1. Introduction

Flow in non-isothermal liquid pools involving liquid–gas interfaces arises in a number of

technical applications. Among these are crystal growth from the melt (Kuhlmann 1999),

fusion welding (DebRoy & David 1995), electron-beam evaporation (Karcher et al. 2000),

and casting, to name only a few. Many of these processes, fusion welding in particular,

are very complex due to dynamic liquid–solid and liquid–gas interfaces, multi-component

melts, surface active agents, vaporization, and other specific complications such as the

motion of the workpiece relative to the incident laser beam in continuous fusion welding.

To better understand the physical processes of key importance for these applications

model systems have been devised to study the fundamental fluid flow, unperturbed by

additional complicating effects.

When the fluid motion is driven at or near the free surface by a localised heat source a

cylindrical domain is the natural geometry. In pure liquids the radial variation of the sur-

face temperature drives a significant fluid motion via the thermocapillary effect (Scriven

& Sternling 1960). The flow will be axisymmetric for weak driving, but it can undergo

bifurcations to three-dimensional flow for stronger driving forces, and even become tur-

bulent (Karcher et al. 2000). The situation is different from the classical Marangoni

instability (Pearson 1958) of a quiescent liquid layer due to a homogeneous heat flux at

the free surface.

Thermocapillary flows in cylindrical geometry have been studied for open-top cylin-

drical pools and annular configurations. Kamotani & Ostrach (1994) computed the ax-

isymmetric flow due to laser-spot heating in an upright circular cylindrical container

for plane and curved free-surface shapes. To eliminate buoyancy forces Kamotani et al.

(1999) carried out experiments under microgravity conditions onboard of the space shut-

tle. A cylindrical pool with a flat free surface was heated coaxially by a CO2 laser beam
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with nearly Gaussian profile. The resulting axisymmetric thermocapillary flow in silicone

oil (Pr = 33) became unstable to a three-dimensional time-dependent flow in form of

an azimuthally standing wave with circumferential period of two. Motivated by these

experiments Sim & Zebib (2002) computed the three-dimensional flow in a cylindrical

container driven by thermocapillary forces due to an axisymmetric heat flux with a top-

hat profile for Pr = 30 and 97. They took into account the static deformation of the

liquid–gas interface which results from a given volume of liquid assuming a fixed contact

line. Azimuthally standing and traveling waves were found above a critical heat flux de-

pending on the free surface being either flat or concave. Their results for fixed interface

shapes were in qualitative agreement with the experimental findings of Kamotani et al.

(1999). Hence, a dynamic deformability of the interface is not required for the observed

three-dimensional flow instabilities.

In electron-beam evaporation the thermocapillary flow is usually much stronger than

in laser heating. Karcher et al. (2000) carried out experiments using a shallow cylindrical

container (aspect ratio Γ ≈ 4) filled with iron and heated in the centre by an electron

beam of up to 50 kW. For Marangoni numbers ranging from Ma = 2× 107 to 108 turbu-

lent convection was found. In addition, the two-dimensional turbulent thermocapillary

convection in a box was computed for Pr = 0.01 and Marangoni numbers Ma = O(105).

Both experiment and simulation yielded Nusselt numbers which approximately scaled

like Nu ∼ Ma1/3. This scaling has been predicted by Pumir & Blumenfeld (1996) for

turbulent thermocapillary flow in a half space driven by a point source of heat at the free

surface. The exponent of 0.27 rather 1/3 obtained from the numerics was traced back

by Karcher et al. (2000) to the two-dimensional rather than three-dimensional simula-

tion. Boeck & Karcher (2003) considered a model in which a liquid with Pr = 0.1 in

a rectangular volume with aspect ratio Γ = 2 and square cross section was heated by
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a central beam with an axisymmetric Gaussian profile. For sufficiently high Marangoni

number they found flow oscillations in form of a standing wave. Moreover, they were able

to confirm the laminar scaling ∼ Ma1/2 of the velocity magnitude and ∼ Ma−1/4 of the

temperature field as predicted by Pumir & Blumenfeld (1996) for laminar flow.

The thermocapillary flow in an annular cylindrical gap where the inner and outer

cylinders were are at different temperatures has some similarities with the flow in cylin-

drical pools. While numerous studies have been carried out for a heating from the outer

cylindrical wall (see e.g. Jing et al. 1999; Hintz et al. 2001) aiming at modeling certain

aspects of the Czochralski process of crystal growth from the melt (Hurle 1994), only a

few investigations are available for heating from the inner cylinder.

For terrestrial and for zero-gravity conditions Kamotani et al. (1992) and Kamotani

et al. (2000) carried out experiments on the flow in an annular system heated from the

inner cylinder which had a very small radius compared to the outer one. For the high-

Prandtl-number fluids employed and for different free-surface shapes they found the onset

of three-dimensional flow in form of traveling waves with azimuthal period two for both

gravity conditions. The free-surface temperature fields were similar to those of the waves

observed in the laser-heated pool (Kamotani et al. 1999). The annular-gap experiment

of Schwabe et al. (2003) carried out under conditions of weightlessness had a radius

ratio of two. For relatively shallow liquid layers, realised by a movable bottom, with

Pr = 6.84 they found an axisymmetric flow consisting of a concentric multi-roll structure

similar as predicted for rectangular geometries by (Villers & Platten 1992). For larger

temperature differences Schwabe et al. (2003) found azimuthally standing waves which

were traced back to the hydrothermal waves in infinite layers (Smith & Davis 1983). In a

subsequent paper Sim et al. (2003) carried out corresponding simulations and established

a qualitative agreement with the experiments of Schwabe et al. (2003). Heat loss from
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the free surface was invoked to explain the remaining differences. To study the effect of

the free-surface shape Sim et al. (2004) computed the two-dimensional thermocapillary

convection in an open cylindrical annulus heated from the inner wall. For Pr = 30

they confirmed earlier results of Sim & Zebib (2002) and established that dynamic free-

surface deformations do not lead to oscillatory two-dimensional flow for the parameters

considered, just as for the pool geometry.

To date, little is known about the instabilities in thermocapillary liquid pools where

the motion is driven by a central hot spot and the dependence of the critical conditions

on the governing parameters. The present paper is aimed at the linear stability of the

steady axisymmetric flow in open cylindrical pools and the dependence of the critical

Reynolds number, frequency, and wave number on the geometry, Prandtl number, and

strength of buoyancy. To that end we define a model with a minimum of parameters in

section 2. There we also present the methods of investigation and the solution strategy.

Section 3 deals with the verification and grid convergence of the numerical methods

employed. Results are presented in section 4. We consider in detail the dependence of

the basic flow and its linear stability on the Prandtl number, aspect ratio, and buoyancy

level. Particular attention is paid to the physical mechanisms by which the basic flow is

destabilised. The results are summarised in section 5 and discussed in comparison with

experiments for solutocapillary flow in shallow dishes.

