Skriptum zur Vorlesung TU Wien, LVA-Nr. 322.049

STRÖMUNGSMECHANIK 2

Hendrik C. Kuhlmann und Alfred Kluwick

© 2016 Hendrik C. Kuhlmann und Alfred Kluwick Institut für Strömungslehre und Wärmeübertragung Technische Universität Wien Resselgasse 3 A-1040 Wien Austria

Version: Wintersemester 2015/16

Das Frontispiz zeigt die Bewegung einer Kugel in Luft mit M = 4.01 nach A. C. Charters (Van Dyke 1982). Mit Hilfe des Schattenverfahrens kann die zweite Ableitung der Dichte sichtbar gemacht werden. Neben dem Bug-Stoß (*bow shock*) ist ein schwacher Stoß zu sehen, der von der Stelle ausgeht, an der die Strömung von der Kugel separiert. Außerdem kann man eine sogenannte N-Welle sehen, ein Stoß, der sich vom turbulenten Nachlauf löst. Die beiden starken Stöße sind als Doppelknall zu hören.

Vorbemerkungen

Die vorliegenden Aufzeichnungen basieren auf dem Skriptum *Strömungslehre* (Version von 1999) von Professor Alfred Kluwick,¹ der diese Vorlesung bis 2009 gehalten hat. Ziel des Kurses, den ich vom WS 2010 bis zum WS 2015 abhielt, ist die Vermittlung fundamentaler aerodynamischer Zusammenhänge. Ausgehend von den Grundgleichungen werden stationäre inkompressible reibungsfreie und drehungsfreie Strömungen behandelt, deren Lösungen sich durch Superposition elementarer Lösungen der Potentialgleichung ergeben. Diese Kenntnisse werden genutzt, um die Theorie dünner Tragflügelprofile für ebene inkompressible Strömungen zu entwickeln. Die Betrachtungen werden dann auf Tragflügel endlicher Streckung erweitert. Danach werden Kompressibilitätseffekte betrachtet sowie schiefe Stöße und die Prandtl-Meyer-Expansion. Viskose Effekte werden anhand der Schmierfilmströmung behandelt, wonach die vereinfachten Gleichung auf laminare Grenzschichten behandelt.

Die vorliegende Version stellt eine erste überarbeitete Version des Vorläuferskriptums dar. Der Text wurde überarbeitet und viele Abbildungen wurde neu erstellt. An vielen Stellen wurden jedoch noch die ursprünglichen Abbildungen eingebunden. Das Kapitel zur Numerik wurde gänzlich gestrichen, da es mittlerweile entsprechende Vorlesungen gibt, welche die Numerik in größerer Tiefe behandeln. Für die Fehlersuche und das aufmerksame Lesen der ersten Fassung bin ich Herrn S. Scheichl und Frau K. Edelhoff sehr dankbar.

Die Überarbeitung des Skriptums ist noch nicht abgeschlossen. Einige Kapitel der Originalversion wurden textlich noch nicht überarbeitet. Außerdem wurde die Vorlesung mit der Einführung des Bachelor/Master-Systems von Strömungslehre zu Strömungsmechanik 2 umbenannt.

H. C. K. im WS 2015

¹Professor Alfred Kluwick verstarb am 2.2.2022 im Alter von 80 Jahren. Einen Nachruf findet man unter diesem Link.

ਤ. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Inhaltsverzeichnis

	Vorb	oemerk	ungen	iii			
1.	Grundgleichungen 1						
	1.1.	Grund	lgleichungen für stationäre, reibungsfreie Strömungen in inte-				
		graler	Form	1			
	1.2.	Luftki	räfte	2			
1.3. Differentielle Form der Grundgle freie Strömungen			entielle Form der Grundgleichungen für stationäre, reibungs- Strömungen	3			
	1.4. Stromfunktion und Geschwindigkeitspotential						
		1.4.1.	Stromfunktion	7			
		1.4.2.	Geschwindigkeitspotential	8			
	1.5.	Wirbe	elsätze für stationäre Strömungen	10			
		1.5.1.	Croccoscher Wirbelsatz	10			
		1.5.2.	Thomsonscher Wirbelsatz	13			
2.	Ebe	ne stat	ionäre inkompressible reibungsfreie und drehungsfreie Strö-				
	mungen 17						
	2.1.	2.1. Komplexes Potential					
	2.2.	Einfache komplexe Potentiale					
		2.2.1.	Lineares Geschwindigkeitspotential $F(z) = Az$	19			
		2.2.2.	Potenz-Potential $F(z) = z^n$	20			
		2.2.3.	Logarithmisches Potential $F(z) = A \ln z$	24			
	2.3.	Super	position von Lösungen	27			
		2.3.1.	Quelle in Parallelströmung	28			
		2.3.2.	Quelle und Senke in Parallelströmung	29			
		2.3.3.	Dipol in Parallelströmung	31			
		2.3.4.	Rotierender Zylinder in Parallelströmung	35			
	2.4.	Metho	ode der Singularitätenbelegung (Profiltheorie)	37			
		2.4.1.	Randbedingungen	38			
		2.4.2.	Dickeneffekt	41			
		2.4.3.	Anstelleffekt	47			
		2.4.4.	Wölbungseffekt	53			
		2.4.5.	Zusammenfassung der Ergebnisse für dünne Profile	54			
		2.4.6.	Beliebig dicke Profile und Körper	55			

3.	Der	Tragflügel endlicher Streckung	61		
	3.1.	Mathematisch-physikalische Grundlagen	62		
		3.1.1. Helmholtzsche Wirbelsätze	62		
		3.1.2. Biot-Savart Gesetz	64		
	3.2.	Wirbelsystem eines Tragflügels endlicher, großer Streckung	67		
	3.3.	Prandtlsche Integralgleichung für die Zirkulationsverteilung	69		
4.	Kon	Kompressible Strömungen			
	4.1.	Gasdynamische Gleichung für stationäre Strömungen	75		
	4.2.	Linearisierte gasdynamische Gleichung für stationäre Strömungen	76		
	4.3.	Prandtl-Glauert-Transformation	78		
	4.4.	Gültigkeitsbereich der Prandtl-Glauert Transformation	82		
	4.5.	Schwach gestörte Überschallparallelströmung	85		
5.	Nicł	Nichtlineare Effekte bei Überschallströmung			
	5.1.	Schiefer Verdichtungsstoß	95		
	5.2.	Prandtl-Meyer Expansion	105		
	5.3.	Charakteristikenverfahren	114		
	5.4.	Schwache Stöße	118		
	5.5.	Schlanke Profile (Einfache Wellen)	119		
6.	Dün	lünne Reibungsschichten			
	6.1.	Grundlagen der hydrodynamischen Schmierungstheorie	126		
		6.1.1. Skalierte Gleichungen	126		
		6.1.2. Schleichende Strömung	127		
		6.1.3. Keilspalt	129		
	6.2.	Laminare Grenzschichten	133		
	6.3.	Laminare Grenzschicht an einer ebenen Wand in einer inkompressi-			
		blen Strömung	135		
		6.3.1. Einfluß des Druckgradienten auf das Grenzschichtprofil: Ab-			
		lösung der Strömung	141		
	6.4.	Impulssatz für inkompressible Grenzschichten	144		
	6.5.	Turbulente Grenzschicht an einer ebenen Wand für inkompressible			
		Strömungen	146		
Α.	A. Diagramme und Tabellen				
Literaturverzeichnis					
_	Index				

1.1. Grundgleichungen für stationäre, reibungsfreie Strömungen in integraler Form

Wir betrachten eine stationäre, reibungsfreie Strömung um einen ruhenden festen Körper. Wendet man die Erhaltungssätze der Mechanik für Masse, Impuls und Energie auf ein raumfestes *Kontrollvolumen V* an, welches den festen Körper beinhaltet (Abb. 1.1), so ergeben sich gewisse Bilanzgleichungen. Wenn im Volumen keine Massequellen vorhanden sind, verschwindet der gesamte Massenstrom durch die Oberfläche S des Volumens und die *Massenbilanz* lautet

$$\oint_{S} \rho \vec{u} \cdot d\vec{S} = \oint_{S} \rho \vec{u} \cdot \vec{n} \, dS = \oint_{S} \rho u_{n} \, dS = 0.$$
(1.1)

Hierbei bezeichnen S die geschlossene Oberfläche des raumfesten Kontrollvolumens V, ρ die Dichte des strömenden Mediums und $u_n = \vec{u} \cdot \vec{n}$ die auf den Normalenvektor \vec{n} projizierte Strömungsgeschwindigkeit \vec{u} . Der Normalenvektor zeigt konventionsgemäß aus dem Kontrollvolumen heraus.

Die Änderung des Impulses pro Zeit (Kraft) ergibt sich aus der Impulsbilanz

$$\oint_{S} \rho \vec{u} \vec{u} \cdot d\vec{S} = \oint_{S} \rho \vec{u} u_n \, dS = -\oint_{S} p \vec{n} \, dS + \int_{V} \rho \vec{g} \, dV + \vec{F}.$$
(1.2)

Der linke Teil der Gleichung beschreibt den Impulsstrom durch S, wobei $\rho \vec{u} \vec{u}$ der Tensor der Impulsstromdichte ist. Auf der rechten Seite stehen Kräfte, die vom ther-

Abbildung 1.1.: Raumfestes Kontrollvolumen V um einen umströmten Körper.

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

Abbildung 1.2.: Zur Luftkraft um einen umströmten Körper.

modynamischen Druck p bewirkt werden, sowie die Gewichtskraft (Erdbeschleunigung \vec{g}). \vec{F} ist die auf das strömende Medium wirkende Kraft, auch *Haltekraft* genannt, die von einem Körper in der Strömung vermittelt wird. Dementsprechend ist die auf den umströmten Körper ausgeübte *Reaktionskraft* $\vec{R} = -\vec{F}$.

Die Bilanz der Gesamtenergie (kinetische und innere) lautet

$$\oint_{S} \rho u_n \left(\frac{\vec{u}^2}{2} + e\right) dS = -\oint_{S} p \, u_n \, dS + \int_{V} \rho \vec{g} \cdot \vec{u} \, dV + P + \dot{Q}. \tag{1.3}$$

Hier bedeuten e die spezifische innere Energie (pro Masse), P die pro Zeiteinheit von der Kraft \vec{F} verrichtete Arbeit und \dot{Q} die pro Zeiteinheit zugeführte Wärme (durch Wärmeleitung, Strahlung oder chemische Reaktion). Verwendet man die aus der Thermodynamik bekannte Beziehung für die spezifische Enthalpie $h = e + p/\rho$, kann man auch schreiben

$$\oint_{S} \rho \, u_n \left(\frac{\vec{u}^2}{2} + h\right) \mathrm{d}S = \int_{V} \rho \vec{g} \cdot \vec{u} \, \mathrm{d}V + P + \dot{Q}. \tag{1.4}$$

1.2. Luftkräfte

Zieht man das Kontrollvolumen so weit zusammen, daß es der Körperkontur selbst entspricht (Abb. 1.2), so kann man die Impulsbilanz (1.2) als eine Beziehung für die auf den Körper wirkende Kraft auffassen (auf der Körperoberfläche ist $u_n = 0$, Gewichtskräfte sind hier nicht berücksichtigt)

$$\vec{R} = -\oint_{S} p \,\mathrm{d}\vec{S} = -\oint_{S} (p - p_{\infty})\vec{n} \,\mathrm{d}S. \tag{1.5}$$

Die Reaktionskraft R wird also nur durch den Druck bewirkt. Man kann den Druck auch relativ zu einem festen Bezugspunkt nehmen (konstanter Umgebungsdruck p_{∞} weit weg vom Körper), da der konstante Druck p_{∞} keinen Beitrag zur resultierenden Gesamtkraft liefert: Das entsprechende Integral über die geschlossene Oberfläche S verschwindet.

1.3. Differentielle Form der Grundgleichungen für stationäre, reibungsfreie Strömungen

Häufig wird die *Druckstörung* $p - p_{\infty}$ an der Oberfläche des Körpers als dimensionslose Kenngröße dargestellt. Dies ist der ortsabhängige *Druckbeiwert* (Druckkoeffizient) $c_p(\vec{x})$. Er wird definiert als

$$c_p = \frac{p - p_\infty}{\rho_\infty u_\infty^2 / 2}.\tag{1.6}$$

Die Bezugsgröße $\rho_{\infty} u_{\infty}^2/2$ entspricht dem Staudruck im Falle einer inkompressiblen Strömung.

Darüber hinaus definiert man noch dimensionlose Kennwerte für den Auftrieb $(lift) \ L = R_y = -F_y$ und den Widerstand $(drag) \ D = R_x = -F_x$, wobei $\vec{e_x}$ die Richtung der Anströmung ist und $\vec{e_y}$ die Richtung senkrecht dazu. Der Auftriebsbeiwert c_L und der Widerstandsbeiwert c_D sind integrale Größen und werden definiert als

$$c_L = \frac{L}{\frac{1}{2}\rho_\infty u_\infty^2 A},\tag{1.7a}$$

$$c_D = \frac{D}{\frac{1}{2}\rho_\infty u_\infty^2 A}.$$
(1.7b)

Dabei ist A eine *charakteristische* Fläche (z.B. die Tragflügelfläche beim Flugzeug oder die Querschnittsfläche senkrecht zur Anströmung bei einem Kraftwagen).

Den Auftrieb und den Widerstand erhält man durch Integration der entsprechenden Komponenten der Kraft pro Fläche $p - p_{\infty}$. So ist zum Beispiel $L = -\oint_{S} (p - p_{\infty})\vec{e_y} \cdot \vec{n} \, \mathrm{d}S$. Damit ergeben sich die Auftriebs- und Widerstandsbeiwerte

$$c_L = -\frac{1}{A} \oint_S c_p n_y \,\mathrm{d}S,\tag{1.8a}$$

$$c_D = -\frac{1}{A} \oint_S c_p n_x \,\mathrm{d}S. \tag{1.8b}$$

Die Bedeutung dieser Kennwerte wird im Kapitel 2.4 (Tragflügeltheorie) klarer werden.

1.3. Differentielle Form der Grundgleichungen für stationäre, reibungsfreie Strömungen

Um von den integralen Erhaltungsgleichungen auf die differentielle Form zu kommen, werden zunächst alle Integrale in Volumenintegrale überführt. Dann wird argumentiert, daß das Ergebnis nicht von der Wahl des speziellen Kontrollvolumens abhängig sein darf, woraus folgt, daß die Bilanzgleichung auch punktweise, also für die jeweiligen Integranden erfüllt sein muß. Bei der Umwandlung der Oberflächenintegrale benötigen wir den *Gaußschen Satz*

$$\int_{V} \nabla \cdot \vec{f} \, \mathrm{d}V = \oint_{S} \vec{n} \cdot \vec{f} \, \mathrm{d}S = \oint_{S} \vec{f} \cdot \mathrm{d}\vec{S}.$$
(1.9)

3. C. Luhimann, A. Lluwid Strömungsmechanik 2

Hierbei ist $\vec{f}(\vec{x}) \in \mathbb{R}^3$ eine beliebige stetig differenzierbare vektorwertige Funktion in \mathbb{R}^3 .¹

Massenbilanz Unter der Voraussetzung, daß die Feldgrößen differenzierbar sind, folgt aus der stationären Massenbilanz (1.1) mit Hilfe des Gaußschen Satzes

$$\oint_{S} \rho \vec{u} \cdot d\vec{S} = \int_{V} \nabla \cdot (\rho \vec{u}) \, dV = 0.$$
(1.10)

Da das Kontrollvolumen beliebig gewählt werden kann, muß der Integrand verschwinden. Daraus ergibt sich die *Kontinuitätsgleichung* für stationäre Strömungen $(\vec{u} = u\vec{e}_x + v\vec{e}_y + w\vec{e}_z)$

$$\nabla \cdot (\rho \vec{u}) = \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0.$$
(1.11)

In Komponentenschreibweise lautet die Kontinuitätsgleichung auch

$$\frac{\partial}{\partial x_j}(\rho u_j) = 0. \tag{1.12}$$

Wir werden auch im weiteren die Indexschreibweise mit der Konvention verwenden, daß über gleichlautende Indizes zu summieren ist (Einsteinsche Summenkonvention).

Impulsbilanz Die stationäre Impulsbilanz (mit $\vec{F} = 0$)

$$\oint_{S} \rho \vec{u} \vec{u} \cdot \vec{n} \, \mathrm{d}S + \oint_{S} p \vec{n} \, \mathrm{d}S = \int_{V} \rho \vec{g} \, \mathrm{d}V$$

$$\left(\nabla \cdot \vec{f} \right) \Delta x \Delta y \Delta z = \sum_{i=1}^{6} f_i S_i = \vec{f}(x + \Delta x) \cdot \vec{e}_x \Delta y \Delta z + \vec{f}(x) \cdot \vec{e}_x (-\Delta y \Delta z) + \vec{f}(y + \Delta y) \cdot \vec{e}_y \Delta x \Delta z + \vec{f}(y) \cdot \vec{e}_y (-\Delta x \Delta z) + \vec{f}(z + \Delta z) \cdot \vec{e}_z \Delta x \Delta y + \vec{f}(z) \cdot \vec{e}_z (-\Delta x \Delta y).$$

Es folgt

$$\nabla \cdot \vec{f} = \vec{e}_x \cdot \frac{\vec{f}(x + \Delta x) - \vec{f}(x)}{\Delta x} + \vec{e}_y \cdot \frac{\vec{f}(y + \Delta y) - \vec{f}(y)}{\Delta y} + \vec{e}_z \cdot \frac{\vec{f}(z + \Delta z) - \vec{f}(z)}{\Delta z}$$
$$= \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}.$$

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

¹Wenn man den Gaußschen Satz für einen Würfel im Limes $V \to 0$ betrachtet, kann die Divergenz eines Vektorfelds definieren. Mit $V = \Delta x \Delta y \Delta z$ gilt (die jeweils konstanten Argumente von \vec{f} werden unterdrückt, *i* numeriert die sechs Seiten des Würfels)

lautet in Indexschreibweise

$$\oint_{S} \rho u_{i} u_{j} n_{j} \, \mathrm{d}S + \oint_{S} p n_{i} \, \mathrm{d}S - \int_{V} \rho g_{i} \, \mathrm{d}V \stackrel{\mathrm{Gauß}}{=} \int_{V} \left[\frac{\partial}{\partial x_{j}} (\rho u_{i} u_{j}) + \frac{\partial p}{\partial x_{i}} - \rho g_{i} \right] \, \mathrm{d}V = 0.$$
(1.13)

Wegen der Unabhängigkeit vom Kontrollvolumen muß die Gleichung punktweise erfüllt sein und es folgt die differentielle Impulsbilanz stationärer Strömungen in *Divergenzform*

$$\frac{\partial}{\partial x_i}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \rho g_i. \tag{1.14}$$

Das Anwenden der Produktregel führt unter Berücksichtigung der Kontinuitätsgleichung (1.12) auf die *Bewegungsgleichungen*

$$u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + g_i . \qquad (1.15)$$

Diese Bewegungsgleichung ist auch als *stationäre Eulergleichung* bekannt.