2. Statement of the problem

2.1. Governing equations

We consider an incompressible Newtonian liquid of density ½ and kinematic viscosity

º occupying an upright circular cylinder of height d and radius R. The aspect ratio

is Γ = R/d. The liquid volume is bounded laterally and from below by solid walls of
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Figure 1. Geometry and coordinate system.

constant temperature. The top boundary is a free liquid–gas interface which is exposed

to a vertical heat flux (fig.1). Such a heat flux could be due to, e.g., laser irradiation the

energy being absorbed within a very thin surface layer. The imposed heat flux induces

temperature variations in the liquid volume and at the free surface giving rise to buoyant

and thermocapillary forces, respectively, which drive a fluid flow. Employing cylindrical

coordinates (r, ', z) the non-dimensional Boussinesq approximation of the Navier–Stokes

equations reads

(

∂

∂t
+U ⋅ ∇

)

U = −∇P +∇2
U +GrTez, (2.1a)

Pr

(

∂

∂t
+U ⋅ ∇

)

T = ∇2T, (2.1b)

∇ ⋅U = 0, (2.1c)

where U = (U, V,W )T, P , and T denote the velocity vector, pressure, and temperature

fields, Gr is the Grashof number, Pr the Prandtl number, and ez the axial unit vector.

The acceleration of gravity g is acting in the negative z direction. In (2.1) we have used

the length, velocity, time, pressure, and temperature scales d, º/d, d2/º, ½º2/d2, and

ΔT , respectively, the latter of which still needs to be defined.

At the bottom and the mantle of the cylinder we assume no-slip, no-penetration, and
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constant-temperature boundary conditions

U (r, ', z = −1/2) = U (r = Γ, ', z) = 0, (2.2a)

T (r, ', z = −1/2) = T (r = Γ, ', z) = 0, (2.2b)

where the temperature is measured relative to the wall temperature.

We consider the limit in which capillary forces dominate normal stresses at the free

surface (see e.g. Sen & Davis 1982). In thermocapillary flows the relative importance

of both forces is given by the Capillary number Ca = °ΔT/¾, where °ΔT is the mag-

nitude of the temperature-induced surface-tension variations with ° being the negative

surface-tension coefficient. In the asymptotic limit Ca → 0 static and dynamic defor-

mations of the free surface are absent and the top free surface remains flat. This limit

is a good approximation for a number of thermocapillary flows at criticality in which

Ca ≈ 10−3 . . . 10−1 (see e.g. table 2 of Kuhlmann & Nienhüser 2002).

To minimise the governing parameters we consider an axisymmetric heat-flux-density

distribution at z = 1/2 with a parabolic profile Q(r) which vanishes at the rim r = Γ.

Given Qmax = Q(r = 0) we define the temperature scale ΔT = Qmaxd/k, where k is the

thermal conductivity of the liquid. With this scaling the thermal boundary condition on

the free surface at z = 1/2 becomes

∂T

∂z
= Q(r) = −

(

1−
r

Γ

)2

. (2.3)

Neglecting viscous stresses in the ambient gas the stress balance at the flat non-

deformable liquid–gas interface requires (see, e.g. Kuhlmann 1999)

S ⋅ ez +Re (I− ezez) ⋅ ∇T = 0, (2.4)

where S = ∇U +(∇U )
T
is the viscous stress tensor in the liquid phase and I the identity

matrix. The strength of the thermocapillary effect is determined by the thermocapillary

Reynolds number Re which, together with the remaining governing parameters, is defined
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as

Re =
°ΔTd

½º2
=

°Qmaxd
2

½º2k
, Gr =

¯ΔTgd3

º2
, Pr =

º

·
, (2.5)

where · is the thermal diffusivity and ¯ the thermal expansion coefficient at constant

pressure.

A useful integral quantity characterizing the flow is the Nusselt number

Nu =
Q0

Qcond(T )
=

T 0

T
, (2.6)

where Q0 is the total heat flux through the free surface, T the mean surface temperature

for a given convective flow state, and Qcond(T ) the conductive heat flux that would be

required to obtain the same mean surface temperature T . Owing to the linearity of the

heat conduction equation Nu can be expressed through the mean surface temperature

T 0 of the conductive state under the heat flux Q0.

2.2. The basic flow and its linear stability

The symmetries of the problem allow a steady axisymmetric basic flow (u0, p0, µ0)
T
for

which ∂t = ∂' = v0 ≡ 0. The basic state must satisfy the boundary conditions

∂u0

∂z
= −Re

∂µ0
∂r

and
∂µ0
∂z

= −
(

1−
r

Γ

)2

(2.7)

on the free surface and (u0, w0, µ0) = (0, 0, 0) on the rigid walls.

The stability of the basic state is investigated by a linear-stability analysis. To that

end we decompose the full three-dimensional flow into

(U , P, T )T = (u0, p0, µ0)
T + (u , p, µ)T. (2.8)

Substitution into (2.1) and linearisation with respect to the perturbation quantities
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(u , p, µ)T yields

∂u

∂t
+ u ⋅ ∇u0 + u0 ⋅ ∇u = −∇p+∇2

u +Grµez, (2.9a)

∂µ

∂t
+ u0 ⋅ ∇µ + u ⋅ ∇µ0 = Pr−1∇2µ, (2.9b)

∇ ⋅ u = 0. (2.9c)

The perturbations must vanish on the rigid walls (u , µ) = (0, 0). At the free surface we

require adiabatic conditions for the perturbations, i.e. ∂µ/∂z = 0 on z = 1/2, and the

velocity perturbations must satisfy the thermocapillary stress conditions

∂u

∂z
= −Re

∂µ

∂r
and

∂v

∂z
= −

Re

r

∂µ

∂'
. (2.10)

The solution of (2.9) is a superposition of normal modes
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u

p

µ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(r, ', z, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

û

p̂

µ̂

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(r, z) e¸teim' + c.c., (2.11)

where m is an integer azimuthal wave number and ¸ = ¾ + i! with growth rate ¾ and

oscillation frequency !. Using the ansatz (2.11) the discretization of (2.9) leads to the

generalised eigenvalue problem

A ⋅ xk = ¸kB ⋅ xk, (2.12)

with K eigenvectors xk and eigenvalues ¸k, where K is the size of the system. A and

B are the matrix representations of the differential operators and boundary conditions.

Note that the boundary conditions on the axis r = 0 for the amplitudes (û , p̂, µ̂) depend

on the the wave number m (see, e.g., Xu & Davis 1984).

2.3. Energy budget of linear perturbations

For a physical understanding of the dynamics of the linear perturbations we consider the

transfer rates of kinetic and thermal energy between the basic state (u0, p0, µ0)
T and the
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normal modes (u , p, µ)T. The rate of change of kinetic energy Ėkin of the perturbation

is governed by the Reynolds–Orr equation. On the margin of stability Ėkin = 0. Hence,

the Reynolds–Orr equation normalised by the viscous dissipation reads

1

D

dEkin

dt
=

1

D

d

dt

∫

V

u
2

2
dV = −1 + Iv +M + IGr = 0, (2.13)

where

D =

∫

V

(∇× u)
2
dV (2.14)

is the rate of viscous dissipation and

Iv = −
1

D

∫

V

u ⋅ [(u ⋅ ∇)u0] dV (2.15)

represents the normalised energy production by advection of basic state momentum u0

by the perturbation flow u . The quantities

Mr =
1

D

∫

S

u∂zu dS, M' =
1

D

∫

S

v∂zv dS, and IGr =
Gr

D

∫

V

wµ dV (2.16)

represent the normalised work done by Marangoni forces acting on the free surface S in

radial and azimuthal direction, M = Mr +M', and the work done by buoyancy forces,

respectively.