Um die physikalische Bedeutung des Terms $u_j \partial u_i / \partial x_j$ besser zu verstehen, betrachten wir ein *substantielles Fluidelement*, das sich mit der Strömung bewegt. Die Position des Fluidelements sei $x_i = x_i(t)$. Seine Geschwindigkeit ist demnach

$$u_i = \frac{\mathrm{d}x_i}{\mathrm{d}t} = \dot{x}_i. \tag{1.16}$$

Für die Beschleunigung bei einer stationären Strömung folgt aus $u_i = u_i[x_j(t)]$

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{\partial u_i}{\partial x_j} \dot{x}_j = u_j \frac{\partial u_i}{\partial x_j}.$$
(1.17)

Die linke Seite der Bewegungsgleichung (1.15) ist also gerade die Beschleunigung eines substantiellen Fluidelements. Man definiert deshalb die *substantielle Zeitableitung* (massenfeste Zeitableitung) für stationäre Strömungen²

$$\frac{\mathrm{D}}{\mathrm{D}t} := u_j \frac{\partial}{\partial x_j} = \vec{u} \cdot \nabla.$$
(1.18)

Dann lautet die Bewegungsgleichung

$$\frac{\mathrm{D}u_i}{\mathrm{D}t} = -\frac{1}{\rho}\frac{\partial p}{\partial x_i} + g_i. \tag{1.19}$$

² Die vollständige substantielle Ableitung für zeitabhängige Strömunge
n $\vec{u}(\vec{x},t)$ lautet

$$\frac{\mathrm{D}}{\mathrm{D}t} := \frac{\partial}{\partial t} + u_j \frac{\partial}{\partial x_j}$$

Energiebilanz Die Energiebilanz (1.4) für adiabatische Zustandsänderungen ($\dot{Q} = 0$) und bei Abwesenheit mechanischer Energiezufuhr (P = 0) lautet

$$\oint_{S} \rho u_j \left(\frac{1}{2}u_i u_i + h\right) n_j \, \mathrm{d}S = \int_{V} \rho g_i u_i \, \mathrm{d}V. \tag{1.20}$$

Unabhängigkeit vom Kontrollvolumen liefert die differentielle Form

$$\frac{\partial}{\partial x_j} \left(\frac{1}{2} \rho u_j u_i u_i + \rho u_j h \right) = \rho g_i u_i. \tag{1.21}$$

Unter Ausnutzung der Kontinuitätsgleichung (1.12) kann dieses Ergebnis weiter umgeformt werden zu

$$\frac{1}{2}u_i u_i \underbrace{\frac{\partial}{\partial x_j}(\rho u_j)}_{=0} + \frac{1}{2}\rho u_j \partial_j u_i^2 + h \underbrace{\frac{\partial(\rho u_j)}{\partial x_j}}_{=0} + \rho u_j \frac{\partial h}{\partial x_j} = \rho g_i u_i, \qquad (1.22)$$

oder, mit der Bewegungsgleichung (1.15),

$$\rho u_i \underbrace{\left[u_j \frac{\partial u_i}{\partial x_j} - g_i \right]}_{-\rho^{-1} \partial p / \partial x_i} + \rho u_j \frac{\partial h}{\partial x_j} = 0.$$
(1.23)

Mit der Definition der substantiellen Zeitableitung für stationäre Strömungen $D/Dt = u_j \partial_j$ (1.18) können wir diese Relation in der Form schreiben

$$\frac{\mathrm{D}h}{\mathrm{D}t} - \frac{1}{\rho} \frac{Dp}{Dt} = 0. \tag{1.24}$$

schreiben. Unter Verwendung der Entropiedefinition

$$T\mathrm{d}s = \mathrm{d}h - \frac{1}{\rho}\mathrm{d}p \tag{1.25}$$

erhalten wir die differentielle Energiebilanz auch in der sehr kompakten Form

$$\frac{\mathrm{D}s}{\mathrm{D}t} = 0. \tag{1.26}$$

Wir können also festhalten: In einer adiabatischen ($\dot{Q} = 0$, keine thermische Energiezufuhr) quasistatischen (P = 0, keine mechanische Energiezufuhr) Strömung ändert sich die Entropie entlang einer Stromlinie nicht. Derartige Strömungen entsprechend (1.26) nennt man *isentrop*. Falls die Entropie zusätzlich noch räumlich konstant ist ($\nabla s = 0$), nennt man die Strömung *homentrop*.

Abbildung 1.3.: Stromlinie und Geschwindigkeitsvektor tangential dazu.

1.4. Stromfunktion und Geschwindigkeitspotential

1.4.1. Stromfunktion

Die Kontinuitätsgleichung für stationäre zweidimensionale (ebene) Strömungen

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \tag{1.27}$$

läßt sich mit Hilfe einer *Stromfunktion* $\psi(x, y)$ identisch erfüllen. Die Stromfunktion ist definiert durch

$$\rho u = \frac{\partial \psi}{\partial y},\tag{1.28a}$$

$$\rho v = -\frac{\partial \psi}{\partial x}.$$
 (1.28b)

Sie ist durch (1.28) nur bis auf eine beliebige Konstante bestimmt.

Wir betrachten nun Linien mit $\psi(x, y) = \text{const.}$ Entlang dieser Linien ist $d\psi = 0$. Deshalb gilt auf diesen Linien

$$d\psi = \frac{\partial\psi}{\partial x}dx + \frac{\partial\psi}{\partial y}dy = -\rho v dx + \rho u dy \stackrel{!}{=} 0.$$
(1.29)

Hieraus folgt für die Steigung dieser Linien

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{\psi=\mathrm{const.}} = -\frac{\partial\psi/\partial x}{\partial\psi/\partial y} = \frac{v}{u} = \tan\vartheta.$$
(1.30)

Eine Linie $\psi = \text{const.}$ ist also in jedem Punkt parallel zum Geschwindigkeitsvektor \vec{u} und folglich eine *Stromlinie* (Abb. 1.3). Dies kann man auch prüfen, indem man zeigt, daß \vec{u} und $\nabla \psi$ senkrecht aufeinander stehen: $\vec{u} \cdot \nabla \psi = 0$ (der Vektor $\nabla \psi$ ist in jedem Punkt senkrecht zur Isolinie von ψ).

Abbildung 1.4.: Wirbel in einem Fluid, das wie ein starrer Körper rotiert.

Zur Behandlung allgemeiner räumlicher (dreidimensionaler) Strömungen sind zwei Stromfunktionen erforderlich. Eine Stromlinie wird dann durch die Schnittkurve zweier Flächen $\psi_1(x, y, z)$ und $\psi_2(x, y, z)$ festgelegt. Dieser Fall wird hier aber nicht weiter behandelt.

1.4.2. Geschwindigkeitspotential

Als Vorbereitung zur Einführung des *Geschwindigkeitspotentials* ϕ betrachten wir einen starren Wirbel mit der Geschwindigkeitsverteilung $\vec{u} = \Omega r \vec{e}_{\varphi}$ und $\Omega = \text{const.}$ (Abb. 1.4). Die kartesischen Geschwindigkeitskomponenten lauten

$$u = -|\vec{u}|\sin\varphi = -\Omega r\sin\varphi = -\Omega y, \qquad (1.31a)$$

$$v = |\vec{u}| \cos \varphi = \Omega r \cos \varphi = \Omega x, \tag{1.31b}$$

was auch aus $\vec{u} = \vec{\Omega} \times \vec{x}$ mit $\vec{\Omega} = \Omega \vec{e_z}$ folgt. Hieraus folgt die Relation

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 2\Omega. \tag{1.32}$$

Offenbar ist $\partial v/\partial x - \partial u/\partial y$ ein Maß für die *lokale Drehung* des Fluids. Die obige Relation legt nahe (dies läßt sich beweisen), daß eine zweidimensionale Strömung *drehungsfrei* ist,³ genau dann wenn in jedem Punkt gilt

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0. \tag{1.33}$$

³Anstelle des Worts *drehungsfrei* wird auch manchmal *wirbelfrei* verwendet. Der Begriff *drehungsfrei* ist aber eigentlich genauer, da der Begriff des *Wirbels* oft umgangssprachlich verwendet wird und mathematisch verschieden definiert werden kann. Zum Beispiel gibt es Wirbel, die drehungsfrei sind (s. Kap. 2.2).

Die Verallgemeinerung dieser Bedingung für räumliche Strömungen lautet

$$\operatorname{rot} \vec{u} = \nabla \times \vec{u} = \begin{pmatrix} \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{pmatrix} = 0.$$
(1.34)

Das Vektorfeld $\vec{\omega} := \nabla \times \vec{u}$ wird auch *Vortizität* genannt. Die Vortizität ist ein Maß für die lokale Drehung des Fluids. Sie entspricht der doppelten Winkelgeschwindigkeit der Drehung, $|\vec{\omega}| = 2|\vec{\Omega}|$ (siehe (1.32)).

Aufgrund der Vertauschbarkeit der partiellen Ableitungen gilt die Identität

$$\nabla \times (\nabla \phi) = \operatorname{rot} \left(\operatorname{grad} \phi\right) = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix} = \begin{pmatrix} \partial_{yz} \phi - \partial_{zy} \phi \\ \partial_{zx} \phi - \partial_{xz} \phi \\ \partial_{xy} \phi - \partial_{yx} \phi \end{pmatrix} = 0, \quad (1.35)$$

unabhängig von der skalaren Funktion ϕ . Dies kann man auch als Operator-Identität $\nabla \times \nabla = 0$ schreiben.

Wenn sich $\vec{u} = \nabla \phi$ als Gradient eines Potentials schreiben läßt, folgt die Wirbelfreiheit $\nabla \times \vec{u} = 0$. Umgekehrt ist die Wirbelfreiheit eine notwendige Bedingung für die Existenz eines Geschwindigkeitspotentials ϕ . Ist das Raumgebiet einfach zusammenhängend, dann ist die Bedingung auch hinreichend.⁴ Wir können daher folgern:

Ist ein Geschwindigkeitsfeld \vec{u} drehungsfrei ($\nabla \times \vec{u} = 0$), dann existiert ein Geschwindigkeitspotential ϕ , so daß $\vec{u} = \nabla \phi$.

Drehungsfreie Geschwindigkeitfelder lassen sich deshalb durch ein Geschwindig-

$$\vec{u} = \vec{G} + \vec{H} = \nabla \phi + \nabla \times \vec{B}.$$

Die Anteile lassen sich darstellen als $\vec{G} = \nabla \phi$ (wirbelfrei) und $\vec{H} = \nabla \times \vec{B}$ (divergenzfrei), wobei $\nabla \cdot \vec{B} = 0$ gewählt werden kann. Denn $\nabla \times \vec{G} = \nabla \times \nabla \phi = 0$ und $\nabla \cdot \vec{H} = \nabla \cdot \left(\nabla \times \vec{B}\right) = 0$. \vec{B} nennt man auch Vektorpotential. Die beiden Anteile \vec{G} und \vec{H} lassen sich aus Poisson-Gleichungen bestimmen, die man durch das Bilden der Divergenz bzw. Rotation erhält:

$$\nabla \cdot \vec{u} = \nabla \cdot \vec{G} = \nabla \cdot \nabla \phi = \nabla^2 \phi,$$

$$\nabla \times \vec{u} = \nabla \times \vec{H} = \nabla \times \left(\nabla \times \vec{B}\right) = \nabla \nabla \cdot \vec{B} - \nabla \cdot \nabla \vec{B} = -\nabla^2 \vec{B}.$$

Hierbei haben wir in der zweiten Gleichung den Entwicklungssatz für das zweifache Kreuzprodukt verwendet. Ist $\nabla \times \vec{u} = 0$, dann folgt $\vec{B} = 0$ und man erhält $\vec{u} = \nabla \phi$.

⁴Dies folgt aus dem Hauptsatz der Vektoranalysis: Jedes stetig differenzierbare Vektorfeld \vec{u} , das mindestens wie r^{-2} für $r \to \infty$ abfällt, läßt sich in einen wirbelfreien (\vec{G}) und einen quellenfreien Anteil (\vec{H}) zerlegen

 $keits potential \phi$ ausdrücken

$$\vec{u} = \nabla \phi = \begin{pmatrix} \partial \phi / \partial x \\ \partial \phi / \partial y \\ \partial \phi / \partial z \end{pmatrix}.$$
 (1.36)

Bei ebenen Strömungen ist w = 0 und $\partial/\partial z = 0$. Damit ist nach (1.34) $\omega_x = \omega_y = 0$ und die Vortizität $\vec{\omega} = \omega \vec{e_z}$ zeigt immer in z-Richtung, senkrecht zur Strömungsebene. In zweidimensionalen Strömungen gilt entlang der Äquipotentiallinien: $d\phi = 0$, d.h.

$$d\phi = \phi_x dx + \phi_y dy = 0 \quad \Rightarrow \quad \frac{dy}{dx}\Big|_{\phi = \text{const.}} = -\frac{\phi_x}{\phi_y}.$$
 (1.37)

Für drehungsfreie Geschwindigkeitsfelder kann man damit einen wichtigen Zusammenhang zwischen der Stromfunktion ψ und dem Geschwindigkeitspotential ϕ herstellen (siehe (1.30))

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\phi} = -\frac{\phi_x}{\phi_y} = -\frac{u}{v} = \frac{\psi_y}{\psi_x} = -\frac{\mathrm{d}x}{\mathrm{d}y}\Big|_{\psi}.$$
(1.38)

Dies bedeutet, daß Stromlinien und Potentiallinien senkrecht aufeinander stehen. Man kann dies auch überprüfen, wenn man bedenkt, daß die Gradienten $\nabla \phi$ und $\nabla \psi$ senkrecht auf den jeweiligen Isolinien stehen. Dann sieht man leicht

$$\nabla \phi \cdot \nabla \psi = \begin{pmatrix} u \\ v \end{pmatrix} \cdot \begin{pmatrix} -v \\ u \end{pmatrix} = 0.$$
(1.39)

1.5. Wirbelsätze für stationäre Strömungen

Für reibungsfreie stationäre Strömungen können einige generelle Aussagen getroffen werden, bei welchen die Vortizität $\vec{\omega}$ eine entscheidende Rolle spielt. Diese Aussagen werden daher Wirbelsätze genannt.

1.5.1. Croccoscher Wirbelsatz

Wenn man die Bewegungsgleichung (1.15) skalar mit u_i multipliziert und der Einfluß der Schwerkraft vernachlässigt (g = 0), erhält man bei Verwendung der substantiellen Ableitung (1.18) für stationäre Strömungen

$$\frac{\mathrm{D}}{\mathrm{D}t}\left(\frac{\vec{u}^{\,2}}{2}\right) = -\frac{1}{\rho}\frac{\mathrm{D}p}{\mathrm{D}t}.\tag{1.40}$$

Die Gleichung beschreibt die Erhaltung der mechanische Energie (ohne potentielle Energie). Mit dieser Beziehung können wir in der Erhaltungsgleichung für die Gesamtenergie für isentrope Strömungen (1.24) den Druckterm durch die kinetische

Energie ausdrücken und erhalten für die Gesamtenergie, wie auch schon in (1.21),

$$\frac{\mathrm{D}}{\mathrm{D}t}\left(\frac{\vec{u}^2}{2} + h\right) = 0. \tag{1.41}$$

Diese Gleichung kann man entlang der Stromlinie integrieren und erhält so die aus der Stromfadentheorie bekannte Form des Energiesatzes (siehe *Grundlagen der Strömungslehre*)

$$\frac{\vec{u}^2}{2} + h = C(\psi). \tag{1.42}$$

Die Strömung ist *isoenergetisch*. Hat $C(\psi)$ auf allen Stromlinien $\psi = \text{const.}$ denselben Wert $C = C_0$, so spricht man von einer *homenergetischen Strömung*.

Wenn man die Vektorschreibweise für die Impulsbilanz für reibungsfreie stationäre Strömungen verwendet

$$\vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho} \nabla p \tag{1.43}$$

und die Vektoridentität $\vec{u} \cdot \nabla \vec{u} = \nabla \vec{u}^2/2 + \vec{\omega} \times \vec{u}$ ausnutzt,⁵ erhält man

$$\vec{\omega} \times \vec{u} + \nabla \frac{\vec{u}^2}{2} = -\frac{1}{\rho} \nabla p. \tag{1.44}$$

Unter Verwendung der Entropierelation (1.25), $Tds - dh = -\rho^{-1}dp$, ergibt sich

$$\vec{\omega} \times \vec{u} + \nabla \left(\frac{\vec{u}^2}{2} + h\right) = T\nabla s. \tag{1.45}$$

Diese Beziehung nennt man den *Croccoschen Wirbelsatz*. Im homenergetischen Fall vereinfacht er sich zu

$$\vec{\omega} \times \vec{u} = T\nabla s. \tag{1.46}$$

Die Bedeutung des Croccoschen Wirbelsatzes liegt darin, daß er unter bestimmten Voraussetzungen (reibungsfrei, adiabatisch, homenergetisch) einen Zusammenhang zwischen der Vortizität

 $\overline{\overset{5}{\text{Um}}}$ die Vektoridentität zu beweisen/nachzuprüfen, kann man die *x*-Komponente der Impulsbilanz auch in der Form schreiben (die blauen Terme heben sich auf) 1906–1986

$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x} - v\left(\underbrace{\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}}_{=\omega}\right) = -\frac{1}{\rho}\frac{\partial p}{\partial x}$$

Daraus erhält man

$$\frac{\partial}{\partial x} \left(\frac{\vec{u}^2}{2} \right) - v\omega = -\frac{1}{\rho} \frac{\partial p}{\partial x}.$$

In analogerweise verfährt man mit den anderen Komponenten der Impulsbilanz.

3. C. Luhimann, A. Lluwid Strömungsmechanik 2

Abbildung 1.5.: Entropie und Zirkulation (qualitativ) bei einer zweidimensionalen Überschallströmung um einen Tragflügel.

und thermodynamischen Größen herstellt. Daraus können wichtige Folgerungen für *stationäre homenergetische* Strömungen abgeleitet werden:

- 1. Jede drehungsfreie ($\vec{\omega} = 0$) Strömung ist isentrop, denn wegen $\nabla s = 0$ ist sie sogar homentrop.
- 2. Jede nicht-isentrope (dann ist $\nabla s \neq 0$) Strömung ist drehungsbehaftet, d.h. es ist $\vec{\omega} \neq 0$.
- 3. Jede homentrope ($\nabla s = 0$) *ebene* Strömung ist drehungsfrei, d.h. $\omega = 0.^*$
 - * Denn in 2D kann $\vec{\omega} \times \vec{u} = 0$ nur dann erfüllt sein, wenn $\vec{\omega} = 0$ ist, denn $\vec{\omega} \perp \vec{u}$. In 3D kann man $\vec{\omega} = \vec{\omega}_{\parallel} + \vec{\omega}_{\perp}$ in einen Anteil parallel und senkrecht zu \vec{u} zerlegen. Dann folgt aus der Homentropie nur $\vec{\omega}_{\perp} = 0$, da ohnehin $\vec{\omega}_{\parallel} \times \vec{u} = 0$ ist.

Als Beispiel betrachten wir die Überschallströmung um ein Profil (Abb. 1.5). In Kapitel 5 wird später gezeigt, daß die Stoßstärke und die damit verbundene Entropiezunahme mit zunehmendem Abstand vom Profil abnimmt.⁶ Deshalb ist $s_2 < s_1$. Die Entropie hängt damit von der Stromlinie ab und es ist $\nabla s \neq 0$. Nach dem Croccoschen Wirbelsatz ist deshalb die (homenergetische) Strömung hinter der Stoßwelle drehungsbehaftet ($\omega \neq 0$).

⁶Die für die Stärke des Verdichtungsstoßes ist die Normalkomponente der Strömung bezüglich der Stoßebene relevant. Die Normalkomponente u_n nimmt aber wegen der Krümmung des Stoßes nach außen hin ab. Deshalb ist der Entropieanstieg außen geringer.

Abbildung 1.6.: Der Fluß der Vortizität durch eine Fläche S mit Berandung C und Zirkulation entlang C.

1.5.2. Thomsonscher Wirbelsatz

Für die Ableitung eines weiteren Wirbelsatzes führen wir die Zirkulation Γ ein (Abb. 1.6). Sie wird definiert als das geschlossene Linienintegral

$$\Gamma := \oint_C \vec{u} \cdot d\vec{x} = \oint_C u_i dx_i = \oint_C u_t dx.$$
(1.47)

Dabei besteht die Konvention, daß die geschlossene Kurve Cim positiven mathematischen Sinn (entgegen dem Uhrzeigersinn) durchlaufen wird. Hierbei ist $u_t = \vec{u} \cdot \vec{e_t}$ die Tangentialkomponente der Geschwindigkeit im betreffenden Punkt der Kurve und $d\vec{x} = \vec{e_t} dx$ ein vektorielles Bogenelement. Die Zirkulation um ein Profil oder einen Tragflügel spielt eine zentrale Rolle für die Auftriebskraft.