In a similar way a thermal energy Eth can be defined. For neutral stability it satisfies

1

DT

dEth

dt
=

1

DT

d

dt

∫

V

µ2

2
dV = −1 + IT = 0. (2.17)

Here

DT =
1

Pr

∫

V

(∇µ)
2
dV and IT = −

1

DT

∫

V

µ(u ⋅ ∇)µ0 dV (2.18)

are the rate of heat diffusion and the normalised thermal energy production, respectively.

It should be noted that a term H = D−1

T Pr−1
∫

S
µ(∂µ/∂z) dS arises in the thermal energy

budget representing the rate of change of thermal energy by a heat flux through the free

surface. It vanishes, however, for perturbations subject to the present adiabatic boundary

conditions at the free surface S. Note that the advection with the basic flow of momentum
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and heat u [(u0 ⋅ ∇)u ] /D and µ [(u0 ⋅ ∇) µ] /DT , respectively, are non-zero locally, but

energy preserving in the integral sense.

While (2.13) and (2.17) describe the total energy budgets, the local rates of change

of energy, i.e. the densities of the rates of change of energy, are given by the re-

spective integrands. They will be denoted, henceforth, by lower-case letters, e.g. iv =

−u ⋅ [(u ⋅ ∇)u0] /D.

3. Numerical solution and code verification

The basic state is computed from the two-dimensional version of (2.1) subject to

boundary conditions (2.7) using primitive variables and finite volumes on a staggered

grid. The resulting system of difference equations is solved by Newton–Raphson iteration

employing an efficient linear-systems solver from the mathematical subroutine library

LAPACK.

The perturbation equations (2.9) are discretised on the same grid. Once the basic

state is obtained, the generalised eigenvalue problem (2.12) is solved using inverse power

iteration with shift Golub & van Loan (1989). Neutral stability boundaries are charac-

terised by a vanishing growth rate ¾k = ¾(Re,Pr,Gr,Γ,m, k) = 0. To find the neutral-

stability hypersurfaces Re = Ren(Pr,Gr,Γ,m, k) the roots of ¾ are searched for by

means of the secant method. Typically, Re is varied and the basic-state calculation as

well as the eigensystem solution are carried out repeatedly. The critical Reynolds num-

ber Rec(Pr,Gr,Γ) := minm,k Ren(Pr,Gr,Γ,m, k) is finally obtained as the minimum

envelope of the neutral Reynolds numbers.

All calculations have been carried out using with a resolution of Nr ×Nz grid points.

In order to resolve the developing boundary layers the grid is compressed towards the

free surface and the side wall with stretching factors ±r = ±z = 0.98.
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Figure 2. Neutral Reynolds numbers Ren (full lines, circles) for Γ = 1, Gr = 0, m = 3, and

Pr = 0.0316 (a) and Pr = 3.98 (b) as functions of the grid resolution, where N = Nr = Nz. The

neutral frequency !n for Pr = 3.98 is shown as dashed line and squares in (b).

Since no validation data are available for the present problem, we adapted the boundary

conditions to suit the half-zone problem of thermocapillary flow in an adiabatic cylindrical

liquid bridge (Kuhlmann 1999). Good to excellent agreement is obtained for the basic

state and the critical data. In addition to this verification of the discretization of the

bulk equations, we carried out grid-convergence studies for the open-pool problem. The

results for two representative cases are shown in fig 2. It can be seen that grid convergence

is obtained. The extrapolated values and the convergence order p were calculated by

Richardson extrapolation using three grids with resolutions 90 × 90, 120 × 120, and

160× 160.

Owing to the large number of computations to be performed for parametric studies we

used a resolution of 70 × 70 in all subsequent calculations for reasons of computational

economy. This resolution leads to a relative error for Ren of about 2% or better in most

case. Only for very large aspect ratios the error may increase up to 5%. The same accuracy

holds for the integral energy budget , e.g., ∣±Ekin∣ ⩽ 5% or better, where ±Ekin denotes

the error in the normalised Reynolds–Orr equation (2.13).

It should be noted that the current temperature scale ΔT = Qmaxd/k results in rel-
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Figure 3. Radial velocity u0 of the basic flow at the free surface for Pr = 0.0316 (a) under

critical conditions and Pr = 3.98 (b) for neutral conditions. In both cases Γ = 1 and Gr = 0.

Full and dashed lines indicate resolutions Nr ×Nz = 120× 120 and 60× 60, respectively, on a

stretched grid.

atively high thermocapillary Reynolds numbers, because the associated velocity scale

°Qmaxd/(½ºk) under-estimates the magnitude of the velocity field in the liquid. From

the radial velocity distributions of the basic flow under critical conditions (m = 3) shown

in fig. 3a for Pr = 0.0316 we find the maximum surface velocity u∗

0 = 455.4 at r∗ = 0.841

(Nr×Nz = 120×120). This yields a critical Reynolds number based on u∗

0 of Re∗c = 455.4

and a corresponding Marangoni number of Ma∗c = 14.4. For Pr = 3.98 the mode m = 3

(fig. 3b) is only neutral. We obtain u∗

0 = 120.1 at r∗ = 0.655 resulting in Re∗n = 120.1

and Ma∗n = 478.0. Here, we have ignored the narrow velocity peak close to the cold wall

for Pr = 3.98. These velocity-based critical Reynolds numbers are of the same order of

magnitude as for related surface-force-driven systems (Schimmel et al. 2005). The max-

imum of the basic-state temperature difference along the free surface cannot be used as

a control parameter here, because it is part of the solution and can only be obtained a

posteriori.
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4. Results and discussion

The parameter dependence of the basic flow, its instability, and the physical mecha-

nisms cannot be covered completely. Therefore, we present calculation along certain cuts

through the parameter space made of Re, Pr, Γ, and Gr. To study the Prandtl-number

dependence of the critical Reynolds number we consider a unit aspect ratio and zero

gravity. Thereafter, the dependence of Rec on the aspect ratio will be investigated for

three different Prandtl numbers and Gr = 0. Finally, the effect of buoyancy is considered

for unit aspect ratio and two representative Prandtl numbers.

4.1. Prandtl number dependence of the instability

For Γ = 1 and Gr = 0 we find two types of instabilities, depending on the Prandtl number

being either small (Pr ≲ 1) or large (Pr ≳ 1).

4.1.1. Basic flow

The parabolic heat-flux profile on the free surface creates a non-uniform surface-

temperature distribution which drives a surface flow away from the central hot region

to the periphery via the thermocapillary effect. Due to continuity a return flow arises in

the bulk, thus creating a toroidal vortex.

Streamlines and isotherms of the basic state for Pr = 0.03 are shown in figs. 4a for

critical conditions (Rec = 3.88 × 104). The basic vortex is attached to the free surface

where the flow is driven and it is displaced towards the cold wall due to inertia effects. The

flow in the lower half of the pool is separated forming a large weak secondary vortex. The

basic temperature field is almost conducting at this low value of the Marangoni number

Ma∗ = O(10) (see section 3). The Nusselt number is slightly less than unity, since the

radial outward flow increases the mean surface temperature T as compared to the mean

conductive surface temperature T 0 (2.6).
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(a) (b)

Figure 4. Stream function Ã0 (right) and isotherms µ0 (left) of the basic state in the (r, z)-plane

for (a) Pr = 0.03 at Rec = 3.88 × 104 (Nu = 0.963) and for (b) Pr = 4 at Rec = 1.10 × 105

(Nu = 4.86), both for Γ = 1 and Gr = 0. The flow is clockwise.