Der *Stokessche Satz* verknüpft die Zirkulation mit der Vortizität (Rotation des Geschwindigkeitsfelds)⁷

$$\int_{S} \vec{\omega} \cdot \mathrm{d}\vec{S} = \int_{S} \left(\vec{\nabla} \times \vec{u} \right) \cdot \mathrm{d}\vec{S} \stackrel{!}{=} \oint_{C} \vec{u} \cdot \mathrm{d}\vec{x} = \Gamma.$$
(1.48)

Der Fluß der Vortizität durch die orientierte Fläche S mit dem vektoriellen Flächenelement $d\vec{S}$ ist gleich der Zirkulation entlang der Berandungskurve C der Fläche S.

$$\begin{aligned} & \left[v(x + \Delta x, y) \Delta y + u(x, y + \Delta y)(-\Delta x) + v(x, y)(-\Delta y) + u(x, y) \Delta x \right] / (\Delta x \Delta y) \\ & = \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} - \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y} \xrightarrow{\lim(\Delta x, \Delta y) \to 0} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \omega_z. \end{aligned}$$

3. С. Kuhlmann, A. Kluwiđ Strömungsmechanik 2

⁷Man kann die Vortizität auch als den Limes der Zirkulation pro Fläche S für $S = \Delta x \Delta y \rightarrow 0$ definieren. Dann erhält man zum Beispiel für die z-Komponente der Vortizität am Punkt (x, y) (Fläche in der (x, y)-Ebene)

Abbildung 1.7.: Die Zirkulation entlang einer substantiellen Kurve C in einer reibungsfreien isentropen Strömung bleibt im Laufe der Bewegung konstant.

Im Zweidimensionalen stehen sowohl $\vec{\omega} \sim \vec{e}_z$ als auch $d\vec{S} \sim \vec{e}_z$ senkrecht zur (x, y)-Ebene. Dann gilt

$$\int_{S} \left(\vec{\nabla} \times \vec{u} \right) \cdot \mathrm{d}\vec{S} = \int_{S} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \mathrm{d}S = \oint_{C} u_{i} \mathrm{d}x_{i}. \tag{1.49}$$

Ist nun das Geschwindigkeitsfeld auf der Fläche S in jedem Punkt differenzierbar und verschwindet die Vortizität $\vec{\omega} = \nabla \times \vec{u} = 0$ in jedem Punkt der Fläche, so verschwindet auch die Zirkulation und es ist $\Gamma = 0$. Verschwindet umgekehrt Γ *für jede beliebige* geschlossene Kurve C, so ist die Strömung in dem betreffenden Raumgebiet drehungsfrei ($\vec{\omega} = 0$).

Zur Berechnung eines Linienintegrals wird meistens der Weg $\vec{x}(\sigma)$ entlang der geschlossenen Kurve C parametrisiert, zum Beispiel durch die auf eins normierte Bogenlänge σ . Dann gilt für das Linienelement entlang des Wegs C

$$\mathrm{d}\vec{x}(\sigma,t) = \frac{\partial\vec{x}(t)}{\partial\sigma}\mathrm{d}\sigma.$$
 (1.50)

Hierbei ist die Zeit t nur ein Parameter, weil das Linienintegral immer für einen festen Zeitpunkt ausgeführt wird.

Wir betrachten nun eine geschlossene substantielle Kurve, die sich unter dem Einfluß der Strömung bewegt (Abb. 1.7). Die Frage ist dann, wie sich die Zirkulation $\Gamma(t)$ entlang der geschlossenen substantiellen Kurve mit der Zeit ändert. Dazu müssen wir d Γ/dt berechnen. Mit Hilfe der Parametrisierung $\sigma \in [0, 1]$ erhalten wir

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \oint_C u_i \mathrm{d}x_i = \frac{\mathrm{d}}{\mathrm{d}t} \int_0^1 u_i \frac{\partial x_i}{\partial \sigma} \mathrm{d}\sigma = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \left(u_i \frac{\partial x_i}{\partial \sigma} \right) \mathrm{d}\sigma$$
$$= \int_0^1 \left(\frac{\mathrm{d}u_i}{\mathrm{d}t} \frac{\partial x_i}{\partial \sigma} + u_i \frac{\partial}{\partial \sigma} \frac{\mathrm{d}x_i}{\mathrm{d}t} \right) \mathrm{d}\sigma = \oint_C \frac{\mathrm{d}u_i}{\mathrm{d}t} \mathrm{d}x_i + \int_0^1 u_i \frac{\partial u_i}{\partial \sigma} \mathrm{d}\sigma$$
$$= \oint_C \frac{\mathrm{D}u_i}{\mathrm{D}t} \mathrm{d}x_i + \frac{1}{2} \int_0^1 \frac{\partial u_i^2}{\partial \sigma} \mathrm{d}\sigma = -\oint_C \frac{1}{\rho} \frac{\partial p}{\partial x_i} \mathrm{d}x_i + \frac{1}{2} \oint_C \frac{\mathrm{d}(u_i u_i)}{\rho} = -\oint_C \frac{1}{\rho} \frac{\partial p}{\partial \mu}$$

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2 1.5. Wirbelsätze für stationäre Strömungen

$$= -\oint_{C} dh + \oint_{C} T ds.$$
(1.51)

Hier wurde die Tatsache ausgenutzt, daß das Integral eines totalen Differentials entlang einer geschlossene Kurve immer verschwindet: $\oint df = 0$.

Für ein inkompressibles Fluid ist $\oint \rho^{-1} dp = \rho^{-1} \oint dp = 0$. Auch für ein *barotropes Fluid* mit $\rho = \rho(p)$ verschwindet das Integral, da man $\rho^{-1}(p)dp = dP$ durch eine Druckfunktion ausdrücken kann, was wiederum auf ein vollständiges Differential führt, dessen geschlossenes Linienintegral verschwindet. Unter der Voraussetzung, daß die Strömung homentrop ist, gilt $\oint_C T ds = 0$ (dann ist auch $\rho = \rho(p)$ eine alleinige Funktion des Drucks, siehe Batchelor 1967), und man erhält den *Thomsonschen Satz* (Abb. 1.7)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t} = 0. \tag{1.52}$$

Die Zirkulation einer substantiellen (massenfesten) Kurve in einer reibungsfreien, homentropen Strömung bleibt für alle Zeiten erhalten.

Der Thomsonsche Satz wird auch als Kelvinsches Zirlulationstheorem bezeichnet.

2. Ebene stationäre inkompressible reibungsfreie und drehungsfreie Strömungen

2.1. Komplexes Potential

Können Dichteänderungen vernachläßigt werden, so lautet die Massenbilanz (1.12) wegen $\rho = \text{const.}$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \tag{2.1a}$$

Setzen wir weiter voraus, daß die Strömung drehungsfrei ist,¹ dann gilt nach (1.34)

Augustin Louis Cauchy 1789–1857

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0. \tag{2.1b}$$

Dies sind offenbar zwei Differentialgleichungen für die beiden unbekannten Komponenten des Geschwindigkeitsfelds u und v. Das Differentialgleichungssystem (2.1) ist identisch mit den *Cauchy-Riemannschen Differentialgleichungen*. Aber nicht nur die Geschwindigkeitskomponenten (u, v) genügen Cauchy-Riemannschen Differentialgleichungen, sondern auch das Paar aus Potential und Stromfunktion (ψ, ϕ) . Denn aus den Definitionen der Strom- und der Potentialfunktion

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y},\tag{2.2a}$$

$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x},$$
 (2.2b)

folgt für eine inkompressible drehungsfreie Strömung unmittelbar

$$\frac{\partial \psi}{\partial x} + \frac{\partial \phi}{\partial y} = 0 \quad \text{und} \quad \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial y} = 0.$$
 (2.3)

¹Helmholtz (1858) hat gezeigt, daß ein ideales Fluid, welches sich anfänglich in Ruhe befindet und daher drehungsfrei ist, auch für alle Zeiten drehungsfrei bleibt. Äquivalent dazu folgt die Drehungsfreiheit auch aus Kelvins Zirkulationstheorem (1.52) für ein anfänglich ruhendes Fluid.

Abbildung 2.1.: Komplexe Ebene.

Um die Bedeutung der Cauchy-Riemannschen Differentialgleichungen zu verstehen, betrachten wir die komplexwertige Funktion F(z) der komplexen Veränderlichen z = x + iy

$$F(z) := R(x, y) + iI(x, y),$$
 (2.4)

mit Real- und Imaginärteil R(x, y) und I(x, y). Die komplexe Ableitung von F nach z ist definiert als

Georg Friedrich Bernhard Riemann 1826–1866

$$F'(z) := \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z}.$$
(2.5)

Offenbar kann Δz in verschiedenen Richtungen in der komplexen Ebene orientiert sein. Ist nun F'(z) unabhängig davon, in

welcher Weise (Orientierung) Δz gegen 0 strebt, so nennt man F(z) analytisch (oder holomorph).

Um die Bedingungen zu finden, unter denen die Ableitung F' richtungsunabhängig ist, betrachten wir zwei orthogonale Richtungen. Wählen wir $\Delta z = \Delta x$ in *x*-Richtung (Abb. 2.1), so erhalten wir

$$F'(z) = \lim_{\Delta x \to 0} \left[\frac{R(x + \Delta x, y) - R(x, y)}{\Delta x} + i \frac{I(x + \Delta x, y) - I(x, y)}{\Delta x} \right] = \frac{\partial R}{\partial x} + i \frac{\partial I}{\partial x}.$$
(2.6)

Wählt man andererseits $\Delta z = i\Delta y$, so ergibt sich

$$F'(z) = \lim_{\Delta y \to 0} \left[\frac{R(x, y + \Delta y) - R(x, y)}{i\Delta y} + i \frac{I(x, y + \Delta y) - I(x, y)}{i\Delta y} \right]$$

$$= \lim_{\Delta y \to 0} \left[-i \frac{R(x, y + \Delta y) - R(x, y)}{\Delta y} + \frac{I(x, y + \Delta y) - I(x, y)}{\Delta y} \right]$$

$$= -i \frac{\partial R}{\partial y} + \frac{\partial I}{\partial y}.$$
 (2.7)

Die notwendige Bedingung dafür, daß F(z) analytisch ist, lautet daher

$$\frac{\partial R}{\partial x} + i\frac{\partial I}{\partial x} = -i\frac{\partial R}{\partial y} + \frac{\partial I}{\partial y}.$$
(2.8)

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 Wenn man den Real- und den Imaginärteil separat betrachtet erhält, man die Bedingungen

$$\frac{\partial R}{\partial y} + \frac{\partial I}{\partial x} = 0, \qquad (2.9a)$$

$$\frac{\partial R}{\partial x} - \frac{\partial I}{\partial y} = 0. \tag{2.9b}$$

Dies sind gerade die *Cauchy-Riemannschen Differentialgleichungen*. Sie werden von jeder analytischen Funktion erfüllt. Da auch das Potential und die Stromfunktion die Cauchy-Riemannschen Gleichungen erfüllen, können wir ϕ und ψ als Real- und Imaginärteil einer analytischen komplexen Funktion auffassen. Deshalb definiert man das *komplexe Geschwindigkeitspotential*

$$F(z) := \phi + \mathrm{i}\psi. \tag{2.10}$$

Die Ableitung F' liefert den Zusammenhang mit dem Geschwindigkeitsfeld

$$F'(z) = \frac{\mathrm{d}F(z)}{\mathrm{d}z} = \frac{\partial\phi}{\partial x} + \mathrm{i}\frac{\partial\psi}{\partial x} = u - \mathrm{i}v.$$
(2.11)

Die Bedeutung für die Strömungsmechanik liegt darin, daß jede beliebige analytische Funktion einer reibungsfreien stationären zweidimensionalen wirbelfreien Strömung entspricht, wobei die Geschwindigkeitskomponenten aus der Ableitung des komplexen Potentials folgen. Da viele elementare Funktionen analytisch sind, ergibt sich ein ganzer Zoo von Strömungen, die man in geschlossener Form angeben kann. Die Ableitungen *holomorpher* Funktionen F(z) nach z können analog zu denjenigen für reelle Funktionen gebildet werden.

2.2. Einfache komplexe Potentiale

2.2.1. Lineares Geschwindigkeitspotential F(z) = Az

Lineare Funktionen F(z) = Az sind holomorph. Es sei $A = A_r + iA_i \in \mathbb{C}$ komplex. Dann erhält man die zugehörigen Geschwindigkeitkomponenten gemäß (2.11) aus F'(z) = A = u - iv. Daraus folgt

$$u = A_r, \tag{2.12a}$$

$$v = -A_i. \tag{2.12b}$$

Dieses Geschwindigkeitsfeld entspricht einer homogenen Strömung, deren Richtung durch das Verhältnis A_i/A_r gegeben ist (Abb. 2.2). Für Geschwindigkeitspotential und Stromfunktion erhalten wir

$$\phi = \Re(F) = A_r x - A_i y = ux + vy, \qquad (2.13a)$$

$$\psi = \Im(F) = A_r y + A_i x = uy - vx. \tag{2.13b}$$

Abbildung 2.2.: Homogene Strömung, die dem linearen Potential F(z) = Az entspricht.

2.2.2. Potenz-Potential $F(z) = z^n$

Auch Potenzen von z sind holomorphe Funktionen. Wir betrachten hier reelle Exponenten $n \in \mathbb{R}$. Für viele Berechnungen ist die Polardarstellung komplexer Zahlen $z = r e^{i\varphi}$ sinnvoll. Hierbei ist r der Betrag von z und φ der Polarwinkel (die Phase). Damit ergibt sich

$$F(z) = z^{n} = r^{n} e^{in\varphi} = r^{n} \left(\cos n\varphi + i\sin n\varphi\right).$$
(2.14)

Für das reelle Potential und die Stromfunktion folgt nach (2.10)

$$\phi = \Re(F) = r^n \cos n\varphi, \qquad (2.15a)$$

$$\psi = \Im(F) = r^n \sin n\varphi. \tag{2.15b}$$

Weiter erhält man aus $F'(z) = nz^{n-1}$ und (2.11) die kartesischen Geschwindigkeitskomponenten von $\vec{u} = u\vec{e}_x + v\vec{e}_y$

$$u = \Re(F') = nr^{n-1} \cos[(n-1)\varphi], \qquad (2.16a)$$

$$v = -\Im(F') = -nr^{n-1}\sin[(n-1)\varphi].$$
 (2.16b)

Die Strömung ist also periodisch in azimutaler Richtung mit Periode $2\pi/(n-1)$. Der Betrag der Geschwindigkeit lautet

$$|\vec{u}| = \sqrt{u^2 + v^2} = |n|r^{n-1}.$$
(2.17)

Um sich eine Vorstellung von der zugehörigen Strömung zu machen, betrachten wir die Stromlinien $\psi = \text{const.}$ Für die Stromlinie $\psi = 0$ muß nach (2.15b) gelten $\sin n\varphi = 0$. Die Stromlinien, auf denen $\psi = 0$ ist, sind demnach gegeben durch $n\varphi = m\pi, m \in \mathbb{Z}$, oder

$$\varphi|_{\psi=0} = \varphi_m = m\frac{\pi}{n} = 0, \pm \frac{\pi}{n}, \pm \frac{2\pi}{n}, \dots, \quad m \in \mathbb{Z}.$$
 (2.18)

Dies sind radiale Strahlen aus dem Ursprung. Um die Strömungsrichtung zu bestimmen, berechnen wir die radiale Komponente U des Geschwindigkeitsfelds $\vec{u} = U\vec{e}_r + V\vec{e}_{\varphi}$ aus (2.15a)

$$U = \vec{e}_r \cdot \nabla \phi = \frac{\partial \phi}{\partial r} = nr^{n-1} \cos n\varphi.$$
(2.19)

3. C. Kuhlmann, A. Kluwic Strömungsmechanik 2

Abbildung 2.3.: Stromlinien für $F(z) = z^2$. Der Stromlinenabstand beträgt $\Delta \psi = 0.2$. Entlang der *x*-Achse ist die Strömung auswärts gerichtet, entlang der *y*-Achse ist sie zum Ursprung (0,0) gerichtet.

Einwärts- (U < 0) und Auswärtsströmungen (U > 0) wechseln in φ -Richtung periodisch, wobei die Strömung für $\varphi = 0$ nach außen gerichtet ist. Für n > 1verschwindet die radiale Geschwindigkeit U im Ursprung. Dann befindet sich im Ursprung (x, y) = (0, 0) ein *Staupunkt* der Strömung. Nach außen hin wird die Strömung schneller. Für n = 1 hat man eine homogene Strömung (F(z) = z), und für n < 1 divergiert U für $r \to 0$.

 $F(z) = z^2$ Als erstes Beispiel betrachten wir den Fall n = 2 (Abb. 2.3). Dann ist $\psi = 0$ auf den Strahlen $\varphi_m = 0, \pm \pi/2, \pm \pi$ und $\pm 3\pi/2$. Entlang der *Trennstromlinie* (*Separationslinie*) y = 0 ist die Strömung parallel zu \vec{e}_x , d.h. es ist v = 0. Das Strömungsfeld ist symmetrisch bezüglich der *x*-Achse. Entlang der *x*-Achse kann man sich auch die Oberfläche eines ebene Körpers denken, über welche das Fluid reibungsfrei gleitet. Die obere bzw. untere Hälfte des Stromlinienverlaufes beschreibt dann die Strömung in der Nähe eines ebenen *Staupunkts*. Ein ähnlicher Staupunkt tritt auch bei der Profilumströmung auf (Abb. 2.7).

Gleichungen (2.16) für die Staupunktströmung können wir auch schreiben als

$$u = 2r\cos\varphi = 2x,\tag{2.20a}$$

$$v = -2r\sin\varphi = -2y. \tag{2.20b}$$

Damit ist $|\vec{u}| = 2r$. Der Betrag der Strömungsgeschwindigkeit steigt also linear mit dem Abstand von Staupunkt an.

Für höherer ganzzahlige Potenzen n steigt die Periodizität an und die radiale Abhängigkeit des Geschwindigkeitsfelds ist $\sim r^{n-1}$. Als Beispiel sind die Stromlinien für $F(z) = z^3$ in Abb. 2.4 gezeigt.

Abbildung 2.4.: Stromlinien für $F(z) = z^3$. Der Stromlinenabstand beträgt $\Delta \psi = 0.2$.

Abbildung 2.5.: Stromlinien für $F(z) = z^{2/3}$. Der Stromlinenabstand beträgt $\Delta \psi = 0.05$.

 $F(z) = z^{2/3}$ Für den Fall n = 2/3 (Abb. 2.5) sind die Separationslinien $\psi = 0$ durch $\varphi_m = 0, \pm 3\pi/2, \dots$ gegeben. Das Strömungsfeld ist nicht 2π -periodisch. Wenn wir aber die Strömung nur in dem Sektor betrachten, der durch $\varphi \in [0, 3\pi/2]$ gegeben ist, so kann man die Umströmung einer *konvexen Ecke* beschreiben. Für den Geschwindigkeitsbetrag erhält man

$$|\vec{u}| = \frac{2}{3}r^{-1/3}.$$
(2.21)

Im Rahmen der Theorie inkompressibler reibungsfreier Strömungen divergiert der Betrag der Geschwindigkeit an jeder scharfen Kante $(|\vec{u}|(\vec{x}=0) \rightarrow \infty)$.

Abbildung 2.6.: Stromlinien für $F(z) = z^{1/2}$. Der Stromlinenabstand beträgt $\Delta \psi = 0.05$.

Abbildung 2.7.: Strömung um eine dünne angestellte Platte (schematisch).

 $F(z) = z^{1/2}$ Senkt man den Wert von n auf 1/2 ab (Abb. 2.6), so ist die Strömung 4π -periodisch. Die Auswärtströmung bei $\varphi_0 = 0$ hat sich bei $\varphi_1 = 2\pi$ in eine Einwärtsströmung gewandelt. Dies entspricht der Umströmung einer halbunendlichen infinitesimal dünnen Platte bei (x > 0, y = 0). Auch in diesem Fall divergiert der Betrag der Geschwindigkeit $|\vec{u}| = r^{-1/2}/2$ an der scharfen Kante bei r = 0.

Wenn man die Strömung um eine dünne angestellte Platte betrachtet (Abb. 2.7), sieht man, daß sich die lokale Strömung um die scharfe Kante mittels $F(z) = z^{1/2}$ beschreiben läßt und die Strömung in der Nähe des Staupunkts durch $F(z) = z^2$.