Representative of moderate Prandtl numbers we consider Pr = 4. The basic state at

criticality is shown in fig. 4b. The critical Reynolds number Rec = 1.10 × 105 is about

three times larger than for Pr = 0.03. The toroidal vortex does not differ much from the

one at Pr = 0.03, but it extends deeper into the pool and flow separation arises only close

to the corner made by the bottom and the side wall. Owing to the increased convective

transport the isotherms are significantly compressed towards the free surface and towards

the sidewall next to the cold corner. The central part of the free surface is significantly

cooled by the strong convection which transports cold fluid vertically upward to the free

surface. As a result the mean surface temperature is reduced and the Nusselt number

Nu = 4.86 is large.

4.1.2. Stability boundaries

Neutral stability boundaries for Γ = 1 and Gr = 0 have been computed for wave

numbers m = 1 to 7. Out of these the most dangerous ones are m = 2, 3, and 4. The

corresponding neutral curves are shown in fig. 5a. Two ranges can be distinguished. For

low Prandtl numbers (Pr ≲ 1) the basic flow is unstable to a stationary mode with wave

number m = 2 or 3, depending on the Prandtl number. Calculations for Pr = 10−10 (cf.

section 4.2.1) confirmed that the asymptotic range for Pr → 0 is reached for Pr ≲ 0.01.

For moderate Prandtl numbers (Pr ≳ 1) a Hopf bifurcation occurs to an oscillatory
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Figure 5. Neutral Reynolds numbers (a, logarithmic scale) and neutral frequencies (b, linear

scale) for Γ = 1 and Gr = 0. The wave numbers are m = 2 (full line, ■), m = 3 (dashed line,

⃝), and m = 4 (dotted line, +).

Figure 6. Critical flow (arrows) and temperature field (isolines) on the free surface z = 0.5 for

Γ = 1, Pr = 0.03, m = 3, and Rec = 3.88× 104. Negative temperatures are indicated by dotted

lines.

flow with wave number m = 2 or 3 depending on Pr. The neutral frequencies !n are

displayed in fig. 5b. The neutral Reynolds numbers for Pr ≳ 1 are O(105).

4.1.3. Low-Prandtl-number instability mechanism

The stationary instability for Pr = 0.03 occurs at Rec = 3.88× 104 with wave number

m = 3. Figure 6 shows the critical mode at the free surface z = 0.5. The temperature

perturbations are very weak for this low Prandtl number. The critical mode exhibits a
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Table 1. Kinetic energy budget of the critical mode according to (2.13) for selected cases

(Gr = 0).

Pr Γ Rec m Nu Iv I−v I+v M ±Ekin

0.03 1 3.88× 104 3 0.96 1.013 0.714 0.299 −0.002 0.011

4 1 1.10× 105 2 4.86 0.065 0.068 −0.003 0.982 0.047

10−10 2 3.34× 104 7 1.00 1.023 0.721 0.302 0.000 0.023

10−10 4.5 1.28× 105 4 1.00 1.030 0.654 0.376 0.000 0.030

ring of weak surface-temperature extrema near the axis and a second somewhat stronger

ring of extrema near the rim of the pool. The radial surface flow between the inner and the

outer extrema is consistent with the thermocapillary effect, i.e., the radial perturbation

flow and the surface forces caused by the perturbation-temperature field are essentially

parallel (° > 0). The azimuthal perturbation flow between adjacent outer and stronger

temperature extrema, however, is oriented antiparallel to the azimuthal thermocapillary

stress. Hence, the azimuthal motion cannot be created by the thermocapillary effect. In

the absence of buoyancy forces such a perturbation flow should be driven by inertial

effects. This hypothesis is supported by the kinetic energy balance (table 1) which shows

that the kinetic energy production Iv is the dominating destabilizing process. The integral

contribution M of the Marangoni stresses for Pr = 0.03 is vanishingly small compared

Iv and it even acts stabilizing.

For the inertial instability of the axisymmetric toroidal thermocapillary vortex flow

in low-Prandtl-number liquid bridges Nienhüser & Kuhlmann (2002) have shown that

vortex straining as well as centrifugal effects destabilise the basic flow (for the lid-driven

cavity, see Albensoeder et al. 2001). We argue that the centrifugal mechanism is domi-
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Figure 7. Vertical cross section for Γ = 1, Gr = 0, Pr = 0.03, m = 3, and Rec = 3.88 × 104

showing the critical mode (vectors) at an azimuthal angle for which the total local production

iv takes its maximum. Also shown are basic-state streamlines (left) and isolines of iv (right).

Regions within which Φ(r) < 0 are gray-shaded.

nating for the present low-Prandtl-number instability for Γ = 1. To that end we refer to

the generalised Rayleigh criterion of Bayly (1988) which ascertains that the flow of an

inviscid fluid is centrifugally unstable if a closed convex streamline exists all along which

the magnitude of the circulation decreases outwards. According to the formulation by

Sipp & Jacquin (2000) a two-dimensional inviscid flow is centrifugally unstable if

Φ(r) :=
∣u0∣Ω0

ℛ
< 0 (4.1)

all along a closed convex streamline. Here Ω0 is the vorticity of the basic flow and ℛ the

local radius of curvature of the streamline. Even though the criterion is valid for inviscid

flows only, we have evaluated (4.1) for the present viscous basic flow. The result is shown

in fig. 7.

The criterion (4.1) holds true in the gray-shaded areas. Most notably, the regions

which would favor a centrifugal instability in an inviscid flow are aligned with the outer

streamlines of the basic toroidal vortex (left side of fig. 7). The region extends from the

cold corner where the accelerated free-surface flow is deflected downward and along the

sidewall until it separates and turns radially inward at about mid-height of the pool.
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The local production rate of kinetic energy iv has a strong peak well within the region

in which (4.1) is satisfied (right side of fig. 7). If the local kinetic energy production iv

is decomposed into iv = i−v + i+v , where i−v and i+v represent the local production in the

region where (4.1) holds and where (4.1) is not satisfied, respectively, I−v and I+v being the

corresponding integral rates (Shiratori et al. 2007), then I−v ≫ I+v (table 1). Thus more

than two thirds of the kinetic energy of the perturbation is produced in a region that

would be subject to a centrifugal-type instability if the flow were inviscid. The mechanism

of self-induced vortex straining due to the curvature of the vortex core that destabilises,

e.g., ring vortices (Widnall & Tsai 1977) seems to be of minor importance here, since the

corresponding local peak of energy production near the centre of the vortex is relatively

weak (fig. 7).

We conclude, that the low-Prandtl-number flow is unstable to a centrifugal instability.

The critical mode and the region near the separation point where the kinetic energy

production is peaked is very similar to the stationary centrifugal instability in deep lid-

driven cavities (see fig. 20 of (Albensoeder et al. 2001)).

4.1.4. Moderately high-Prandtl-number instability mechanism

For Pr = 4 the basic flow becomes unstable for m = 2 at Rec = 1.10 × 105 with

!c = 54.54. The perturbation temperature on the free surface z = 0.5 is shown in fig. 8a.

Since the perturbation flow is directed from the hot to the cold perturbation-temperature

spots, thermocapillary forces drive the perturbation flow. In fact, all other driving forces

are insignificant. The kinetic energy production by inertia effects is vanishingly small

compared to the Marangoni production (Iv ≪ M , table 1).

For moderate and high Prandtl numbers convection dominates over diffusion. There-

fore, the surface spots could possibly be created by the vertical component of the per-

turbation flow which must arise due to continuity, similar as in the classical Marangoni
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(a) (b)

Figure 8. Critical flow (arrows) and temperature field (colour) at Rec = 1.10× 105 with m = 2

and !c = 54.54 for Pr = 4, Γ = 1, and Gr = 0. Shown is (a) the free surface at z = 0.5 and (b)

the midplane at z = 0. The local thermal energy production iT is shown by isolines in (b). The

straight solid line indicates the azimuthal angle of the two internal temperature maxima (the

corresponding vertical cut is shown in fig. 9a). The straight dashed line indicates the azimuthal

angle of the thermal production extrema (cf. fig. 9b). The critical mode rotates clockwise.

problem (Pearson 1958). However, the Pearson mechanism cannot be at work here, be-

cause the vertical temperature gradient has the wrong sign: the free surface is hotter

than the fluid below it (cf. fig. 4b). The remaining possibilities are heat conduction and

heat convection by the basic flow u0 ⋅∇µ from much stronger temperature extrema in the

bulk. The latter process is more important for moderate Prandtl numbers and it is energy

preserving in the integral sense. As figs. 8b and 9a illustrate such bulk extrema do exist.

They are created by thermal production caused by the thermocapillary-driven perturba-

tion flow across the basic temperature isotherms. The perturbation temperature is then

convected by the basic velocity field and finally reaches the free surface by conduction.

The extrema of the local thermal production rate iT arise azimuthally slightly ahead of

those of the bulk temperature extrema. This is indicative of the clockwise rotation of the

wave and consistent with the negative phase velocity which, for m > 0 and together with

(2.11), is determined by the positive critical angular frequency !c = 54.54 > 0 for the
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(a) (b)

Figure 9. (a) Perturbation flow (arrows), perturbation temperature µ (colour), and local ther-

mal production iT (lines) in a vertical plane at an azimuthal angle for which the temperature

perturbation takes its absolute maximum (solid line in fig. 8b). (b) Perturbation flow (arrows),

local thermal production (lines), and basic temperature field µ0 (colour) in a vertical cut at

an azimuthal angle for which the local thermal energy production takes its absolute maximum

(dashed line in fig. 8b). The colour scale from blue to red indicates temperatures from cold to

hot, respectively. Parameters as in fig. 8.

case presented. The different azimuthal angles are indicated by the full and dashed lines

in fig. 8b. The respective vertical cuts are shown in fig. 9a,b.

The mechanisms discussed is identical with the one for hydrothermal waves in plane

thermocapillary layers (Smith & Davis 1983) or in thermocapillary liquid bridges (Wan-

schura et al. 1995). We thus conclude that the moderately high-Prandtl-number insta-

bility in thermocapillary pools is due to hydrothermal waves.

4.1.5. Prandtl-number dependence of the kinetic energy budget

The kinetic energy budget for Γ = 1 and Gr = 0 at criticality is shown in fig. 10 as

a function of Pr. In the low-Prandtl-number range the instability mechanism is inertial

(centrifugal) throughout, since Iv (I−v ) dominates. As Pr ↑ 1 the basic temperature

field is convectively compressed towards the cold wall and the thermocapillary stresses

become less effective in driving the basic vortex. As a result the basic flow is stabilised,

similar as in liquid bridges (Wanschura et al. 1995). For intermediate Prandtl numbers



22 H. C. Kuhlmann and U. Schoisswohl

Pr
0.01 0.1 1 10

22m = 3 33 4

0.0

0.5

1.0

Iv

I−v

I+v
M

±Ekin

Figure 10. Budget of the kinetic energy (2.13) as function Pr for Γ = 1 and Gr = 0. The

critical wave number is indicated at the top of the figure. The curves represent Iv (full line), I−v

(dashed line), I+v (dotted line), M (dash-dotted line), and the error ±Ekin (dash-double-dotted

line).

the stabilization is partially compensated by cooperating Marangoni forces which are

most significant for the m = 2-mode at Pr ≈ 0.2 (fig. 10).

In the moderately high-Prandtl-number range the Marangoni production M increases

with Prandtl number. While there is a sizable amount of kinetic energy produced by

inertial processes (Iv) for Pr ≈ 2, their contribution decreases rapidly for higher Prandtl

numbers and may even act slightly stabilizing for Γ = 1 and Pr = 10. The thermal energy

budget (2.17) is not of much interest, because it always represents an exact balance

between thermal energy production and thermal diffusion. Similar as in liquid bridges

the basic flow is stabilised for Pr ↓ 1 due to the increase of thermal diffusionDT compared

to the convective transport of µ0 and µ.

4.2. Aspect-ratio dependence of the instability

4.2.1. Asymptotically small Prandtl numbers

In the limit of small Prandtl numbers Pr → 0 the temperature field is exactly con-

ducting and the dynamics is purely inertial. The conducting basic temperature field
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(e) (f) (g)

(h) (i)

Figure 11. Basic-state stream function at criticality for Pr = 10−10 and Gr = 0. The critical

data (Γ,mc,Rec) are (a): (0.5, 3, 1.15 × 105), (b): (1, 3, 2.91 × 104), (c): (1.5, 3, 2.02 × 104),

(d): (2, 7, 3.34 × 104), (e): (2.5, 7, 3.54 × 104), (f): (3, 7, 6.70 × 104), (g): (4, 3, 1.21 × 105), (h):

(5.1, 5, 1.43× 105), and (i): (6.1, 7, 1.70× 105).

merely serves to drive the basic flow. For practical reasons we studied the behavior for

Pr = 10−10. This value is an excellent approximation of the zero-Prandtl-number limit

if the Marangoni–Peclet number Ma = RePr ≪ 1, i.e., if Re ≪ 1010. For the computed

critical Reynolds numbers this condition is always satisfied and we find Nu = 1.00. More-

over, Re even overestimates the Reynolds number based on the actual flow velocities Re∗

owing to the selected temperature scale (see section 3).

The dependence on the aspect ratio of the basic flow at at criticality is displayed in fig.

11. The diameter of the toroidal vortex scales with the smallest geometrical length scale

available. For deep cavities Γ ≪ 1 the diameter of the vortex in the (r, z)-plane scales

with the radius R. Hence, the flow does not significantly penetrate in axial direction.

In the limit Γ → 0 the toroidal vortex will drive a sequence of weak counter-rotating

vortices stacked axially and decaying exponentially from the free surface (for rectangular

thermocapillary cavities, see Rybicki & Floryan 1987). For aspect ratios of order one
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Figure 12. Critical Reynolds number as function of the aspect ratio for Pr = 10−10 and Gr = 0.