Die bei den Potentialströmungen mit n < 1 auftretende Divergenz der Strömung zeigt eine der Grenzen der Potentialtheorie auf. Denn $|\vec{u}| \to \infty$ für $r \to 0$ verletzt die Voraussetzung kleiner Machzahlen (konstante Dichte). Kompressibilitätseffekte in einer kleinen Umgebung von r = 0 bewirken, daß die Strömungsgeschwindigkeit dort in Realität endlich bleibt. Darüber hinaus erfüllen Potentialströmungen nicht die Haftbedingung $\vec{u} = 0$ an festen Oberflächen. In der Nähe fester Körper ist die Viskosität nicht zu vernachlässigen. Die Potentialtheorie ist daher eher geeignet, die Strömung in einer hinreichenden Entfernung eines umströmten Körpers zu beschreiben.

Abbildung 2.8.: Quellenströmung (a) und Potentialwirbel (b).

2.2.3. Logarithmisches Potential $F(z) = A \ln z$

Auch der Logarithmus ist eine holomorphe Funktion. Daher betrachten wir $F(z) = A \ln z$, wobei $A = A_r + iA_i \in \mathbb{C}$ im allgemeinen komplex ist. Die Strömung hängt qualitativ vom Real- und Imaginärteil von A ab.

Quellen und Senkenströmung für $A \in \mathbb{R}$ Wenn $\Im(A) = 0$ ist, erhält man

$$F(z) = A_r \ln z = A_r \ln(r e^{i\varphi}) = A_r \left(\ln r + i\varphi\right).$$
(2.22)

Es folgt

$$\phi = \Re(F) = A_r \ln r, \qquad (2.23a)$$

$$\psi = \Im(F) = A_r \varphi. \tag{2.23b}$$

Alle Stromlinien $\psi = \text{const.}$ sind daher alle Strahlen aus dem Ursprung. Die Äquipotentiallinien $\phi = \text{const.}$ sind konzentrische Kreise um den Ursprung (Abb. 2.8a). Ist der Realteil $A_r > 0$, ist die radiale Strömung positiv. Dann hat man eine *Quellenströmung* (für $A_r < 0$ liegt eine *Senkenströmung* vor).

Die azimutale Geschwindigkeit $V=\vec{e_\varphi}\cdot\nabla\phi=r^{-1}\partial\phi/\partial\varphi=0$ verschwind
et. Für die radiale GeschwindigkeitskomponenteUerhält man

$$U = \vec{e}_r \cdot \nabla \phi = \frac{\partial \phi}{\partial r} = \frac{A_r}{r}.$$
 (2.24)

Für $r \to \infty$ klingt die radiale Geschwindigkeit ab: $U(r \to \infty) \to 0$. Für $r \to 0$ divergiert U. Der *Quellpunkt* r = 0 ist daher ein singulärer Punkt der Lösung. Die Lösung ist dort nicht differenzierbar.

Die Strömung ist überall inkompressibel, bis auf den Ursprung $r \to 0,$ denn für $r \neq 0$ gilt

$$\nabla \cdot \vec{u} = \nabla \cdot \nabla \phi = \left(\frac{1}{r}\partial_r r \partial_r + \frac{1}{r^2}\partial_\varphi^2\right) A_r \ln r = 0.$$
 (2.25)

3. C. Luhlmann, U. Kluwid Strömungsmechanik 2 Für $r \to 0$ divergiert auch das Potential.

Um die Quellstärke zu bestimmen, berechnen wir das Volumen, das pro Zeiteinheit durch einen Kreis mit Radius R um den Ursprung strömt. Wir erhalten den *Volumenstrom*

$$q = \int_0^{2\pi} U(R) R \, \mathrm{d}\varphi = \int_0^{2\pi} A_r \mathrm{d}\varphi = 2\pi A_r.$$
 (2.26)

Der Volumenstrom ist unabhängig von r (inkompressible Strömung). Der Faktor A_r ist ein Maß für den Volumenstrom, auch *Quellstärke* genannt,

$$A_r = \frac{q}{2\pi}.\tag{2.27}$$

Damit gilt für Potential und Stromfunktion einer Quelle in kartesischen Koordinaten

$$\phi = \frac{q}{2\pi} \ln r = \frac{q}{2\pi} \ln \sqrt{x^2 + y^2},$$
(2.28a)

$$\psi = \frac{q}{2\pi}\varphi = \frac{q}{2\pi}\arctan\left(\frac{y}{x}\right). \tag{2.28b}$$

Da die Quelle im Ursprung lokalisiert ist, erhält man einen von Null verschiedenen Volumenstrom nur für geschlossene Kurven, die den Ursprung umschließen. Denn mit Hilfe des Gaußschen Satzes in zwei Dimensionen gilt

$$\oint_C \vec{u} \cdot \vec{e}_n \mathrm{d}\sigma = \int_S \nabla \cdot \vec{u} \,\mathrm{d}S \stackrel{r \neq 0}{=} 0.$$
(2.29)

Potentialwirbel für $A \in \mathbb{I}$ Wenn $A = iA_i$ rein imaginär ist, erhalten wir

$$F(z) = iA_i \ln z = iA_i(\ln r + i\varphi) = -A_i\varphi + iA_i \ln r.$$
(2.30)

Daraus ergibt sich das Potential und die Stromfunktion

$$\phi = \Re(F) = -A_i \varphi, \qquad (2.31a)$$

$$\psi = \Im(F) = A_i \ln r. \tag{2.31b}$$

Die Isolinien des Potentials sind radiale Strahlen (Abb. 2.8b). Wegen $U = \partial \phi / \partial r = 0$ verschwindet die radiale Geschwindigkeit. Die Stromlinien $\psi = \text{const.}$ sind nun konzentrische Kreise um den Ursprung. Die azimutale Geschwindigkeitskomponente lautet

$$V = \frac{1}{r} \frac{\partial \phi}{\partial \varphi} = -\frac{A_i}{r}.$$
(2.32)

Wie im obigen Fall klingt die Strömungsgeschwindigkeit für $r \to \infty$ auf Null ab und im Ursprung befindet sich ein singulärer Punkt des Strömungsfeldes ($|V(r \to 0)| \to \infty$).

Diese rotierende Strömung nennt man *Potentialwirbel*. Daher berechnen wir die Zirkulation Γ für einen Kreis mit Radius R um den Ursprung (beachte die Vorzeichenkonvention)

$$\Gamma = \int_0^{2\pi} V(R) R \,\mathrm{d}\varphi = \int_0^{2\pi} \left(-\frac{A_i}{R}\right) R \,\mathrm{d}\varphi = -A_i \int_0^{2\pi} \mathrm{d}\varphi = -2\pi A_i. \tag{2.33}$$

3. C. Luhimann, A. Lluwic Strömungsmechanik 2 Die Zirkulation des Potentialwirbels, auch *Wirbelstärke* genannt, ist unabhängig von R und steht im Zusammenhang mit der Konstanten A_i

$$A_i = -\frac{\Gamma}{2\pi}.\tag{2.34}$$

Somit gilt für einen Potentialwirbel

$$\phi = \frac{\Gamma}{2\pi}\varphi = \frac{\Gamma}{2\pi}\arctan\left(\frac{y}{x}\right),\tag{2.35a}$$

$$\psi = -\frac{1}{2\pi} \ln r = -\frac{1}{2\pi} \ln \sqrt{x^2 + y^2}.$$
 (2.35b)

Für eine Potentialströmung kann man die Zirkulation entlang einer beliebigen geschlossene Kurve C mit der Gesamtlänge L leicht berechnen, denn

$$\Gamma_C = \oint_C \vec{u} \cdot d\vec{x} = \oint_C d\vec{x} \cdot \nabla \phi = \oint_C \underbrace{\frac{\partial \phi}{\partial \sigma}}_{u_t} d\sigma = \oint_C d\phi = \phi(L) - \phi(0) = A_i \left[\varphi(0) - \varphi(L)\right].$$
(2.36)

Das Linienintegral eines Gradientenfeldes $(\nabla \phi)$ ist gerade die Potentialdifferenz zwischen den Endpunkten. Umschließt die geschlossene Kurve C die Wirbelsingularität im Ursprung nicht, dann hat sich der Winkel φ nicht geändert und es ist $\varphi(L) = \varphi(0)$. Die Zirkulation ist dann Null: $\Gamma_C = 0$. Umschließt die geschlossene Kurve hingegen die Wirbelsingularität einfach, so hat sich der Winkel um $\Delta \varphi = 2\pi$ geändert und es gilt nach (2.36) $\Gamma_C = -2\pi A_i$.

Da es sich um eine rotierende Strömung handelt, betrachten wir auch die Vortizität. Für $r \neq 0$ verschwindet die Vortizität²

$$\omega = \vec{e}_z \cdot \vec{\omega} = \vec{e}_z \cdot \nabla \times \vec{u} = \vec{e}_z \cdot \nabla \times [V(r)\vec{e}_\varphi] = -A_i \vec{e}_z \cdot \nabla \times \left(\frac{\vec{e}_\varphi}{r}\right) = -A_i \frac{1}{r} \frac{\partial}{\partial r} r\left(\frac{1}{r}\right) = 0.$$
(2.37)

Daher kann die Vortizität nur im Ursprung konzentriert sein. Mit dem Ansatz $\omega = \Omega \delta(x) \delta(y)$ und mit Hilfe des Stokesschen Satzes erhalten wir³

$$\Gamma = \oint_C \vec{u} \cdot d\vec{x} \stackrel{(1.48)}{=} \int_S (\nabla \times \vec{u}) \cdot d\vec{S} = \int_S \omega \, dS = \int_S \Omega \, \delta(x) \delta(y) \, dx \, dy = \Omega.$$
(2.38)

Die Zirkulation ist gleich der im Ursprung konzentrierten Vortizität.⁴ Da die Vortizität nur im Ursprung konzentriert ist, wird der Potentialwirbel auch *Punktwirbel*

²Für die Vortizität gilt in Zylinderkoordinaten

$$\vec{\omega} = \nabla \times \vec{u} = \left(\frac{1}{r}\frac{\partial W}{\partial \varphi} - \frac{\partial V}{\partial z}\right)\vec{e}_r + \left(\frac{\partial U}{\partial z} - \frac{\partial W}{\partial r}\right)\vec{e}_\varphi + \frac{1}{r}\left(\frac{\partial (rV)}{\partial r} - \frac{\partial U}{\partial \varphi}\right)\vec{e}_z.$$

³Die Größe Ω hat die Dimension einer Vortizität multipliziert mit der Einheitsfläche.

⁴Dies gilt im dimensions
losen Fall. Γ und Ω haben natürlich unterschiedliche Dimensionen.

Abbildung 2.9.: Bei einem Potentialwirbel (a) rotiert ein Fluidelement um das Wirbelzentrum. Das Fluidelement dreht sich dabei aber nicht um sich selbst. Bei einer Festkörperrotation, bei welcher die Vortizität $\vec{\omega}$ konstant ist, rotiert auch jedes Fluidelement um sich selbst (b).

oder Fadenwirbel genannt. Die Vortizität ist ein Maß für die Drehrate substantieller Fluidelemente. Daher erfährt eine Fluidelement, das sich außerhalb des Ursprungs befindet, keine Drehung um sich selbst. Gleichwohl dreht es sich um das Zentrum der Potentialwirbels (siehe Abb. 2.9).

2.3. Superposition von Lösungen

Die Ausgangsgleichungen (2.1a) und (2.1b)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \qquad \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$$
 (2.39)

lassen sich unter Verwendung von ϕ und ψ auch schreiben als

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \nabla^2 \phi = 0, \qquad (2.40a)$$

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \nabla^2 \psi = 0.$$
(2.40b)

Sowohl das Potential ϕ als auch die Stromfunktion ψ genügen der Laplace-Gleichung.

Die Gleichungen (2.40a) und (2.40b) sind *linear* in ϕ bzw. ψ . Sind zum Beispiel $\phi_1(x, y)$ und $\phi_2(x, y)$ zwei verschiedene Lösungen von (2.40a), dann ist auch die gewichtete Summe $\phi_3 = a_1\phi_1 + a_2\phi_2$ eine Lösung dieser Gleichung (a_i beliebige Konstanten). Dies gilt auch für die komplexen Potentiale. Man nennt diesen Sachverhalt *Superpositionsprinzip*.

Aufgrund dieses Prinzips ist es möglich, aus bereits bekannten speziellen Lösungen (z.B. für Quelle und Wirbel) zu komplexeren Strömungsformen zu kommen. Wir betrachten einige einfache Beispiele.

2.3.1. Quelle in Parallelströmung

Wir betrachten nun die Superposition einer Parallelströmung in x-Richtung $F_1(z) = u_{\infty}z$ mit einer Quelle im Ursprung $F_2(z) = (q/2\pi) \ln z$, q > 0. Dann erhalten wir das komplexe Potential

$$F(z) = u_{\infty}z + \frac{q}{2\pi}\ln z.$$
 (2.41)

Die Berechnung von ϕ und ψ ergibt nach Gleichung (2.10) mit $F(z) = u_{\infty}(x+iy) + (q/2\pi) (\ln r + i\varphi)$

$$\phi = \Re(F) = u_{\infty}x + \frac{q}{2\pi}\ln\sqrt{x^2 + y^2},$$
(2.42a)

$$\psi = \Im(F) = u_{\infty}y + \frac{q}{2\pi}\arctan\frac{y}{x}.$$
(2.42b)

Für die Geschwindigkeitskomponenten erhält man

$$u = \frac{\partial \phi}{\partial x} = u_{\infty} + \frac{q}{2\pi} \frac{x}{x^2 + y^2}, \qquad v = \frac{\partial \phi}{\partial y} = \frac{q}{2\pi} \frac{y}{x^2 + y^2}.$$
 (2.43)

In großer Entfernung $r^2=x^2+y^2\rightarrow\infty$ vom Ursprung gilt daher

$$\begin{cases} u \to u_{\infty} \\ v \to 0 \end{cases}$$
 für $r \to \infty$. (2.44)

Da die Strömung der Quelle wie r^{-1} zerfällt, dominiert für $r \to \infty$ die homogene Strömung.

Die Form der Stromlinien läßt sich nun nicht mehr so einfach bestimmen wie bei den vorangegangenen Beispielen. Dennoch lassen sich relativ schnell einige Aussagen über die Strömung machen. Zunächst kann man nach einem Staupunkt (x, y) = (x_S, y_S) suchen. Er ist durch $\vec{u}(x_S, y_S) = 0$ charakterisiert. Die *v*-Komponente der Strömung ist antisymmetrisch bezüglich *y*. Daher gilt v(y = 0) = 0. Deshalb suchen wir einen Staupunkt mit $y_S = 0$. Zusammen mit $y_S = 0$ liefert die Bedingung u = 0

$$0 = u(x_S, y_S = 0) = u_{\infty} + \frac{q}{2\pi} \frac{1}{x_S}.$$
(2.45)

Damit erhalten wir

$$(x_S, y_S) = \left(-\frac{q}{2\pi u_\infty}, 0\right). \tag{2.46}$$

Auf der x-Achse und x > 0 stromab der Quelle gilt $\psi = 0$ ($\varphi = 0$). Direkt stromauf der Quelle für $\varphi = \pi$ ist $\psi = q/2$ (siehe (2.28b)). Die Stromlinie mit $\psi = q/2$ läuft in den Staupunkt ein. Daher besitzen auch die aus dem Staupunkt auslaufenden Stromlinien den Wert $\psi = q/2$. Da für $x \to \infty$ nach (2.44) alle Stromlinien parallel zur x-Achse verlaufen, werden auch die aus dem Staupunkt herauslaufenden Stromlinien für $x \to \infty$ parallel zur x-Achse verlaufen. Das zwischen diesen beiden Stromlinien befindliche Fluid stammt ausschließlich aus der Quelle. Offenbar muß der Volumenstrom der Quelle q gleich dem Strom durch einen Querschnitt

Abbildung 2.10.: Stromlinien einer Quelle in homogener Strömung.

des durch die beiden Stromlinien $\psi = q/2$ begrenzten Streifens der Breite *b* für $x \to \infty$ sein. Dies führt auf die Bedingung

$$q = bu_{\infty} \qquad \Rightarrow \qquad b = \frac{q}{u_{\infty}}.$$
 (2.47)

Damit haben wir ein qualitatives Bild der Strömung erhalten. Berechnete Stromlinien sind zusammen mit den berechneten Größen in Abb. 2.10 gezeigt. Der Staupunkt S stellt einen Verzweigungspunkt der Stromlinie $\psi = q/2$ dar. Die Strömung ist in jedem Punkt tangential zu Linien $\psi = \text{const.}$ Deshalb kann man jede Stromlinie auch als Oberfläche eines Körpers deuten. Insbesondondere kann man die Stromlinie $\psi = q/2$ als Kontur eines umströmten stumpfen Körpers auffassen, aus dem kein Volumenstrom austritt. Die Kurve $\psi = q/2$ teilt dann die Strömung in einen Außenbereich mit der Strömung um den Körper herum und in einen Innenbereich. Die Strömung innerhalb des Körpers ist im allgemeinen nur zur Erzeugung der Körperkontur wichtig.

2.3.2. Quelle und Senke in Parallelströmung

Durch die Überlagerung einer Parallelströmung und einer Quelle haben wir die Umströmung eines halbunendlichen Körpers erhalten. Zur Modellierung der Strömung um einen endlichen Körper benötigen wir neben Quellen auch noch Senken, so daß die gesamte Quellstärke verschwindet

$$\sum_{i=1}^{n} q_i = 0, \qquad (2.48)$$

William John Macquorn Rankine 1820–1872

wobei q_i die Stärke der *i*-ten Quelle/Senke bezeichnet. Das einfachste Beispiel ergibt sich durch die Überlagerung einer Quelle

3. C. Luhlmann, A. Kluwic Strömungsmechanik 2 mit einer Senke gleicher Stärke auf der x-Achse in einer Parallelströmung. Wir erhalten dann die Umströmung eines *Rankine*-

Körpers.

Wir wollen daher der homogenen Parallelströmung in x-Richtung $F_1(z) = u_{\infty}z$ nun eine Senke F_2 und eine Quelle F_3 mit gleicher Stärke überlagern. Diese lassen sich darstellen als

$$F_2(z) = \frac{q}{2\pi} \ln(z+a), \qquad \text{Quelle bei } z = -a, \qquad (2.49a)$$

$$F_3(z) = -\frac{q}{2\pi} \ln(z-a), \qquad \text{Senke bei } z = a. \tag{2.49b}$$

Die Überlagerung läßt sich schreiben als

$$F(z) = u_{\infty}z + \frac{q}{2\pi}\ln\frac{z+a}{z-a} = u_{\infty}(x+iy) + \frac{q}{2\pi}\ln\frac{(x+a)+iy}{(x-a)+iy}.$$
 (2.50)

Daraus erhalten wir Potential und Stromfunktion (Superposition der Real- und Imaginärteile der F_i , Polardarstellung der Argumente von ln)

$$\phi = \Re(F) = u_{\infty}x + \frac{q}{2\pi} \left(\ln \sqrt{(x+a)^2 + y^2} - \ln \sqrt{(x-a)^2 + y^2} \right), \qquad (2.51a)$$

$$\psi = \Im(F) = u_{\infty}y + \frac{q}{2\pi} \left(\arctan\frac{y}{x+a} - \arctan\frac{y}{x-a}\right).$$
(2.51b)

Die kartesischen Geschwindigkeitskomponenten lauten

$$u = \phi_x = u_\infty + \frac{q}{2\pi} \left[\frac{x+a}{(x+a)^2 + y^2} - \frac{x-a}{(x-a)^2 + y^2} \right],$$
 (2.52a)

$$v = \phi_y = \frac{q}{2\pi} \left[\frac{y}{(x+a)^2 + y^2} - \frac{y}{(x-a)^2 + y^2} \right].$$
 (2.52b)

Einige Nullstellen von v liest man direkt ab: y = 0. Deshalb suchen wir Staupunkte auf der x-Achse und setzen $y_S = 0$. Mit u = 0 erhält man die Bedingung

$$0 = u_{\infty} + \frac{q}{2\pi} \left(\frac{1}{x_S + a} - \frac{1}{x_S - a} \right).$$
(2.53)

Auflösen nach x_S liefert die beiden Staupunktskoordinaten

$$x_S = \pm a \sqrt{1 + \frac{q}{u_\infty \pi a}}.$$
(2.54)

Die Stromlinien sind symmetrisch bezüglich x = 0 und y = 0. Es stellt sich heraus, daß die aus $(x, y) = (-\infty, 0)$ in den Staupunkt S_1 bei x < 0 einlaufende Stromlinie $\psi = 0$ entspricht (siehe Abb. 2.11). Daher ist auch auf den beiden aus S_1 auslaufenden Stromlinien $\psi = 0$. Diese beiden Stromlinen, die in den Staupunkt S_2 einlaufen, definieren die Körperkontur. Die maximale Körperdicke $y = y_m$ ergibt sich dann

Abbildung 2.11.: Stromlinien einer Quelle und Senke gleicher Stärke in einer homogenen Strömung parallel zur Verbindungslinie.

aus der Körperstromlinie an der Stelle x = 0. Mit $\psi = 0$ und $(x, y) = (0, y_m)$ erhält man aus (2.51b) für die dickste Stelle

$$0 = u_{\infty}y_m + \frac{q}{2\pi} \left(\arctan \frac{y_m}{a} - \arctan \frac{y_m}{(-a)} \right).$$
 (2.55)

Da arctan antisymmetrisch ist, erhält man die transzendente Gleichung

$$0 = u_{\infty} y_m + \frac{q}{\pi} \arctan \frac{y_m}{a}.$$
 (2.56)

Sie läßt sich nicht mehr explizit nach y_m auflösen, so daß die Stromlinien berechnet werden müssen (Abb. 2.11).