Numbers indicate the critical wave number m. The branches are stationary (full line, dotted

lines) or oscillatory (dashed line). The upper dashed line represents the neutral frequency and

the dash-dotted line is the asymptote Rec = 2.8× 104/Γ2 for Γ → 0.

and larger the vortex size scales with the depth. If Γ is large and the Reynolds number

high a thin surface layer of fluid is accelerated towards the cold rim of the pool. On

the cold wall the jet is deflected downward forming a toroidal vortex. Where the upward

return flow of the vortex impinges on the free surface and collides with the radial outward

jet the excess fluid returns radially inward. As a result, the flow at intermediate radial

distances is nearly radial. Contrary to the low-Prandtl-number thermocapillary-driven

flow in shallow rectangular domains (Ben Hadid & Roux 1990; Laure et al. 1990), we did

not find a horizontal sequence of co-rotating vortices decaying from the cold wall. This

is most likely due to the type of heating by a free-surface heat flux and the cylindrical

geometry.

Neutral curves and frequencies as function of Γ are shown in fig. 12. In the range

Γ ≲ 3.5 neutral curves of several other modes (not shown) with different wave numbers

lie fairly close to, but above, the critical curves shown. Three ranges can be distinguished.

For small aspect ratios Γ ≲ 1.91 we find a stationary critical mode with a wave number

m = 3. This is the same mode as for Γ = 1 which was discussed is section 4.1.3 and
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(a)

(b)

Figure 13. Vertical cross-section at an angle for which iv takes its absolute maximum. The

parameters are Pr = 10−10, Γ = 2, Gr = 0, m = 7, and Rec = 3.34× 104. (a) Regions (gray) in

which the local Rayleigh criterion Φ(r) < 0 holds. In addition, isolines of the basic-state stream

function Ã0 (left side) and isolines of iv (right side) are shown. (b) Perturbation flow (arrows),

iv (colour), and Ã0 (lines).

which is destabilised by centrifugal effects. In the limit Γ → 0, the depth d of the pool

becomes irrelevant and the characteristic length scale is R. Since the length scale linearly

enters ΔT ∼ d as well as Re explicitly, the Reynolds number scales like Re ∼ d2. Hence

we expect the asymptotic behavior RecΓ
2 = a as Γ → 0. In fact, this scaling is found

with a = 2.8× 104 (dash-dotted line in fig. 12).

In the intermediate aspect-ratio range 1.91 ≲ Γ ≲ 3.31 a qualitatively different type

of instability arises. The critical wave number m = 7 is rather large and the normal

mode is oscillatory. We consider the case Γ = 2 in more detail. The critical Reynolds

number is Rec = 3.34 × 104 with !c = 157. With Pr = 10−10 the critical Marangoni

number Mac = PrRec = 3.34 × 10−6 is very small and the perturbation temperature

field is irrelevant. Hence, the perturbation flow is entirely driven by inertial forces. This

is confirmed by the kinetic energy budget (table 1). Evaluation of the Rayleigh criterion

(4.1) yields the grey-shaded areas shown in fig. 13a. It is seen that one region in which
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(a) (b)

(c) (d)

Figure 14. Critical flow for Γ = 2, Pr = 10−10, and Gr = 0 at Rec = 3.34× 104 with !c = 157

and m = 7. Shown are horizontal planes at the free surface z = 0.5 (a), z = 0.25 (b), z = 0 (c),

and z = −0.25 (d). The pattern rotates clockwise.

(4.1) holds is aligned with the outer streamlines of the basic vortex, similar as in fig.

7. The local kinetic energy production iv is significantly peaked in that region and near

the point of basic flow separation from the side wall. Since most of the kinetic energy is

produced in this region, we conclude that the instability is centrifugal in nature. Owing

to the localization of the energy source the critical mode is confined to the region of

the basic vortex and the perturbation flow is very weak in the near-axis region of the

pool (fig. 13b). Figure 14 shows the critical flow field at four different horizontal layers.

The Görtler-like vortices are best visible at z = 0.25 (fig. 14b). While the kinetic energy

production and the perturbation flow in the (r, z)-plane is similar to the stationary small
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Figure 15. Critical flow with m = 4 (arrows) and basic temperature field (colour) on the free

surface z = 0.5 at Rec = 1.28× 105 for Γ = 4.5, Pr = 10−10, and Gr = 0.

aspect ratio mode and the stationary mode in deep lid-driven cavities of Albensoeder

et al. (2001), the present large aspect ratio mode is traveling azimuthally.

For even higher aspect ratios Γ ≳ 3.31 yet another type of instability is found. The

critical perturbation is once again stationary and the critical wave number increases

with the aspect ratio in regular steps of one. As a representative case for the high-aspect-

ratio range we consider Γ = 4.5. The critical Reynolds number is Rec = 1.28× 105 with

m = 4. The critical mode at the free surface is shown in fig. 15. Apart from a small zone

near r = 0 and the rim r = Γ the perturbation flow is nearly perfectly aligned in radial

direction, not only on the free surface but also in the bulk. It is directed inward in the

regions of the (extremely weak) cold surface spots and outward in the hot-spot regions

(the perturbation temperature is not shown). The weak azimuthal surface flow near the

rim is directed from the hot to the cold sectors.

The kinetic energy budget (table 1) shows that the instability is purely inertial. The

main contribution to the kinetic energy production arises near the cylinder’s axis in

the upper half of the pool (fig. 16). The figure shows the total local production iv =

−u ⋅ (u ⋅ ∇u0) /D. The dominant contribution to the total production, however, is due
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Figure 16. Vertical cut along the axis of the cylinder showing the perturbation flow (arrows),

the total local production iv (colour), and the basic stream function Ã0 (lines). The cut is shown

at an azimuthal angle at which iv takes its absolute maximum. The parameters are Pr = 10−10,

Γ = 4.5, Gr = 0, m = 4, and Rec = 1.28× 105.

Figure 17. Close-up of fig. 16 showing −u2∂ru0/D (colour) instead of iv = −u ⋅ (u ⋅ ∇u0) /D.

to the term −u2∂ru0/D which represents the local transfer rate of kinetic energy between

the radial momentum of the basic flow u0 and the radial velocity u of the perturbation

flow. The latter production term is shown close-up in fig. 17. It is nearly indistinguishable

from iv as in fig. 16. To explain this production peak we note that the radial component

u0 of the basic flow has a local minimum (inward flow) at about (r, z) = (0.65Γ, 0.31).

From this location the radial inward flow (u0 < 0) increases monotonically to zero at

r = 0. The basic radial inward flow is thus decelerated as the axis is approached. This

deceleration despite of the cylindrical geometry is made possible by a strong entrainment

of the inward flow by the rapid radial outward flow which arises in a very thin surface

layer visible from the streamlines shown in fig. 17. Since the kinetic energy-production

peak is located in the region of radial inward flow deceleration (u0 < 0, cf. fig. 17),

we conclude that the instability is caused by the strong deceleration (∂ru0 < 0) of the

basic radial inward flow. All other production terms are much smaller. The instability

thus is a property of the converging and decelerating near-axis sub-surface flow which is
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made possible by the entrainment effect provided by the radial outward thermocapillary

surface flow.

The instability at Γ = 4.5 shares some similarities with the flow observed in shallow

pools driven by a point source of solute which locally reduces the surface tension. Such

an experiment was first described by Thomson (1855). As reported by Shtern & Hussain

(1993) similar experiments were conducted by Pshenichnikov & Yatsenko (1974). Small

amounts of alcohol have been fed to the centre of the surface of water filled in a shal-

low dish. Driven by solutal gradients the axisymmetric flow was found to be unstable

to azimuthal perturbations consisting of alternating radial inward and outward jets ob-

servable on the free surface of the liquid, very much like the pattern in fig. 15. To better

understand the instability one might consider the simplification of plane flow as in, e.g.

Goldshtik et al. (1991). Energy transfer from a basic source/sink flow u0 = u0(r)er based

on the diverging nature, i.e. the dependence on ' of the direction of the flow, would be

−u ⋅
[

u ⋅
(

r−1
e'∂'

)

u0

]

= −r−1v2u0, which requires an azimuthal perturbations flow v.

But this is not the case for the instability of plane source/sink flow nor for the present

case. The energy-transfer mechanism in plane source/sink flow as well as in the present

case relies on the deceleration/acceleration of the basic radial flow via the production

rate −u2∂ru0. Production is positive only for ∂ru0 < 0, i.e. for flow deceleration. This

is realized in plane diverging source flow u0 ∼ r−1 of an incompressible fluid. The same

mechanism is operative in shallow thermocapillary pools of asymptotically small Prandtl

number and we conclude that the instability is of the same nature as the one of a plane

source flow.

4.2.2. Pr = 0.03

The low-Prandtl-number instability for Γ = 1 and its dependence on the Prandtl

number has been discussed in section 4.1, focusing on Pr = 0.03. Here we consider the
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(a) (b)

Figure 18. Basic-state stream function at criticality for Pr = 0.03 and Gr = 0. (a) Γ = 2,

Rec = 2.84× 104, m = 3. (b) Γ = 6.1, Rec = 4.51× 104, m = 6.
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Figure 19. Neutral Reynolds numbers as functions of Γ for Pr = 0.03 and Gr = 0. The

neutral wave numbers m are indicated by labels. The dotted line in the lower left represents the

asymptote Rec = 3.9× 104/Γ2.

dependence on the aspect ratio for Pr = 0.03. As can be seen from fig. 18 the basic-state

streamlines are similar to those for Pr = 10−10. However, as the aspect ratio increases

beyond Γ ≳ 2 Marangoni effect become significant in the instability mechanism. This

effect is due to the increase of the Prandtl number from 10−10 to 0.03. As a result the

flow is significantly destabilised as compared to Pr = 10−10. This is seen from the neutral

curves shown in fig. 19 as compared to fig. 12. Apparently, both the oscillatory mode and

the high-aspect-ratio stationary modes (Rec ≳ 1.2×105) are superseded for Pr = 0.03 by

stationary modes (Rec ≲ 0.4 × 105) which have a structure similar to the small-aspect-

ratio mode for Pr = 10−10. As argued before, the critical Reynolds number should scale

like Rec = a/Γ2 for Γ → 0. We find a = 3.9× 104 (dotted line in fig. 19).

The importance of the Marangoni production large aspect ratios Γ can be seen from
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Figure 20. Kinetic energy budget as function of Γ for Pr = 0.03 and Gr = 0. The critical wave

numbers are indicated at the top of the figure. The curves represent Iv (full lines), I−v (dashed

lines), I+v (dotted lines), M (dash-dotted lines), and the error ±Ekin (dash-double-dotted lines).

fig. 20. Yet, the major energy production remains due to centrifugal effects, similar as for

Γ = 1 (fig. 7). This conclusion is based on the dominating contribution of I−v to the total

integral production I ≈ I−v for Γ ≳ 2 (fig. 20). The significance of Marangoni forces is

reflected by the velocity and temperature perturbation fields on the free surface shown in

fig. 21. For large Γ (fig. 21d,e,f) the surface flow is mainly azimuthal and augmented by

the thermocapillary effect induced by the sectorial perturbation temperature field. For

decreasing Γ (fig. 21a,b,c) additional temperature extrema arise near the rim of the pool,

grow larger as Γ is decreased, and even become dominant. The azimuthal thermocapillary

effect due to the peripheral temperature spots is counteracting the azimuthal surface flow

which reflects the dominance of inertial production as Γ → 0.

4.2.3. Pr = 4

Basic flow and temperature fields at the critical point for Pr = 4 are provided in fig. 22.

Since the convective effect is much stronger for moderate Prandtl numbers as compared

to smaller ones, the basic velocity fields at criticality are much weaker. Hence, the nearly

fly-wheel inertial vortices (like fig. 11i) cannot be found.
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(a) Γ = 0.5, m = 3 (b) Γ = 2, m = 3 (c) Γ = 3, m = 4

(d) Γ = 4, m = 4 (e) Γ = 5.1, m = 5 (f) Γ = 6.1, m = 6

Figure 21. Critical perturbation flow (arrows) and temperature (lines) on the free surface

z = 0.5 for Pr = 0.03 and Gr = 0. Negative temperatures are indicated by dotted lines.

The critical Reynolds numbers and Nusselt numbers (Rec,Nu) are (a) (1.55 × 105, 0.965), (b)

(2.84 × 104, 0.965), (c) (3.45 × 104, 0.963), (d) (3.51 × 104, 0.946), (e) (3.90 × 104, 0.932), (f)

(4.51× 104, 0.924).

(a) (b) (c)

Figure 22. Basic state stream function Ã0 (upper row) and temperature field µ0 (lower row)

at criticality for Prandtl number Pr = 4 and Gr = 0. The parameters are (a) Γ = 0.5

Rec = 4.72 × 105, m = 2, Nu = 5.02; (b) Γ = 3, Rec = 5.99 × 104, m = 4, Nu = 4.56; (c)

Γ = 6.1, Rec = 1.29× 105, m = 6, Nu = 4.01.
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Figure 23. Aspect-ratio dependence of the neutral Reynolds number Ren (a) and neutral

frequency !n (b) for Pr = 4 and Gr = 0. Wave numbers m are given as labels. The asymptotic

curve (dotted in (a)) is Rec = 1.1× 105/Γ2.

Neutral curves for Pr = 4 as functions of Γ are shown in fig. 23a. The critical modes

are oscillatory for all wave numbers m. The critical Reynolds number scales like Rec =

1.1×105/Γ2 as Γ → 0. A scaling ∼ Γ−2 is also found for the oscillation frequency !c which

is displayed in fig. 23b. The frequency does not suffer major jumps at the codimension-

two points, i.e., the frequency is not determined by m. Obviously it is determined by the

basic flow, more precisely by a suitably defined eddy-turn-over time (see e.g. Leypoldt

et al. 2000).

The aspect ratio dependence of the kinetic energy balance (2.13) is displayed in fig.

24. As discussed in section 4.1 the instability is mainly caused by the hydrothermal-

wave mechanism. For all aspect ratios Marangoni forces are dominant in driving the

perturbation flow. As Γ increases, and with it the critical wave number, inertial processes

become increasingly effective in feeding kinetic energy to the perturbation flow. The

relative importance of inertial to Marangoni production remains almost constant for a

given wave number. If the tendency is extrapolated the instability might possibly be

dominated by inertial production for sufficiently high aspect ratios.
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Figure 24. Kinetic-energy budget for Pr = 4 and Gr = 0 as function Γ. The critical wave

number is indicated at the top of the figure. The curves represent Iv (full line), I−v (dashed

line), I+v (dotted line), M (dash-dotted line), and the error ±Ekin (dash-double-dotted line).