2.3.3. Dipol in Parallelströmung

Wir betrachten nun den Grenzübergang $a \to 0$, wobei die Quellstärke q zunächst festgehalten wird

$$F(z) = u_{\infty}z + \frac{q}{2\pi}\ln\frac{z+a}{z-a} = u_{\infty}z + \frac{q}{2\pi}\ln\frac{1+a/z}{1-a/z} = u_{\infty}z + \frac{q}{2\pi}\left[\ln\left(1+\frac{a}{z}\right) - \ln\left(1-\frac{a}{z}\right)\right].$$
 (2.57)

Für q = const. und $z \neq 0$ folgt für $a \rightarrow 0$: $F(z \neq 0) \rightarrow u_{\infty}z$. Im Grenzfall löschen sich Quelle und Senke endlicher Stärke aus.

Um im Limes $a \to 0$ eine endliche Störung der Parallelströmung zu erhalten, muß gleichzeitig mit $a \to 0$ die Quellstärke $q \to \infty$ streben, so daß das Produkt

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 qa konstant bleibt. Um dies zu sehen, entwickeln wir den Logarithmus in (2.57) in eine Taylor-Reihe um 1 für $|a/z| \ll 1$. Die Taylor-Entwicklung lautet

$$\ln(1+\epsilon) = \ln(1) + \epsilon \ln'(1) + \ldots = \epsilon + O(\epsilon^2).$$
(2.58)

Dann erhalten wir für $|\epsilon| = |a/z| \ll 1$ (die Summanden mit geraden Potenzen von a/z kompensieren sich)

$$F(z) \approx u_{\infty} z + \frac{qa}{\pi z} + O\left(q \left|\frac{a^3}{z^3}\right|\right).$$
(2.59)

Damit der nichttriviale Term erster Ordnung erhalten bleibt, muß qa im Limes $a \to 0$ von Null verschieden sein. Für m := qa = const. erhalten wir im Limes $a \to 0$

$$F(z) = u_{\infty}z + \frac{m}{\pi z}.$$
(2.60)

Die zum komplexen Potential $m/(\pi z)$ gehörende Strömung nennt man *Dipolströmung*. Die Größe *m* heißt *Dipolmoment* und ist ein Maß für die Stärke des Dipols.⁵

Wenn man den zweiten Summanden in (2.60) mit z^* erweitert, erhält man

$$F(z) = u_{\infty}(x + iy) + \frac{m}{\pi} \frac{x - iy}{x^2 + y^2}.$$
(2.61)

Hieraus erhalten wir Potential und Stromfunktion

$$\phi = \Re(F) = u_{\infty}x + \frac{m}{\pi}\frac{x}{x^2 + y^2},$$
(2.62a)

$$\psi = \Im(F) = u_{\infty}y - \frac{m}{\pi}\frac{y}{x^2 + y^2}.$$
 (2.62b)

Für die Stromlinie mit $\psi = 0$ gilt

Spezialfall ist diese Konstante gleich Null.

$$\psi = \left(u_{\infty} - \frac{m}{\pi} \frac{1}{x^2 + y^2}\right)y = 0.$$
(2.63)

Offenbar ist die Symmetrielinie y = 0 eine Stromlinie mit $\psi = 0$. Darüber hinaus erhalten wir auch eine nichttriviale Nullstelle von ψ für

$$x^2 + y^2 = \frac{m}{\pi u_{\infty}} =: R^2.$$
 (2.64)

Dies ist ein Kreis mit dem Radius R auf welchem ebenfalls $\psi = 0$ gilt. Offenbar läßt sich mit einem Dipol in Parallelströmung die ebene Umströmung eines Zylinders mit Radius R beschreiben (siehe Abb. 2.12).⁶

⁵Einen Dipol, der nicht zur x-Achse ausgerichtet ist, kann man durch eine Drehung erhalten, die durch einen Phasenfaktor $z \to z e^{i\varphi_0}$ dargestellt werden kann. In der Elektrodynamik hat man eine analoge Situation, wobei q dem Betrag zweier entgegengesetzter Punktladungen entspricht. ⁶Die Oberfläche eines Körpers in einer zweidimensionalen inkompressiblen reibungsfreien Strömung muß eine Stromlinie sein. Daher gilt auf der Körperkontur $\psi = \text{const.}$ Im vorliegenden

Abbildung 2.12.: Stromlinien für einen Dipol in einer Parallelströmung, wobei der Dipol parallel zur Richtung der Anströmung ausgerichtet ist.

Mit Hilfe von Rkann man das komplexe Potential F sowie ϕ und ψ auch schreiben als

$$F(z) = u_{\infty} \left(z + \frac{m}{\pi u_{\infty}} \frac{1}{z} \right) = u_{\infty} \left(z + \frac{R^2}{z} \right), \qquad (2.65a)$$

$$\phi = u_{\infty} x \left(1 + \frac{R^2}{r^2} \right), \qquad (2.65b)$$

$$\psi = u_{\infty} y \left(1 - \frac{R^2}{r^2} \right). \tag{2.65c}$$

Durch Differenzieren dieser Größen kann man die Geschwindigkeitskomponenten erhalten. Von besonderem Interesse ist die Tangentialgeschwindigkeit auf der Zylinderoberfläche bei r = R. Für die azimutale Geschwindigkeit auf r = R erhalten wir aus dem Potential

$$V = \left[\frac{1}{r}\frac{\partial\phi}{\partial\varphi}\right]_{r=R} = \frac{1}{R}\frac{\partial}{\partial\varphi}\left[u_{\infty}\left(1+\frac{R^{2}}{r^{2}}\right)r\cos\varphi\right]_{r=R}$$
$$= -\frac{1}{R}\left[u_{\infty}\left(1+\frac{R^{2}}{r^{2}}\right)r\sin\varphi\right]_{r=R} = -2u_{\infty}\sin\varphi.$$
(2.66)

In den Staupunkten ist V = 0. Sie liegen daher bei $\varphi_s = 0, \pi$. Die maximale Tangentialgeschwindigkeit $|V|_{\text{max}} = 2u_{\infty}$ wird bei $\varphi = \pm \pi/2$ erreicht. Die Druckverteilung auf der Zylinderoberfläche r = R kann man aus der Bernoulli-Gleichung erhalten

$$\left. \frac{\vec{u}^2}{2} \right|_{r=R} + \frac{p}{\rho} = \frac{u_{\infty}^2}{2} + \frac{p_{\infty}}{\rho},\tag{2.67}$$

3. C. Luhimann, A. Lluwid Strömungsmechanik 2

Abbildung 2.13.: Verteilung der Tangentialgeschwindigkeit V (a) und des Druckbeiwerts c_p auf der Zylinderoberfläche als Funktion der Koordinate x.

beziehungsweise

$$\frac{p - p_{\infty}}{\rho} = \frac{1}{2}(u_{\infty}^2 - V^2).$$
(2.68)

Für den Druckkoeffizienten c_p gilt daher

$$c_p = \frac{p - p_{\infty}}{\rho u_{\infty}^2 / 2} = 1 - \frac{V^2}{u_{\infty}^2}.$$
 (2.69)

Diese Formel gilt allgemein, wobei V die Tangentialgeschwindigkeit ist. Im hier vorliegenden Fall ist $c_p = 1 - 4 \sin^2 \varphi$. Da die Druckverteilung bezüglich x = 0 symmetrisch ist (siehe auch Abb. 2.13), verschwindet der Widerstand des umströmten Zylinders und für den Widerstandsbeiwert (1.8b) gilt

$$c_D = -\frac{1}{2R} \oint_S c_p n_x \,\mathrm{d}S = 0. \tag{2.70}$$

Es läßt sich ganz allgemein zeigen, daß der Widerstand eines umströmten Körpers in einer reibungsfreien Strömung verschwindet, wenn sehr weit stromabwärts wieder die ungestörte Strömung herrscht. Dieses Ergebnis der Theorie reibungsfreier Strömungen steht im Widerspruch zur Erfahrung. Es wird daher *D'Alembertsches Paradoxon* genannt. Der Widerspruch kann durch die Berücksichtigung von inneren Reibungseffekten aufgelöst werden. Im Fall einer *reibungsfreien* Umströmung können Kräfte auf die Körperoberfläche nur durch den Druck übertragen werden. Aufgrund der Symmetrie der Umströmung eines Zylinders bzgl. x = 0 kompensieren sich diese.

Bleiben im Unendlichen Störungen zurück (z.B. die Wirbelschleppe hinter einem Flügel endlicher Streckung oder Wellen, die von einem ebenen Profil bei einer Überschallströmung ausgehen), so liefert auch die Theorie reibungsfreier Fluide einen von Null verschiedenen Widerstand.

2.3.4. Rotierender Zylinder in Parallelströmung

Das Potential (2.65a) beschreibt die symmetrische Umströmung eines Zylinders. Wenn wir dieser Strömung einen Potentialwirbel überlagern, bleibt die kreisförmige Stromlinie, welche die Zylinderoberfläche beschreibt, erhalten. Durch die Überlagerung von (2.65a) und (2.30) erhalten wir die Umströmung eines Zylinders mit Zirkulation

$$F(z) = u_{\infty} \left(z + \frac{R^2}{z} \right) - i \frac{\Gamma}{2\pi} \ln z.$$
(2.71)

Potential und Stromfunktion lauten

$$\phi = u_{\infty} x \left(1 + \frac{R^2}{r^2} \right) + \frac{\Gamma}{2\pi} \varphi, \qquad (2.72a)$$

$$\psi = u_{\infty} y \left(1 - \frac{R^2}{r^2} \right) - \frac{\Gamma}{2\pi} \ln r.$$
(2.72b)

Für die Körperstromlinine gilt hier $\psi(r = R) = -(\Gamma/2\pi) \ln R$. Von besonderem Interesse ist wieder die Tangentialkomponente der Geschwindigkeit V auf dem Kreisr = R

$$V(\varphi) = \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \Big|_{r=R} = -2u_{\infty} \sin \varphi + \frac{\Gamma}{2\pi R}.$$
 (2.73)

Wir betrachten den Fall $\Gamma < 0$ (Potentialwirbel dreht im Uhrzeigersinn). Dann herrschen auf der Oberseite des Kreises Übergeschwindigkeiten (im Vergleich zu $\Gamma = 0$) und auf der Unterseite Untergeschwindigkeiten. Falls $|\Gamma|$ klein ist, liegen auf der Unterseite des Kreises zwei Staupunkte, die durch V = 0 charakterisiert sind. Aus (2.73) folgt damit

$$\sin\varphi_S = \frac{\Gamma}{4\pi u_\infty R} < 0 \tag{2.74}$$

Diese Situation ist in Abb. 2.14 gezeigt. Wenn Γ weiter absinkt, fallen bei dem kritischen Wert

$$\Gamma_c = -4\pi u_\infty R \tag{2.75}$$

die beiden Wurzeln von (2.74) (die beiden Staupunkte) bei $\varphi_S = 3\pi/2$ zusammen. Für noch stärkere Zirkulation $\Gamma < \Gamma_c$ gibt es auf dem Kreis keinen Staupunkt mehr. Dieser bildet sich dann in der freien Strömung aus. Die beiden Situationen sind in Abb. 2.15 illustriert.

Aus der azimutalen Geschwindigkeit (2.73) erhalten wir wie in (2.69) den Druckbeiwert

$$c_p(\varphi) = 1 - \frac{V^2(\varphi)}{u_{\infty}^2} = 1 - 4\sin^2\varphi + \frac{2\Gamma}{\pi u_{\infty}R}\sin\varphi - \frac{\Gamma^2}{4\pi^2 u_{\infty}^2 R^2}.$$
 (2.76)

Für den Widerstandsbeiwert erhält man dann aus (1.8b) unter Berücksichtigung

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2 2. Ebene stationäre inkompressible reibungsfreie und drehungsfreie Strömungen

Abbildung 2.14.: Zylinderumströmung mit Zirkulation für $0 > \Gamma = \Gamma_c/2 > \Gamma_c = -4\pi u_{\infty}R$.

Abbildung 2.15.: Zylinderumströmung mit Zirkulation für $\Gamma = \Gamma_c = -4\pi u_{\infty} R$ (a) und $\Gamma = 1.05\Gamma_c < \Gamma_c$ (b).

des nach außen gerichteten Normalenvektors $\vec{n} = (\cos \varphi, \sin \varphi)^{\mathrm{T}}$

$$c_D = -\frac{1}{2R} \int_0^{2\pi} c_p n_x R \,\mathrm{d}\varphi \tag{2.77}$$
$$= -\frac{1}{2} \int_0^{2\pi} \left[1 - 4\sin^2\varphi + \frac{2\Gamma\sin\varphi}{\pi u_\infty R} - \left(\frac{\Gamma}{2\pi u_\infty R}\right)^2 \right] \cos\varphi \,\mathrm{d}\varphi = 0,$$

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 in Übereinstimmung mit dem D'Alembertschen Paradoxon. Für den Auftriebsbeiwert gilt nach (1.8a) und mit $n_y = \sin \varphi$

$$c_L = -\frac{1}{2} \int_0^{2\pi} \left[1 - 4\sin^2\varphi + \frac{2\Gamma\sin\varphi}{\pi u_\infty R} - \left(\frac{\Gamma}{2\pi u_\infty R}\right)^2 \right] \sin\varphi \,\mathrm{d}\varphi.$$
(2.78)

Wegen $\int_0^{2\pi} \sin^2 \varphi \, \mathrm{d} \varphi = \pi$ folgt

$$c_L = -\frac{1}{2} \frac{2\Gamma}{\pi u_\infty R} \pi = -\frac{\Gamma}{u_\infty R}.$$
(2.79)

Nur der Mischterm, der durch das Zusammenwirken von Anströmung und Zirkulation zustande kommt, trägt zum Auftrieb bei. Mit (1.7a) ergibt sich hieraus die Auftriebskraft pro axialer Längeneinheit des Zylinders als $L = 2R(\rho u_{\infty}^2/2)c_L$, also

$$L = -\rho u_{\infty} \Gamma. \tag{2.80}$$

Dieses Ergebnis nennt man auch den *Satz von Kutta-Joukowski*. Erstaunlicherweise ist die Auftriebskraft unabhängig vom Radius R des Zylinders und hängt entscheidend von der Zirkulation Γ um den Zylinder ab. Die Zirkulation spielt hier eine Schlüsselrolle. Wir werden noch sehen, daß dieser Satz allgemein gilt, also auch für die Umströmung von beliebigen Profilen. Die Auftriebskraft L ist eine leistungslose Kraft, da sie senkrecht auf der Anströmrichtung \vec{u}_{∞} steht ($\vec{L} \cdot \vec{u}_{\infty} = 0$).

2.4. Methode der Singularitätenbelegung (Profiltheorie)

Mit Kenntnis der elementaren Strömungsformen einer zweidimensionalen reibungsund wirbelfreien Strömung können wir nun die Strömung um Profile betrachten (Abb. 2.16). Dabei wird angenommen, daß das Profil *schlank* ist. Schlank bedeutet hier, daß die maximale Dicke d_{\max} des Profils klein gegenüber seiner Länge ist. Wenn wir die Länge l des Profils als Skala verwenden, ist dies gleichbedeutend mit der Forderung $\tau := d_{\max}/l \ll 1$. Darüber hinaus gehen wir auch von einem kleinen Anstellwinkel $\varepsilon \ll 1$ aus. Der Ursprung des Koordinatensystems wird konventionsgemäß in die Spitze (Nase) des Profils gelegt. Wir betrachten den Grenzfall $\tau \ll 1$ und $\varepsilon \ll 1$, weil dann nichtlineare Zusammenhänge linearisiert werden können. Dieses Vorgehen ermöglicht eine analytische Lösung und damit auch ein grundlegendes Verständnis der Tragflügelumströmung.

Für das reelle Geschwindigkeitspotential macht man den Ansatz

$$\phi = u_{\infty}x + v_{\infty}y + u_{\infty}\chi(x, y, \varepsilon, \tau).$$
(2.81)

Hierbei ist $u_{\infty}\chi$ die von den Parametern ε und τ abhängige Abweichung des Potentials von demjenigen der ungestörten Parallelströmung $u_{\infty}x + v_{\infty}y$. Man nennt χ deshalb auch das *Störpotential*.

Abbildung 2.16.: Ein dünnes Profil der Dicke τ , das unter einem kleinem Winkel ε angeströmt wird.

Ist das Profil unendlich dünn und verschwindet der Anstellwinkel ($v_{\infty} = 0$), dann ist $\chi = 0$. Wir betrachten kleine Abweichungen von diesem Grenzfall. Dazu wird χ in eine Taylor-Reihe für kleine τ und ε entwickeln. Wir erwarten (im Falle eines regulären Verhaltens) in führender Ordnung eine *lineare* Abhängigkeit von τ und ε . Daher machen wir den Ansatz

$$\chi = \tau \chi_1(x, y) + \varepsilon \chi_2(x, y), \qquad (2.82)$$

wobei $\tau \chi_1(x, y)$ den Dicken- und Wölbungseffekt und $\varepsilon \chi_2(x, y)$ den Anstelleffekt beschreiben. In dieser linearer Näherung sind der Dicken- und der Anstelleffekt unabhängig voneinander. Der gesamte Effekt ist eine Superposition.⁷ Bei diesem Ansatz (2.82) müssen wir außerdem verlangen, daß χ_1 und χ_2 nicht divergieren, denn dann würde die Annahme einer kleinen Störung der homogenen Strömung falsch sein und der Ansatz (2.82) wäre so nicht möglich. Bevor wir geeignete Potentiale angeben können, müssen wir klären, welche Randbedingungen von den Potentialen zu erfüllen sind.

2.4.1. Randbedingungen

Wir beschreiben die Kontur der Körpers durch zwei Funktionen $\tau h_o(x)$ und $-\tau h_u(x)$ nach Abb. 2.16. Da die Körperoberfläche nicht durchströmt werden kann, muß die Normalkomponente der Geschwindigkeit auf der Oberfläche des Körpers verschwinden. Nur die tangentiale Komponente ist im allgemeinen von Null verschieden. Die Forderung, daß der Geschwindigkeitsvektor tangential zur Profiloberfläche ist, ergibt für die Ober- und die Unterseite des Profils

$$\frac{v\left[x,\tau h_o(x)\right]}{u\left[x,\tau h_o(x)\right]} = \tau \frac{\mathrm{d}h_o}{\mathrm{d}x},\tag{2.83a}$$

$$\frac{v\left[x, -\tau h_u(x)\right]}{u\left[x, -\tau h_u(x)\right]} = -\tau \frac{\mathrm{d}h_u}{\mathrm{d}x}.$$
(2.83b)

Diese allgemeinen Bedingungen für die kartesischen Geschwindigkeitskomponenten sind *nichtlinear* in τ und ε .

 $^{^7\}mathrm{Für}$ größere Dicken und Anstellwinkel, sind beide Effekte nicht mehr unabhängig voneinander.

Dickeneffekt Wenn wir den Ansatz (2.81) in die Randbedingungen (2.83) einsetzen, erhalten wir zunächst für den Fall ohne Anstellung, d.h. für $v_{\infty} = 0$ entsprechend $\varepsilon = 0$, die Beziehung für die Oberseite

$$\frac{u_{\infty}\tau\chi_{1y}\left[x,\tau h_{o}(x)\right]}{u_{\infty}+u_{\infty}\tau\chi_{1x}\left[x,\tau h_{o}(x)\right]}=\tau\frac{\mathrm{d}h_{o}}{\mathrm{d}x}.$$
(2.84)

Jetzt wollen wir die Forderung $\tau \ll 1$ ausnutzen. Dazu entwickeln wir χ_1 bzw. die Ableitungen von χ_1 in eine Taylor-Reihe für kleine $y \ll 1$

$$\chi_{1y}[x,\tau h_o(x)] = \chi_{1y}(x,0^+) + \tau h_o(x)\chi_{1yy}(x,0^+) + O(\tau^2), \qquad (2.85a)$$

$$\chi_{1x}[x,\tau h_o(x)] = \chi_{1x}(x,0^+) + \tau h_o(x)\chi_{1xy}(x,0^+) + O(\tau^2).$$
(2.85b)

Damit erhalten wir

$$\frac{\tau\chi_{1y}(x,0^+) + O(\tau^2)}{1 + \tau\chi_{1x}(x,0^+) + O(\tau^2)} = \tau\chi_{1y}(x,0^+) + O(\tau^2) \stackrel{!}{=} \tau \frac{\mathrm{d}h_o}{\mathrm{d}x}.$$
 (2.86)

Im Limes $\tau \to 0$ (Linearisierung, Vernachlässigung der Terme ~ $O(\tau^2)$) erhalten wir damit für die Oberseite (0⁺) und in analoger Weise für die Unterseite (0⁻)

$$\chi_{1y}(x,0^+) = \frac{\mathrm{d}h_o}{\mathrm{d}x},$$
 (2.87a)

$$\chi_{1y}(x,0^-) = -\frac{\mathrm{d}h_u}{\mathrm{d}x}.$$
 (2.87b)

Durch die lineare Näherung haben wir die Randbedingungen bei $y = \tau h_o$ bzw. $y = -\tau h_u$ auf Bedingungen bei $y = 0^+$ bzw. $y = 0^-$ zurückgeführt.

Anstelleffekt Für ein angestelltes Profil gilt

$$\frac{v_{\infty}}{u_{\infty}} = \tan \varepsilon = \varepsilon + O(\varepsilon^2) \qquad \Rightarrow \qquad v_{\infty} = \varepsilon u_{\infty} + O(\varepsilon^2). \tag{2.88}$$

Damit lautet das Gesamtpotential

$$\phi = u_{\infty}x + \left[\varepsilon u_{\infty} + O(\varepsilon^2)\right]y + u_{\infty}(\tau\chi_1 + \varepsilon\chi_2).$$
(2.89)

Wenn man die Randbedingung (2.83a) für dieses Potential auf der Oberseite auswertet, erhalten wir

$$\frac{v}{u} = \frac{\phi_y}{\phi_x} = \frac{\varepsilon u_\infty + \tau u_\infty \chi_{1y}(x, \tau h_o) + \varepsilon u_\infty \chi_{2y}(x, \tau h_o) + O(\varepsilon^2)}{u_\infty + \tau u_\infty \chi_{1x}(x, \tau h_o) + \varepsilon u_\infty \chi_{2x}(x, \tau h_o)} = \tau \frac{\mathrm{d}h_o}{\mathrm{d}x}.$$
 (2.90)

Wenn man nun die Linearisierung (2.85a) von χ_{1y} verwendet und auch χ_{2y} für kleine y nach Taylor entwickelt, erhält man in führender Ordnung für die Ober- (0⁺) und die Unterseite (0⁻)

$$\varepsilon + \tau \chi_{1y}(x, 0^+) + \varepsilon \chi_{2y}(x, 0^+) = \tau \frac{\mathrm{d}h_o}{\mathrm{d}x}, \qquad (2.91a)$$

. .

$$\varepsilon + \tau \chi_{1y}(x, 0^-) + \varepsilon \chi_{2y}(x, 0^-) = -\tau \frac{\mathrm{d}h_u}{\mathrm{d}x}.$$
 (2.91b)

3. C. Luhlmann, U. Kluwid Strömungsmechanik 2 Der Koeffizientenvergleich b
zgl. τ liefert liefert das bekannte Ergebnis (2.87). Die Koeffizienten von
 ε liefern

$$\chi_{2y}(x,0^+) = -1, \tag{2.92a}$$

$$\chi_{2y}(x,0^-) = -1. \tag{2.92b}$$

Diese Gleichungen entsprechen einer Störgeschwindigkeit $v = \varepsilon u_{\infty} \chi_{2y} = -\varepsilon u_{\infty}$. Diese Störung kompensiert genau die vertikale Komponente der homogenen Anströmung, so daß auf der Strecke (x, y) = ([0, 1], 0) gilt: v = 0. Diese Bedingung ist identisch mit der Randbedingung für die Umströmung einer ebenen unendlich dünnen Platte der Länge 1.

Effekt der Wölbung Es ist zweckmäßig, das Störpotential

$$\chi_1 = \chi_{1d} + \chi_{1w} \tag{2.93}$$

in einen Dicken- und einen Wölbanteil aufzuspalten. Dazu zerlegen wir die Profilfunktionen in einen symmetrischen Anteil (Dickenanteil) und einen antisymmetrischen Anteil (Wölbanteil)

$$h_o = \frac{1}{2}(h_o + h_u) + \frac{1}{2}(h_o - h_u) = h_d + h_w, \qquad (2.94a)$$

$$h_u = \frac{1}{2}(h_o + h_u) - \frac{1}{2}(h_o - h_u) = h_d - h_w.$$
 (2.94b)

Wenn man diese Zerlegungen in (2.87) einsetzt und den Dicken- und den Wölbungsbeitrag trennt, sieht man, daß der Dickenanteil χ_{1d} den Randbedingungen

$$\chi_{1d,y}(x,0^+) = \frac{\mathrm{d}h_d}{\mathrm{d}x},$$
 (2.95a)

$$\chi_{1d,y}(x,0^-) = -\frac{\mathrm{d}h_d}{\mathrm{d}x},$$
 (2.95b)

genügen muß. Diese Randbedingungen entsprechen der Umströmung eines symmetrischen Profils mit der Dicke h_d . Für den Wölbeffekt erhält man

$$\chi_{1w,y}(x,0^+) = \frac{\mathrm{d}h_w}{\mathrm{d}x},$$
 (2.96a)

$$\chi_{1w,y}(x,0^-) = \frac{\mathrm{d}h_w}{\mathrm{d}x}.$$
 (2.96b)

Die Randbedingungen (2.96) entsprechen der Umströmung einer unendlich dünnen, gewölbten Platte (identische Geschwindigkeiten oben und unten mit Komponente $v \neq 0$).

Die Strömung um ein beliebiges schlankes und schwach angestelltes Profil kann demnach durch die Überlagerung von Anstell-, Dicken- und Wölbungseffekt gewonnen werden. Voraussetzung dafür ist, daß jeder der Effekte klein ist. Das Potential

$$v_{\infty} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{\varepsilon} \underbrace{y = \tau h_{o}(x)}_{y = -\tau h_{u}(x)} = v_{\infty} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{\varepsilon} \underbrace{y}_{0} \underbrace{u_{\infty}}_{y} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{y}_{0} \underbrace{u_{\infty}}_{y} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{y}_{0} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{v} \underbrace{y}_{0} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{v} \underbrace{u_{\infty}}_{v} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{v} \underbrace{u_{\infty}}_{v} \underbrace{u_{\infty}}_{v} \underbrace{u_{\infty}}_{u_{\infty}} \underbrace{u_{\infty}}_{v} \underbrace{$$

Abbildung 2.17.: Für schlanke schwach angestellte Profile läßt sich die Strömung ausdrücken durch eine Überlagerung der Strömung um eine angestellte dünne Platte (a), ein nicht angestelltes symmetrisches Profil mit einer von Null verschiedener Dicke (b) und eine nichtangestellte unendlich dünne gewölbte Platte (c).

des gesamten Problems ist dann gegeben durch die Superposition

$$\phi = u_{\infty}[x + \varepsilon y + \tau \chi_{1d}(x, y) + \tau \chi_{1w}(x, y) + \varepsilon \chi_2(x, y)].$$
(2.97)

Diese Uberlagerung ist symbolisch in Abb. 2.17 dargestellt.

2.4.2. Dickeneffekt

Wir wollen nun das Störpotential χ_{1d} für den Dickeneffekt explizit bestimmen. Da das Potential χ_{1d} der linearen Laplace-Gleichung genügen muß, können wir elementare Potentiale superponieren. Wir versuchen nun, Quellen und Senken derart auf der *x*-Achse zu verteilen, daß die Randbedingungen (2.95) (Dickeneffekt) erfüllt werden. Dies können wir nicht durch diskrete Quellen/Senken erreichen. Vielmehr benötigen wir eine kontinuierliche Verteilung der Quellen/Senken.

Wir betrachten zunächst eine einzelne Quelle/Senke im Punkt $(x, y) = (\xi, 0)$ mit der infinitesimalen Quellstärke dq. Der von dieser Quelle stammende Beitrag d χ_{1d} zum reellen Störpotential χ_{1d} ist nach (2.28a)

$$d\chi_{1d} = \frac{dq}{2\pi} \ln \sqrt{(x-\xi)^2 + y^2}.$$
 (2.98)

Die Quellstärkeverteilung wird zweckmäßigerweise durch eine *Belegungsfunktion* $m(\xi)$ ausgedrückt, welche die Quellstärke am Ort ξ und pro Länge in ξ -Richtung (x-Richtung) beschreibt. Dies ist eine Art Quelldichte, die zunächst noch unbekannt ist. Dann ist

$$dq(\xi) = \frac{dq}{d\xi}d\xi = m(\xi)d\xi.$$
(2.99)

Das gesamte Potential χ_{1d} erhält man nun durch Aufsummation, d.h. Integration, über die zwischen x = 0 und x = 1 kontinuierlich angeordneten Elementarquellen

$$\chi_{1d}(x,y) = \frac{1}{2\pi} \int_0^1 m(\xi) \ln \sqrt{(x-\xi)^2 + y^2} \,\mathrm{d}\xi.$$
 (2.100)

3. C. Luhimann, A. Lluwic Strömungsmechanik 2

Abbildung 2.18.: (a) Skizze der Funktion $f(\xi) = y [(x - \xi)^2 + y^2]^{-1}$ und (b) Auswertung von $f(\xi)$ für x = 0.5 und y = 0.1 (grün), 0.01 (blau), 0.001 (rot) und 0.0001 (schwarz).

Durch Ableitung erhält man die zugehörigen Komponenten der Störgeschwindigkeit

$$\chi_{1d,x} = \frac{1}{2\pi} \int_0^1 m(\xi) \frac{x-\xi}{(x-\xi)^2 + y^2} \mathrm{d}\xi, \qquad (2.101a)$$

$$\chi_{1d,y} = \frac{1}{2\pi} \int_0^1 m(\xi) \frac{y}{(x-\xi)^2 + y^2} \mathrm{d}\xi.$$
 (2.101b)

Wenn wir die Randbedingung (2.95) für χ_{1d} auswerten, erhalten wir

$$\lim_{y \to 0^+} \chi_{1d,y} = \lim_{y \to 0^+} \frac{1}{2\pi} \int_0^1 m(\xi) \frac{y}{(x-\xi)^2 + y^2} \mathrm{d}\xi \stackrel{!}{=} \frac{\mathrm{d}h_d}{\mathrm{d}x}.$$
 (2.102)

Dies ist eine Bedingung zur Bestimmung der unbekannten Belegungsfunktion m(x)! Wir nehmen an, daß das Integral und der Limes in (2.102) existieren. Dann kann man beide Prozesse vertauschen. Deshalb betrachten wir zunächst den Limes des Integranden $y/[(x - \xi)^2 + y^2]$ (bis auf den Faktor $m(\xi) \neq 0$, siehe Abb. 2.18) und finden

$$\lim_{y \to 0^+} \frac{y}{(x-\xi)^2 + y^2} = \begin{cases} 0, & \text{für } \xi \neq x, \\ \infty, & \text{für } \xi = x. \end{cases}$$
(2.103)

Im Limes $y \to 0^+$ wird also nur $m(\xi = x)$ einen Beitrag zum Integral liefern. Deshalb schreiben wir

$$\lim_{y \to 0^+} \frac{1}{2\pi} \int_0^1 m(\xi) \frac{y}{(x-\xi)^2 + y^2} d\xi = \lim_{y \to 0^+} \frac{m(x)}{2\pi} \int_0^1 \frac{y}{(x-\xi)^2 + y^2} d\xi.$$
(2.104a)

Mit der Transformation $\sigma=(\xi-x)/y$ und mit d $\sigma=\mathrm{d}\xi/y$ läßt sich dann das Integral berechnen⁸

$$\lim_{y \to 0^+} \frac{m(x)}{2\pi} \int_{-x/y}^{(1-x)/y} \frac{\mathrm{d}\sigma}{1+\sigma^2} \stackrel{0 < x < 1}{=} \frac{m(x)}{2\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}\sigma}{1+\sigma^2} = \frac{m(x)}{2\pi} \left[\arctan\sigma \right]_{-\infty}^{\infty} = \frac{m(x)}{2}.$$
(2.104b)

⁸Es ist $\arctan'(x) = 1/(1+x^2)$.

弓. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 **Bemerkung** Im Rahmen der Theorie verallgemeinerter Funktionen (Distributionen) läßt sich ein Zusammenhang mit der *Diracschen \delta-Funktion* herstellen. Tatsächlich ist (2.103) eine Möglichkeit, die Diracsche δ -Funktion zu definieren

$$\delta(z) := \lim_{\epsilon \to 0} \frac{1}{\pi} \frac{\epsilon}{z^2 + \epsilon^2} = \lim_{n \to \infty} \frac{1}{\pi} \frac{n}{1 + n^2 z^2}.$$
 (2.105)

Dann gilt für jede differenzierbare Funktion f(z)

$$\lim_{\epsilon \to 0} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\epsilon}{z^2 + \epsilon^2} f(z) \, \mathrm{d}z = \int_{-\infty}^{\infty} \delta(z) f(z) \, \mathrm{d}z = f(0).$$
(2.106)

Paul Adrien Maurice Dirac 1902–1984

Aus der linearisierten Randbedingung
$$(2.102)$$
 erhalten wir zu
sammen mit (2.104) die Quellenbelegung

$$m(\xi) = 2 \frac{\mathrm{d}h_d(\xi)}{\mathrm{d}\xi}.$$
 (2.107)

Sie entspricht der doppelten Steigung des Profils. Damit ist die Belegungsfunktion m(x) auf die Körperform zurückgeführt worden. Wenn das Profil eine geschlossene Körperkontur aufweist, muß das Integral über die Quellbelegung verschwinden (siehe auch (2.48)). Dann muß gelten

$$\int_0^1 dq = \int_0^1 m(\xi) d\xi = 2 \left[h_d(\xi) \right]_0^1 = 0. \quad \checkmark$$
 (2.108)

Nachdem wir die Quellbelegung ermittelt haben, können wir die Geschwindigkeitsstörung berechnen. Für die kartesischen Komponenten der Geschwindigkeitsstörung auf der Körperoberfläche $y = \tau h(x) \ll 1$ gilt in erster Näherung

$$\chi_{1d,x}[x,\tau h(x)] = \chi_{1d,x}(x,0^+) + O(\tau), \qquad (2.109a)$$

$$\chi_{1d,y}[x,\tau h(x)] = \chi_{1d,y}(x,0^+) + O(\tau) = \frac{\mathrm{d}h_d}{\mathrm{d}x} + O(\tau).$$
(2.109b)

Dabei ist der führende Term der x-Komponente der Störgeschwindigkeit (siehe (2.101a))

$$\chi_{1d,x}(x,0^+) = \lim_{y \to 0^+} \frac{1}{2\pi} \int_0^1 m(\xi) \frac{x-\xi}{(x-\xi)^2 + y^2} \mathrm{d}\xi$$
(2.110)

Für alle Punkte $x \neq \xi$ gilt nun

$$\lim_{y \to 0^+} \frac{x - \xi}{(x - \xi)^2 + y^2} = \frac{1}{x - \xi}.$$
(2.111)

Offenbar hat der Integrand im Limes eine Polstelle bei $\xi = x$, welche durch diejenige Quelle verursacht wird, die genau in dem Punkt lokalisiert ist. Um das Integral

Abbildung 2.19.: Wenn die Belegungsfunktion $m(\xi)$ unstetig ist, führt dies zu einer logarithmischen Singularität der Tangentialgeschwindigkeit $\chi_{1d,x}$.

dennoch berechnen zu können, spalten wir es in zwei Anteile auf (links und rechts von der Singularität) und erhalten

$$\chi_{1d,x}(x,0^+) = \frac{1}{2\pi} \lim_{\varepsilon \to 0^+} \left[\int_0^{x-\varepsilon} \frac{m(\xi)}{x-\xi} d\xi + \int_{x+\varepsilon}^1 \frac{m(\xi)}{x-\xi} d\xi \right] =: \frac{1}{2\pi} \int_0^1 \frac{m(\xi)}{x-\xi} d\xi.$$
(2.112)

Das so definierte Intergal nennt man den *Cauchyschen Hauptwert*. Er wird auch durch das Symbol \oint gekennzeichnet.⁹

Beispiel für den Cauchyschen Hauptwert Wenn m(x) stetig ist, dann ist das Integral (2.112) (die *x*-Komponente der Störgeschwindigkeit) im Bereich $x \in]0, 1[$ regulär. Um das zu sehen, nehmen wir an, daß m(x) stückweise konstant ist und nur an der Stelle x_0 einen Sprung hat, und zwar von m^- nach m^+ . Wir wollen nun das gesamte Integral f(x) an einer Stelle $x < x_0$ auswerten. Für das erste Integral über $[0, x - \varepsilon]$ erhalten wir dann

$$f_1(x) = \int_0^{x-\varepsilon} \frac{m(\xi)}{x-\xi} d\xi = m^- \int_0^{x-\varepsilon} \frac{1}{x-\xi} d\xi = -m^- \left[\ln(x-\xi)\right]_0^{x-\varepsilon} \\ = -m^- \ln(x-(x-\varepsilon)) + m^- \ln(x-0) = -m^- \ln(\varepsilon) + m^- \ln(x).$$

⁹Beachte, daß der Cauchysche Hauptwert i.a. nicht invariant unter Transformationen der Integrationsvariablen ist. Im Englischen wird der Cauchysche Hauptwert (HW) auch mit PV (*principal value*) bezeichnet.

Für das zweite Integral bekommen wir

$$f_{2}(x) = \int_{x+\varepsilon}^{1} \frac{m(\xi)}{x-\xi} d\xi = m^{-} \int_{x+\varepsilon}^{x_{0}} \frac{1}{x-\xi} d\xi + m^{+} \int_{x_{0}}^{1} \frac{1}{x-\xi} d\xi$$

$$= -m^{-} \int_{x+\varepsilon}^{x_{0}} \frac{1}{\xi-x} d\xi - m^{+} \int_{x_{0}}^{1} \frac{1}{\xi-x} d\xi$$

$$= -m^{-} \left[\ln(\xi-x)\right]_{x+\varepsilon}^{x_{0}} - m^{+} \left[\ln(\xi-x)\right]_{x_{0}}^{1}$$

$$= -m^{-} \ln(x_{0}-x) + m^{-} \ln\left[(x+\varepsilon)-x\right] - m^{+} \ln(1-x) + m^{+} \ln(x_{0}-x)$$

$$= \left(m^{+}-m^{-}\right) \ln(x_{0}-x) + m^{-} \ln(\varepsilon) - m^{+} \ln(1-x).$$

Für die Summe (und im Limes $\varepsilon \to 0$) erhalten wir dann (die roten divergierenden Terme kompensieren sich)

$$\int_0^1 \frac{m(\xi)}{x-\xi} d\xi = m^- \ln(x) + \left(m^+ - m^-\right) \ln|x-x_0| - m^+ \ln(1-x).$$

Die Betragstriche bei $|x - x_0|$ ergeben sich, wenn man das Integral auch für $x > x_0$ auswertet.