(a) (b) (c) (d)

Figure 25. Basic-state stream function at criticality for Pr = 10−10, Γ = 1, and increasing

buoyancy (from left to right). The parameters are given in table 2.

4.3. The influence of buoyancy

To discuss the effect of buoyancy we consider a liquid pool with Γ = 1 for asymptotically

small and a high Prandtl number, i.e. for Pr = 10−10 and Pr = 10, respectively.

Figure 25 shows a sequence of stream-function isolines for increasing Bond number

Bd = Gr/Re. Buoyancy forces are directed downward in the vicinity of the cold sidewall.

They cause an increase in size of the primary clockwise rotating vortex. The separation

from the cold sidewall is delayed and even completely suppressed for sufficiently high Bd.

For Pr = 10−10 the temperature field is almost conducting as in fig. 4a for Gr = 0.

For Pr = 10 (fig. 26) the effect of buoyancy is more intricate. Increasing buoyancy

promotes the formation of thermal stratification. Hot surface fluid is convected downward
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(a) (b) (c) (d)

Figure 26. Basic-state stream function and temperature fields at criticality for Pr = 10,

Γ = 1, and increasing buoyancy (from left to right). The parameters are given in table 2.

Table 2. Parameters for figs. 25 and 26. The dynamic Bond number is defined as Bd = Gr/Re.

Data have been rounded to three significant decimals. For Pr = 10−10 always Nu = 1.00.

Pr = 10−10 Pr = 10

figure Gr Rec Bd m figure Gr Rec Bd m Nu

25a 2.90× 103 2.90× 104 0.1 3 26a 5.69× 103 5.69× 104 0.1 2 5.27

25b 2.84× 104 2.84× 104 1 3 26b 5.97× 104 5.97× 104 1 2 5.39

25c 1.76× 105 2.79× 104 6.31 3 26c 5.53× 105 8.76× 104 6.31 2 5.74

25d 1.19× 106 1.51× 103 794 2 26d 3.53× 106 2.81× 105 12.6 1 7.25

near the cold sidewall, but cannot penetrate deep into the pool owing to upward buoyancy.

The radial inward return flow continues to rise towards the free surface. This leads to

a flattening of the vortex resulting in a rounded triangular shape of the stream lines.

Within the nearly stagnant lower part of the pool a weak counter-rotating ring vortex

can arise as the remains of the larger separation zone in the lower half of the pool (fig.

26d), reminiscent of vortex breakdown in swirling flows.
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Figure 27. Grashof number dependence of the neutral Reynolds number Ren for Γ = 1 and

Pr = 10−10.
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Figure 28. Grashof number dependence of the neutral Reynolds number Ren (a) and

frequency !n (b) for Γ = 1 and Pr = 10.

Figure 27 shows the dependence of the neutral Reynolds numbers on the Grashof

number for Pr = 10−10 for the most dangerous modes. The critical parameters for Pr = 10

are displayed in fig. 28. The corresponding kinetic energy balances are shown in fig. 29.

Apart from a small range of Grashof numbers within which the most dangerous mode

has m = 3 the flow for Pr = 10−10 is destabilised by an m = 2-mode for Gr ≳ 2.2× 105.

Both thermocapillary and buoyancy forces drive the basic flow. They are, however, not

important for the instability mechanism. As seen from fig. 29a Marangoni production M

is negligible for the kinetic energy budget within the full range of parameters. Buoyant

production is even smaller (∣IGr∣ < 10−10). In the limit Re → 0 the purely buoyancy-

drives vortex becomes unstable at Gr ≈ 1.25 × 106 due to inertia. Figure 29a shows
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Figure 29. Kinetic-energy budgets as function of Gr for Γ = 1 and Pr = 10−10 (a) and Pr = 10

(b). The curves represent Iv (full lines), I−v (dashed lines), I+v (dotted lines), M (dash-dotted

lines), IGr (double-dash-dotted lines), and the error ±Ekin (dash-double-dotted lines). IGr is

practically zero for Pr = 10−10 and has been omitted in (a).

that no clear dominance of I−v nor I+v can be found. The instability inertial mechanism

depends on the details of the interaction between basic flow and critical mode.

For Pr = 10 the basic flow is stabilised. The critical mode changes from m = 2 to

m = 1 as Gr is increased. Obviously, the stabilization is due to the increasing thermal

stratification of the basic flow (fig. 26). The kinetic energy is primarily produced by

Marangoni production M , assisted by modest buoyancy production (fig. 29b). These

features, together with the oscillatory character of the critical mode are indicative of a

hydrothermal wave. The increase of the critical threshold is associated with a structural

change of the basic temperature field such that the critical mode becomes less efficient

in extracting thermal energy from the basic state. Hence, higher Reynolds numbers are

required to render the basic state unstable.
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5. Summary

The basic thermocapillary flow in cylindrical liquid pools driven by an axisymmetric

free-surface heat flux with a parabolic profile is characterised by a single vortex ring close

to the cold corner made by the free surface and the outer wall. Different mechanisms can

make the flow unstable to three-dimensional perturbations.

For Gr = 0 and moderately small Prandtl numbers centrifugal effects act destabilizing,

similar as in the lid-driven cavity problem (Albensoeder et al. 2001) or in low-Prandtl-

number thermocapillary liquid bridges (Nienhüser & Kuhlmann 2002). For moderately

high Prandtl numbers hydrothermal waves arise which gain thermal energy from inter-

nal basic-state temperature gradients (Smith & Davis 1983). Again, the same mechanism

has been found in thermocapillary liquid bridges by Wanschura et al. (1995). Two other

instabilities have been found for asymptotically small Prandtl numbers. These are the

oscillatory centrifugal instability for intermediate aspect ratios (1.92 ≲ Γ ≲ 3.31) and a

stationary instability for Γ ≳ 3.31. The latter instability is driven by a strong deceleration

of the subsurface return flow as it approaches the axis. Buoyancy stabilises the moder-

ately high-Prandtl-number hydrothermal waves when gravity acts downward (Gr > 0),

whereas, for asymptotically small Prandtl number, buoyancy acts destabilising, since it

is augmenting the thermocapillary driving. In the limit for Γ → 0 the basic flow becomes

independent of the depth d of the pool. Hence, the critical Reynolds number Re ∼ d2

must asymptotically scale like ∼ Γ−2, since the radius R is the only relevant length scale.

This behavior was confirmed and quantified.

An open problem is the relation of the instability mechanism for shallow pools of very

low-Prandtl-number fluids to the instability in solutocapillary pools (Thomson 1855;

Pshenichnikov & Yatsenko 1974). To validate the hypothesis that the instability in solu-

tocapillary pools is triggered in the converging subsurface flow further detailed analyses
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are required. One indication in support of this interpretation is the fact that the inertial

production has a tendency to become more important for a fixed high Prandtl (Schmidt)

number as the aspect ratio increases (fig. 24). In addition to this issue and important

for applications, it would be very interesting to study the effects of the heat flux profile,

the pool geometry, motion in the gas-phase, or the role of surfactants which can strongly

influence the surface tension.
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