Man sieht: Für eine konstante Belegung befindet sich bei x = 0 und x = 1 je ein Sprung von 0 auf m^- bzw. von m^+ auf 0. An diesen Stelle divergiert f(x) logarithmisch mit dem Abstand vom singulären Punkt. Falls die Belegung m(x) einen Sprung im Innern aufweist (z.B. bei einer stückweise konstanten Belegung), führt dies zu einer weiteren logarithmischen Singularität an der Sprungstelle x_0 (siehe auch Abb. 2.19). Daraus folgern wir, daß die x-Komponente der Störgeschwindigkeit im offenen Intervall]0,1[regulär ist, wenn die Belegungsfunktion stetig ist.

Beispiele

1. **Parabelbogenzweieck**: Hierbei ist $h_d(x) = x(1-x)$ für $0 \le x \le 1$. Aus (2.107) folgt

$$m(\xi) = 2(1 - 2\xi). \tag{2.113}$$

2. Keilstufe: Für eine Keilstufe ist

$$h_d(x) = \begin{cases} 0, & \text{für } x < 0, \\ x, & \text{für } 0 \le x \le 1, \\ 1, & \text{für } x > 1, \end{cases}$$
(2.114)

Mit (2.107) ergibt sich die Belegungsfunktion

$$m(\xi) = 2, \quad \text{für } 0 \le x \le 1.$$
 (2.115)

Abbildung 2.20.: Umströmung schlanker Körper am Beispiel eines Parabelbogenzweiecks (a) und einer Keilstufe (b). Gezeigt sind das Dickenprofil d(x) rot gestrichelt, die Belegungsfunktion m(x) blau und die x-Komponente der Störgeschwindigkeit $\chi_{1d,x}(x)$ (schwarz). Beachte für (a) die Stammfunktion $\int \xi/(x-\xi) d\xi = -\xi - x \ln(x-\xi)$.

Die Ergebnisse sind in Abb. 2.20 gezeigt. An den Endpunkten x = 0, 1 der beiden Profile sind die Ableitungen des Dickenprofils h'_d und daher die Belegungsfunktion unstetig. Wie wir oben gesehen haben, sind damit logarithmische Singularitäten der Geschwindigkeitsstörung $\chi_{1d,x}(x, 0^+)$ verbunden. Offenbar divergiert das Störpotential für $x \to 0$ und für $x \to 1$. Dies bedeutet, daß die ursprünglich getroffene Annahme einer kleinen Störung in einer gewissen Umgebung der beiden Endpunkten dieser Profile nicht mehr gilt. Die Strömung wird sich daher in der Umgebung dieser Punkte anders verhalten als von der Theorie schlanker Profile vorhergesagt. Dies ist auch anschaulich klar: Denn wir erwarten ja in einer kleinen Umgebung des Staupunktes $u \approx 0$ und nicht $u = u_{\infty} + O(\tau)$. Um u_{∞} zu kompensieren reicht eine kleine Störung nicht aus. Allerdings ist die Übereinstimmung der reibungsfreie Näherung mit der realen Strömung auch noch in unmittelbarer Umgebung des Staupunktes sehr gut (siehe Abb. VIII,3 auf S. 443 in Oswatitsch 1976).

Schließlich können wir noch die Druckverteilung aus der Bernoulligleichung berechnen. Wie in (2.69) erhält man für den Druckbeiwert

$$c_p = 1 - \frac{\vec{u}^2}{u_\infty^2} = 1 - \frac{u^2 + v^2}{u_\infty^2} = 1 - \frac{(u_\infty + u_\infty \chi_x)^2 + (u_\infty \chi_y)^2}{u_\infty^2}$$
$$= 1 - 1 - 2\chi_x - \chi_x^2 - \chi_y^2.$$

In erster Näherung gilt daher ($\chi = \tau \chi_1 + \varepsilon \chi_2$ mit $\tau, \varepsilon \ll 1$)

$$c_p = -2\chi_x + O(\tau^2, \varepsilon^2, \tau\varepsilon) = -2\frac{u - u_\infty}{u_\infty} + O(\tau^2, \varepsilon^2, \tau\varepsilon).$$
(2.116)

Der Druckbeiwert ist demnach proportional zur Geschwindigkeitsstörung $\chi_x(x, 0^{\pm})$.

3. C. Luhlmann, U. Kluwic Strömungsmechanik 2

Abbildung 2.21.: Angestellte dünne Platte. Die Wirbeldichtebelegung auf der Länge d ξ beträgt d Γ .

2.4.3. Anstelleffekt

Die Strömung um eine Platte verschwindender Dicke kann nicht durch eine Quellverteilung erzeugt werden. Auf die Platte wirkt aber eine Auftriebskraft und diese ist nach dem Satz von Kutta-Joukowski (2.80) mit der Zirkulation Γ um die Platte verbunden. Daher werden wir den Anstelleffekt mit Hilfe einer Wirbelverteilung beschreiben.

Dazu betrachten wir einen einzelnen Punktwirbel bei $(x, y) = (\xi, 0)$ mit der Wirbelstärke d Γ . Der Beitrag d χ_2 zu χ_2 ist dann nach (2.35)

$$d\chi_2 = \frac{d\Gamma}{2\pi} \arctan \frac{y}{x-\xi}.$$
 (2.117)

Wir wollen nun Punktwirbel kontinuierlich auf der x-Achse in dem Intervall [0, 1] verteilen. Die Wirbelstärkenverteilung wird zweckmäßigerweise durch eine Belegungsfunktion $\gamma(\xi)$ ausgedrückt (Wirbelstärke pro Länge). Die Wirbelstärke d Γ , die sich aus dem Längenelement d ξ ergibt, ist demnach (siehe Abb. 2.21)

$$d\Gamma(\xi) = \frac{d\Gamma}{d\xi} d\xi = \gamma(\xi) d\xi.$$
(2.118)

Für das Potential χ_2 erhält man daher

$$\chi_2(x,y) = \frac{1}{2\pi} \int_0^1 \gamma(\xi) \arctan \frac{y}{x-\xi} d\xi,$$
 (2.119)

Die Beiträge dieses Potentials zu den Geschwindigkeitskomponenten ergeben sich durch Ableitung

$$\chi_{2,x} = -\frac{1}{2\pi} \int_0^1 \gamma(\xi) \frac{y}{(x-\xi)^2 + y^2} \mathrm{d}\xi, \qquad (2.120a)$$

$$\chi_{2,y} = \frac{1}{2\pi} \int_0^1 \gamma(\xi) \frac{x-\xi}{(x-\xi)^2 + y^2} \mathrm{d}\xi.$$
 (2.120b)

Für die noch unbekannte Wirbelverteilung $\gamma(x)$ folgt aus der linearisierten Randbedingung (2.92) die Bestimmungsgleichung

$$\lim_{y \to 0^+} \frac{1}{2\pi} \int_0^1 \gamma(\xi) \frac{x - \xi}{(x - \xi)^2 + y^2} d\xi = -1, \qquad (2.121)$$

beziehungsweise

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

 $\frac{1}{2\pi} \int_0^1 \gamma(\xi) \frac{\mathrm{d}\xi}{x-\xi} = -1.$ (2.122)

Wir möchten diese Gleichung gerne nach $\gamma(\xi)$ auflösen. Das Problem ist ein Spezialfall $(g(x) = 2\pi)$ der sogenannten *Betzschen Integralgleichung*

$$g(x) = -\int_0^1 \frac{f(\xi)}{x - \xi} d\xi.$$
 (2.123)

Albert Betz 1885–1968

Die allgemeine Lösung der Betzschen Differentialgleichung lautet im Intervall $0 \leq x \leq 1$

$$f(x) = \frac{C_1}{\sqrt{x(1-x)}} - \frac{1}{\pi^2 \sqrt{x(1-x)}} \int_0^1 g(\xi) \frac{\sqrt{\xi(1-\xi)}}{\xi - x} d\xi, \qquad (2.124)$$

wobe
i C_1 eine beliebige Konstante ist. In unserem Fall ist
 $g(x)=2\pi$ und wir erhalten

$$\gamma(x) = \frac{C_1}{\sqrt{x(1-x)}} - \frac{2}{\pi} \frac{1}{\sqrt{x(1-x)}} \underbrace{\int_0^1 \frac{\sqrt{\xi(1-\xi)}}{\xi - x} d\xi}_{\pi(1-2x)/2}.$$
 (2.125)

oder nach Integration

$$\gamma(x) = \frac{C_1}{\sqrt{x(1-x)}} - \frac{1-2x}{\sqrt{x(1-x)}} = \frac{C_1 + 2x - 1}{\sqrt{x(1-x)}}.$$
(2.126)

Da die Konstante C_1 nicht festgelegt ist, ist auch die Wirbelverteilung $\gamma(x)$ durch die Randbedingung *nicht eindeutig* festgelegt.

Bevor wir C_1 einen bestimmten Wert zuweisen, berechnen wir zunächst formal die Störung der Tangentialgeschwindigkeit auf der Oberseite der Platte bei $(y = 0^+)$. Nach (2.120a) und mit Hilfe von (2.104) erhalten wir

$$\chi_{2,x}|_{y=0^+} = -\lim_{y\to 0^+} \frac{1}{2\pi} \int_0^1 \gamma(\xi) \frac{y}{(x-\xi)^2 + y^2} \mathrm{d}\xi \stackrel{(2.104)}{=} -\frac{\gamma(x)}{2}, \qquad (2.127)$$

Bemerkenswert an dieser Gleichung ist, daß die Störung der Tangentialgeschwindigkeit $\chi_{2,x}(x_P, 0^+)$ an einem Punkt x_P auf der Oberfläche des Profils nur von der Wirbelbelegung $\gamma(x_P)$ an eben diesem Punkt abhängt. Die Geschwindigkeitsfelder von Potentialwirbeln, die an anderen Punkten $x \neq x_P$ lokalisiert sind, besitzen am Punkt x_P keine tangentiale Komponente. Die normalen Komponenten aller Wirbel kompensieren lediglich v_{∞} (s. (2.121)). An der Form von (2.120a) erkennt man außerdem, daß die x-Komponente der Störgeschwindigkeit antisymmetrisch bzgl. y = 0 ist, also $\chi_{2,x}|_{y=0^+} = -\chi_{2,x}|_{y=0^-}$.

Abbildung 2.22.: Stromlinienverlauf für beliebiges C_1 (a) und experimentell beobachteter Stromlinienverlauf (b).

Mit Hilde des Zusammenhangs zwischen $u(x, 0^{\pm})$ und $\chi_{2,x}$ erhalten wir damit

$$\frac{u(x,0^+) - u_{\infty}}{\varepsilon u_{\infty}} = \chi_{2,x}(x,0^+) = \begin{cases} 0, & x < 0, \\ -\frac{\gamma(x)}{2} = -\frac{C_1 + 2x - 1}{2\sqrt{x(1-x)}}, & 0 \le x \le 1, \\ 0, & x > 1. \end{cases}$$
 (2.128)

Da nur auf der Platte Wirbel angeordnet sind ($\gamma(x) = 0$ für x < 0 und x > 1), verschwindet die tangentiale Geschwindigkeitsstörung $\chi_{2,x}$ für x < 0 und x > 1. Nur zwischen beiden Seiten der Platte kann ein Drucksprung auftreten. Für die Größe des Drucksprungs, siehe (2.116).

Um C_1 zu fixieren und die Lösung $\gamma(x)$ eindeutig zu bestimmen, verwenden wir den experimentellen Befund, daß bei kleinen Anstellwinkeln ε die Strömung an der Platte anliegt und glatt von der Hinterkante bei x = 1 abströmt. Das Fluid strömt also nicht um die scharfe Hinterkante herum, siehe Abb. 2.22. Im Rahmen der hier betrachteten reibungsfreien Strömung kann dieses Verhalten nur durch die ad-hoc Bedingung

$$u(1,0^{\pm}) = u_{\infty} \tag{2.129}$$

berücksichtigt werden. Diese Bedingung nennt man Kutta-Joukowski-Bedingung.¹⁰ Daher verlangen wir, daß die tangentiale Geschwindigkeitsstörung (2.128) für $x \to 1$ verschwindet. Dies führt auf die Beziehung

$$0 = \lim_{x \to 1} \frac{u(x, 0^+) - u_{\infty}}{\varepsilon u_{\infty}} = \lim_{x \to 1} \left[-\frac{C_1 + 2x - 1}{2\sqrt{x(1-x)}} \right] = \lim_{x \to 1} \left[\frac{(1-C_1)/2 - x}{\sqrt{x(1-x)}} \right].$$
 (2.130)

Diese Bedingung wird für $C_1 = -1$ erfüllt. Dann geht die tangentiale Geschwindigkeitsstörung wie $\sim \sqrt{1-x} \rightarrow 0$ gegen Null. Wir erhalten also die tangentiale Störgeschwindigkeit

$$\chi_{2,x}(x,0^{+}) = \frac{u(x,0^{+}) - u_{\infty}}{\varepsilon u_{\infty}} = \begin{cases} \sqrt{\frac{1-x}{x}}, & 0 \le x \le 1, \\ 0, & \text{sonst.} \end{cases}$$
(2.131)

¹⁰Das experimentell beobachtete glatte Abströmen von einer scharfen Hinterkante ist auf die Wirkung der Viskosität auf kleinen Längenskalen zurückzuführen.

2. Ebene stationäre inkompressible reibungsfreie und drehungsfreie Strömungen

Abbildung 2.23.: Negativer Druckbeiwert auf der Oberseite einer angestellten dünnen Platte nach (2.133).

Die zugehörige Wirbeldichteverteilung lautet daher

$$\gamma(x) = -2\sqrt{\frac{1-x}{x}}.$$
(2.132)

Druckverteilung Für den Druckkoeffizienten in linearer Näherung (2.116) gilt damit

$$c_p(x,0^{\pm}) = -2\chi_x(x,0^{\pm}) = -2\varepsilon\chi_{2,x}(x,0^{\pm}) = \pm 2\varepsilon\sqrt{\frac{1-x}{x}}.$$
 (2.133)

Das Verhalten ist in Abb. 2.23 dargestellt. Auf der Oberseite der Platte verhält sich c_p für $x \to 0^+$ wie

$$c_p(x,0^+) \sim -\frac{2\varepsilon}{\sqrt{x}}.$$
(2.134)

Für $x \to 1^-$ ergibt sich

$$c_p(x, 0^+) \sim -2\varepsilon \sqrt{1-x}.$$
 (2.135)

Die Lage des Staupunktes auf der Plattenunterseite (Abb. 2.24) berechnet sich aus $u(x_S, 0^-) = 0$. Wenn wir diese Bedingung in (2.131) verwenden ($\chi_{2,x}$ antisymmetrisch bzgl. y = 0), erhalten wir

$$\frac{u(x_S, 0^-) - u_\infty}{u_\infty} = -\varepsilon \sqrt{\frac{1 - x_S}{x_S}} \stackrel{u(x_S, 0^-) = 0}{=} -1.$$
(2.136)

Dies führt auf

$$\frac{x_S}{1-x_S} = x_S \left(1 + x_S - \ldots\right) = \varepsilon^2 \ll 1 \qquad \Rightarrow \qquad x_S \approx \varepsilon^2. \tag{2.137}$$

Der Staupunkt liegt also sehr dicht an der Vorderkante.

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

Abbildung 2.24.: Lage des Staupunkts $x_S \sim \varepsilon^2$.

Abbildung 2.25.: Oberfläche S über welche integriert wird, um den Auftrieb zu berechnen.

Auftrieb Die Berechnung des Auftriebes erfolgt über den Auftriebsbeiwert. Für ihn erhalten wir (siehe Abb. 2.25, gleicher Beitrag von der Ober- und der Unterseite)¹¹

$$c_L = -\oint c_p n_y \, \mathrm{d}\sigma = -2 \int_0^1 c_p(x, 0^+) \mathrm{d}x.$$
 (2.138)

Wenn man c_p aus (2.133) einsetzt, ergibt sich

$$c_L = 4\varepsilon \int_0^1 \sqrt{\frac{1-x}{x}} dx = 4\varepsilon \left[\sqrt{x(1-x)} + \frac{1}{2}\arcsin(2x-1)\right]_0^1 = 4\varepsilon \frac{\pi}{2}, \quad (2.139)$$

also

$$c_L = 2\pi\varepsilon. \tag{2.140}$$

Der Auftriebsbeiwert ist also proportional zum Anstellwinkel ε . Daraus erhält man den Auftrieb. Wenn wir c_p mittels (2.116) durch die Geschwindigkeitsstörung ausdrückt, kann man den Auftrieb auch durch die Zirkulation ausdrücken (Referenzfläche A = 1)

$$L = \frac{1}{2}\rho u_{\infty}^{2} c_{L} = \frac{1}{2}\rho u_{\infty}^{2} 2 \int_{0}^{1} c_{p}(x,0^{-}) \mathrm{d}x \stackrel{(2.116)}{=} -2\rho u_{\infty} \underbrace{\int_{0}^{1} \left[u(x,0^{-}) - u_{\infty} \right] \mathrm{d}x}_{\Gamma/2}.$$
(2.141)

¹¹Hier ist kein Umlaufsinn der Integration zu berücksichtigen, da es sich ja um ein Oberflächenintegral handelt.

Abbildung 2.26.: Auftrieb L senkrecht zur Anströmung sowie normale (F_n) und tangentiale Kraft (Nasensog F_t) auf die angestellte dünne Platte. Die Kräfte greifen im Druckpunkt $x_D = 1/4$ an.

Wir erhalten also in Übereinstimmung mit dem Satz von Kutta-Joukowski (2.80) (angeströmter Zylinder mit Zirkulation)

$$L = -\rho u_{\infty} \Gamma. \tag{2.142}$$

Damit wird der Satz von Kutta-Joukowski auch für dünne Profile bestätigt.

Druckpunkt Schließlich können wir noch den Angriffspunkt der Auftriebskraft berechnen, der auch als *Druckpunkt* x_D bezeichnet wird. Dazu bestimmen wir zunächst das Moment um die Vorderkante der Platte bei x = 0. Der zugehörige *Momentenbeiwert* ist

$$c_{M} = 2 \int_{0}^{1} c_{p}(x, 0^{-}) x dx = 4\varepsilon \int_{0}^{1} \sqrt{\frac{1-x}{x}} x dx = 4\varepsilon \int_{0}^{1} \sqrt{x(1-x)} dx$$
$$= 4\varepsilon \left[\frac{1}{2} \left(x - \frac{1}{2} \right) \sqrt{x(1-x)} + \frac{1}{8} \arcsin(2x-1) \right]_{0}^{1} = 4\varepsilon \frac{\pi}{8}, \qquad (2.143)$$

also

$$c_M = \frac{\pi}{2}\varepsilon. \tag{2.144}$$

Über $M = Lx_D$ bzw. $c_M = c_L x_D$ ergibt sich daraus die Lage des Druckpunkts zu

$$x_D = \frac{c_M}{c_L} = \frac{(\pi/2)\varepsilon}{2\pi\varepsilon} = \frac{1}{4}.$$
 (2.145)

Wegen des D'Alembertschen Paradoxons verschwindet der Widerstand D. Die Auftriebskraft L ist senkrecht zur Anströmrichtung definiert. Oben hatten wir aber nur die Kräfte senkrecht zur Platte berechnet. Für kleine Anstellwinkel ε gilt jedoch für die Kräfte normal und tangential zur Platte (siehe Abb. 2.26)

$$F_n = L\cos\varepsilon \approx L,\tag{2.146a}$$

$$F_t = -L\sin\varepsilon \approx -\varepsilon L. \tag{2.146b}$$

Abbildung 2.27.: Angeströmtes gewölbtes Profil.

Für die entsprechenden Beiwerte gilt also

$$c_n \approx c_L,$$
 (2.147a)

$$c_t \approx -\varepsilon c_L = -2\pi\varepsilon^2.$$
 (2.147b)

Da die Kraft in einer reibungsfreien Strömung nur senkrecht zur Platte wirken kann, enthält diese aerodynamische Kraft die Auftriebskraft als dominierenden Anteil, aber auch eine kleine tangentiale Kraft, in Richtung der Nase des Profils. Diese bemerkenswerte Tatsache hängt mit der Umströmung der scharfen Plattenvorderkante zusammen, durch die es zur Ausbildung eines sogenannten Nasensogs F_t kommt (siehe auch Kap. VIII.5 auf S. 448 von Oswatitsch 1976).

2.4.4. Wölbungseffekt

Die Wölbung eines Profiles ergibt sich aus dem antisymmetrischen Anteil der Profilfunktionen

$$h_w = \frac{1}{2}(h_o - h_u). \tag{2.148}$$

Analog zur Umströmung der angestellten Platte wird die Lösung in Form einer Wirbelbelegung dargestellt. Ist die Wölbung gering ($\tau \ll 1$), so kann näherungsweise mit einer Wirbelbelegung auf der *x*-Achse gearbeitet werden. Dann ergibt sich für den Wölbungseffekt in analoger Weise zum Anstelleffekt (siehe (2.119) und (2.120)) das Potential und seine Ableitungen

$$\chi_{1w} = \frac{1}{2\pi} \int_0^1 \gamma_w(\xi) \arctan \frac{y}{x-\xi} \mathrm{d}\xi, \qquad (2.149a)$$

$$\chi_{1w,x} = -\frac{1}{2\pi} \int_0^1 \gamma_w(\xi) \frac{y}{(x-\xi)^2 + y^2} d\xi, \qquad (2.149b)$$

$$\chi_{1w,y} = \frac{1}{2\pi} \int_0^1 \gamma_w(\xi) \frac{x-\xi}{(x-\xi)^2 + y^2} \mathrm{d}\xi.$$
 (2.149c)

Um $\gamma_w(x)$ zu bestimmen, setzen wir die linearisierte Randbedingung (2.96) in (2.149c) ein

$$\chi_{1w,y}(x,0^{\pm}) = \frac{1}{2\pi} \int_0^1 \gamma_w(\xi) \frac{\mathrm{d}\xi}{x-\xi} = \frac{\mathrm{d}h_w}{\mathrm{d}x}.$$
 (2.150)

Diese Beziehung stimmt mit der Betzschen Integralgleichung (2.123) überein, wenn man identifiziert

$$f(\xi) = \gamma_w(\xi)$$
 und $g(x) = -2\pi \frac{\mathrm{d}h_w}{\mathrm{d}x}$. (2.151)

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 Mit dieser Identifikation können wir die Lösung von (2.150) für $f(x) = \gamma_w(x)$ direkt aus der allgemeinen Lösung (2.124) ablesen

$$\gamma_w(x) = \frac{C_2}{\sqrt{x(1-x)}} + \frac{2}{\pi} \frac{1}{\sqrt{x(1-x)}} \int_0^1 \frac{\sqrt{\xi(1-\xi)}}{\xi - x} \frac{\mathrm{d}h_w}{\mathrm{d}\xi} \mathrm{d}\xi = -2 \frac{u(x,0^+) - u_\infty}{\tau u_\infty}.$$
(2.152)

Im letzten Schritt wurde $\gamma_w(x)$ aus (2.149b) bestimmt, wie in (2.128). Die freie Konstante C_2 muß wieder mit Hilfe der Kutta-Joukowski-Bedingung (2.129) bei x = 1 bestimmt werden

$$\gamma_w(1) = -2\frac{u(1,0^+) - u_\infty}{\tau u_\infty} = 0.$$
(2.153)

Daraus folgt

$$C_{2} = -\frac{2}{\pi} \int_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-1} \frac{\mathrm{d}h_{w}}{\mathrm{d}\xi} \mathrm{d}\xi = \frac{2}{\pi} \int_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} h'_{w}(\xi) \mathrm{d}\xi.$$
(2.154)

Wenn man die so bestimmten Vortizitätsbelegung (2.152) in das Störpotential (2.149) einsetzt, hat man das Wölbungsproblem vollständig gelöst. Insbesondere erhält man die Geschwindigkeitsstörung in *x*-Richtung an der Plattenoberfläche direkt aus (2.152) als

$$\frac{u(x,0^+) - u_{\infty}}{u_{\infty}} = -\frac{C_2\tau}{2\sqrt{x(1-x)}} - \frac{1}{\pi}\frac{\tau}{\sqrt{x(1-x)}} \int_0^1 \frac{\sqrt{\xi(1-\xi)}}{\xi - x} h'_w \mathrm{d}\xi. \quad (2.155)$$

2.4.5. Zusammenfassung der Ergebnisse für dünne Profile

Ein Profil sei durch die beiden Koordinatenfunktionen

$$y_o(x) = \tau h_o(x), \tag{2.156a}$$

$$y_u(x) = -\tau h_u(x), \qquad (2.156b)$$

gegeben, wobei der Dickenparameter $\tau \ll 1$ klein sei. Das Profil der Länge 1 sei der ungestörten Anströmung $(u, v) = (u_{\infty}, v_{\infty})$ ausgesetzt mit dem kleinen Anstellwinkel

$$\varepsilon \approx \tan \varepsilon = \frac{v_{\infty}}{u_{\infty}} \ll 1.$$
 (2.157)

Mit der Zerlegung des Profils (2.156) in Dicken- und Wölbanteil

$$h_d = \frac{h_o + h_u}{2}$$
 und $h_w = \frac{h_o - h_u}{2}$ (2.158)

3. C. Luhlmann, A. Kluwid Strömungsmechanik 2 ergibt sich die Verteilung von u auf der Profilober- und -unterseite zu

$$\frac{u(x,0^{\pm}) - u_{\infty}}{u_{\infty}} = \underbrace{\frac{\tau}{\pi} \int_{0}^{1} \frac{h'_{d}(\xi)}{x - \xi} \mathrm{d}\xi}_{\text{Dickeneffekt}(2.112) \text{Anstelleffekt}(2.131)} \underbrace{\pm \varepsilon \sqrt{\frac{1 - x}{x}}}_{\frac{1}{\pi} \sqrt{x(1 - x)}} \left[\int_{0}^{1} \sqrt{\frac{\xi}{1 - \xi}} h'_{w} \mathrm{d}\xi + \int_{0}^{1} \frac{\sqrt{\xi(1 - \xi)}}{\xi - x} h'_{w} \mathrm{d}\xi \right]}_{\text{Wölbungseffekt}(2.155)}$$
(2.159)

Für die Verteilung von v auf der Oberfläche des Profils ergab sich direkt aus den Randbedingungen (2.92), (2.95) und (2.96)

$$\frac{v(x,0^{\pm})}{u_{\infty}} = \tau \left[\pm h'_d(x) + h'_w(x)\right].$$
(2.160)

Die aus der Anstellung $\varepsilon \neq 0$ resultierende konstante vertikale Geschwindigkeit v_{∞} wird gerade durch die vertikale Störgeschwindigkeit an der Oberfläche des Profils kompensiert.

Der Druckbeiwert an der Profiloberfläche hängt gemäß (2.116) mit der Geschwindigkeitsstörung in x-Richtung zusammen

$$c_p(x, 0^{\pm}) = -2 \frac{u - u_{\infty}}{u_{\infty}}(x, 0^{\pm}).$$
 (2.161)

Daraus ergibt sich der Kraftbeiwert in y-Richtung

$$c_L = -\oint c_p n_y d\sigma = -\int_0^1 \left[c_p(x, 0^+) - c_p(x, 0^-) \right] dx, \qquad (2.162)$$

der in erster Näherung identisch ist mit dem Auftriebsbeiwert.

2.4.6. Beliebig dicke Profile und Körper

Für die Belegung der (auch im Innern des Körpers liegenden) Profilachse hatten wir bisher implizit die Voraussetzung getroffen, daß die analytische Fortsetzung der Potential- oder Stromfunktion in das Innere des Körpers möglich ist. Bei Unstetigkeiten der Körperoberfläche kann diese Annahme im allgemeinen nicht mehr gemacht werden. Die Belegung der Achse bringt außerdem nur bei schlanken Körpern entscheidende Vorteile. Im allgemeinen Fall beliebig dicker Körper lassen sich die Belegungsdichten auf der Achse nicht mehr auf einfache Weise auf die Profilfunktionen zurückführen. Es ist dann besser, von vornherein eine Belegung der Körperoberfläche zu wählen.

Es sei C die geschlossene Profilkontur mit scharfer Hinterkante und s die Bogenlänge entlang des Profils mit Ursprung an der Hinterkante H. Ein Punkt auf dem Profil ist durch $[\xi(s), \eta(s)]$ gegeben. Eine Wirbelbelegung $\gamma(s)$ auf der Profilkontur

Abbildung 2.28.: Dickes Profil mit scharfer Hinterkante H, das mit u_{∞} angeströmt wird.

C führt dann zu der Stromfunktion $\psi(x, y)$ in Form des Oberflächenintegrals (siehe (2.35), Anströmung mit u_{∞} aus der negativen x-Richtung)

$$\psi(x,y) = u_{\infty}y - \frac{1}{2\pi} \oint_{C} \gamma(s) \ln \underbrace{\sqrt{[x-\xi(s)]^2 + [y-\eta(s)]^2}}_{r} \mathrm{d}s.$$
(2.163)

Zur Bestimmung der Geschwindigkeitsverteilung auf der äußeren Oberfläche des Profils muß man von außen den Punkt $\vec{x} = (x, y)^T \to \vec{x}_P$ gehen lassen, wobei \vec{x}_P ein Punkt auf dem Profil ist. Das Integral verstehen wir im folgenden als Hauptwert; der Punkt P wird also ausgenommen.

Die Belegung muß so gewählt werden, daß die Normalgeschwindigkeit auf der Kontur in jedem Punkt verschwindet (Randbedingung). Deshalb ist es sinnvoll, die Normal- und Tangentialkomponenten der Geschwindigkeit an der Profiloberfläche zu betrachten. Dazu betrachtet man $\psi[x(t, n), y(t, n)]$ in jedem Punkt P als Funktion der tangentialen (t) und normalen (n) Koordinate.¹² Für die tangentiale und normale Geschwindigkeitskomponenten lt. Abb. 2.28 gilt dann

$$u_{tP} = \frac{\partial \psi}{\partial n},\tag{2.164a}$$

$$u_{nP} = -\frac{\partial \psi}{\partial t}.$$
 (2.164b)

Für die Geschwindigkeit in Normalenrichtung n erhält man in einem Punkt P auf

$$\left(\begin{array}{c} x\\ y\end{array}\right) = \left(\begin{array}{c} \cos\vartheta & -\sin\vartheta\\ \sin\vartheta & \cos\vartheta\end{array}\right) \cdot \left(\begin{array}{c} t\\ n\end{array}\right).$$

Damit sind z.B. $\partial y/\partial t = \sin \vartheta$ und $\partial x/\partial t = \cos \vartheta$.

¹²Beachte, daß die Koordinaten (t, n) mit den Koordinaten (x, y) durch eine Drehung um den Winkel ϑ im Zusammenhang stehen. Für unsere Definition des Winkels ϑ (siehe Abb. 2.28) gilt

der Kontur C aus (2.163)

$$u_{nP} = -\frac{\partial\psi}{\partial t}\bigg|_{P} = -u_{\infty} \underbrace{\frac{\partial y}{\partial t}\bigg|_{P}}_{\sin\vartheta} + \frac{1}{2\pi} \oint_{C} \gamma(s) \frac{\partial\ln r}{\partial t}\bigg|_{P} \mathrm{d}s, \qquad (2.165)$$

wobei das Integral als Hauptwert zu interpretieren ist. Damit die Profiloberfläche nicht durchströmt wird, muß man fordern $u_{nP} = 0$. Dies ist eine Bedingung für $\gamma(s)$. Genauer gesagt stellt (2.165) eine Integralgleichung zur Bestimmung der unbekannten Wirbeldichte $\gamma(s)$ dar. Man kann sie nur numerisch lösen. Dazu ist es sinnvoll, die Ableitung der Funktion im Integranden auszuführen. Dies führt auf

$$\frac{\partial \ln r}{\partial t}\Big|_{P} = \left[\frac{(x-\xi)\frac{\partial x}{\partial t} + (y-\eta)\frac{\partial y}{\partial t}}{(x-\xi)^{2} + (y-\eta)^{2}}\right]_{P} = \frac{(x-\xi)\cos\vartheta + (y-\eta)\sin\vartheta}{(x-\xi)^{2} + (y-\eta)^{2}}.$$
 (2.166)

Für die Kräfte auf den Tragflügel ist die tangentiale Geschwindigkeit verantwortlich. Die Berechnung von u_t im Punkt P auf der Kontur C führt auf

$$u_{tP} = \frac{\partial \psi}{\partial n} \bigg|_{P} = u_{\infty} \underbrace{\frac{\partial y}{\partial n}}_{\cos \vartheta} - \underbrace{\frac{1}{2\pi} \oint_{C} \gamma(s) \frac{\partial \ln r}{\partial n} ds}_{\text{Hauptwert}} \underbrace{\frac{\gamma_{P}}{2}}_{\text{von P}}.$$
 (2.167)

Hierbei ist $-\gamma_P/2$ die von der Wirbeldichte im Punkt *P* induzierte Tangentialgeschwindigkeit genau wie in (2.128),¹³ während

$$-\frac{1}{2\pi}\oint_C \gamma(s)\frac{\partial\ln r}{\partial n}\mathrm{d}s$$

die von allen anderen Wirbeln auf dem Profil im Punkt ${\cal P}$ induzierte Tangentialgeschwindigkeit beschreibt, wobei

$$\frac{\partial \ln r}{\partial n} = \frac{-(x-\xi)\sin\vartheta + (y-\eta)\cos\vartheta}{(x-\xi)^2 + (y-\eta)^2}.$$
(2.168)

Wenn man die Wirbelbelegung $\gamma(s)$ durch Lösung von (2.165) bestimmt hat, kann man sie in (2.167) einsetzen und die tangentiale Geschwindigkeitsverteilung bestimmen.

Zur numerischen Lösung von (2.165) kann man das Profil in N äquidistante Intervalle der Bogenlänge $\Delta s = \text{const.}$ aufteilen und γ in jedem Teilintegral mit Hilfe

¹³Dieser Term ist erforderlich, weil wir das Integral als Hauptwert betrachten, wobei der Punkt P ausgenommen ist. Wenn wir den Punkt P beim Integral berücksichtigen würden, ergäbe sich im Limes $x \to x_P$ derselbe Beitrag (siehe (2.128)). Von der Vortizitätsbelegung am Punkt P bleibt im Limes $\vec{x} \to \vec{x}_P$ etwas übrig, weil man den Punkt \vec{x} von außen auf einen Punkt P auf der Kontur gehen läßt; siehe auch Schneider (1978).

Abbildung 2.29.: Mögliche Anordnung der Punkte bei der Panel-Methode: Punkte, an denen die Normalgeschwindigkeit verschwinden soll (Kontrollpunkte) sind blau dargestellt. Punkte, an denen diskrete Wirbel plaziert werden sind rot. Die Punkteverteilung kann an stark gekrümmten Stellen verdichtet werden.

der *Mittelpunktsregel* approximieren. Diese Strategie wird *Panel-Methode* genannt. Für das *i*-te Intervall erhält man so

$$u_{n,i} = -u_{\infty} \sin \vartheta_i + \frac{\Delta s}{2\pi} \sum_{j=1}^{N} \gamma_j \frac{(x_i - \xi_j) \cos \vartheta_i + (y_i - \eta_j) \sin \vartheta_i}{(x_i - \xi_j)^2 + (y_i - \eta_j)^2} \stackrel{!}{=} 0, \quad i = 1, 2, ..., N$$
(2.169)

Dies ist ein System linearer Gleichungen für die N unbekannten Wirbelbelegungen $\gamma_1, \ldots, \gamma_N$. Das Gleichungssystem in der Form (2.169) ist singulär, da in (2.169) die Matrixelemente für i = j singulär sind. Daher wählt man die Punkte \vec{x}_i , an denen die Randbedingung erzwungen werden soll, verschieden von den Punkte $\vec{\xi}_j$, an denen die Vortizität konzentriert ist (z.B. an den End- und den Mittelpunkten eines Panels, siehe Abb. 2.29).

Da die Gesamtzirkulation $\Gamma = \sum_{i} \gamma_i \Delta s$ bei ebenen reibungsfreien Strömungen unbestimmt ist (vgl. Kutta-Joukowski (2.129)), kann man davon ausgehen, daß das lineare Gleichungssystem (2.169) einfach unbestimmt ist. Um eine eindeutige Lösung zu erhalten, verwendet man deshalb wieder die *Kutta-Joukowski-Bedingung* und fordert ein glattes Abströmen von der scharfen Hinterkante. Dies ist äquivalent mit der Forderung, daß der Druck an der Hinterkante auf Oberseite des Profils identisch mit demjenigen auf der Unterseite ist.¹⁴ Da die tangentiale Geschwindigkeit bei einer Umströmung der Hinterkante (beachte die Richtung von \vec{t} auf der Ober- und Unterseite des Profils) an der Hinterkante *H* sprunghaft das Vorzeichen wechselt, fordert man, daß dort ein Staupunkt liegt: $u_{t,H} = 0$. Wenn man diese Bedingung in die diskretisierte Version von (2.167) einsetzt, ergibt sich die zusätzliche

¹⁴Die Kutta-Joukowski-Bedingung kann man auf verschiedene Arten implementieren. Da die Strömung sensitiv von dieser Bedingung abhängt, ist hierbei große Sorgfalt erforderlich. Eine Möglichkeit besteht darin, zu fordern, daß die Tangentialgeschwindigkeiten auf den beiden Panels $\overline{N, N + 1}$ und $\overline{1, 2}$ (oben und unten) gleich sind. Dabei muß auch die Panel-Länge auf der Oberund der Unterseite gleich gewählt werden. Dies resultiert in $u_{t,1} = -u_{t,N}$. Das Minuszeichen kommt von der Orientierung des Tangentialvektors.

Gleichung

$$u_{t,H} = u_{\infty} \cos \vartheta_H - \frac{\gamma_H}{2} - \frac{\Delta s}{2\pi} \sum_{j=1}^N \gamma_j \frac{-(x_H - \xi_j) \sin \vartheta_H + (y_H - \eta_j) \cos \vartheta_H}{(x_H - \xi_j)^2 + (y_H - \eta_j)^2} \stackrel{!}{=} 0.$$
(2.170)

Die gesuchten Wirbeldichten γ_j ergeben sich dann als eindeutige Lösung des erweiterten N + 1-dimensionalen linearen Gleichungssystems. Daraus folgen die Tangentialgeschwindigkeiten $u_{t,i}$ an den Stützstellen *i* auf der Profiloberfläche über die diskretisierte Version von (2.167). Hieraus kann man die Druckverteilung ermitteln und damit die Kräfte auf den Tragflügel. 2. Ebene stationäre inkompressible reibungsfreie und drehungsfreie Strömungen

3. Der Tragflügel endlicher Streckung

Die Druckunterschiede zwischen der Ober- und der Unterseite eines angestellten Tragflügels führen dazu, daß eine Strömung in Spanweitenrichtung existiert, die von unten nach oben um die Enden des Tragflügels herum gerichtet ist. Diese Strömung ist besonders groß in der Nähe der Tragflügelenden. Aufgrund dieser zusätzlichen Geschwindigkeitskomponente in Spannrichtung besitzen die resultieren Strömungen auf der Ober- und der Unterseite des Tragflügels eine leicht unterschiedliche Richtung. Direkt nach der Hinterkante des endlichen Tragflügels entsteht so eine *Wirbelschicht* mit Vortizität in Hauptstromrichtung (Abb. 3.1). Da die Wirbelschicht an den Enden des Tragflügels plötzlich aufhört, wickelt sie sich von den Enden her auf (Idealsierung: Kaden-Spirale, siehe Saffman (1992)) und entwickelt sich im weiteren Nachlauf infolge des viskosen Impulsaustausches zu den bekannten Nachlaufwirbeln. Die Entstehung der Wirbelschicht erfolgt sehr ähnlich wie bei der Umströmung einer querbewegten Platte (siehe Abb. 3.2).

Die für die kontinuierliche Erzeugung der Nachlaufwirbel erforderliche Energie äußert sich in einem erhöhten Widerstand. Tatsächlich ist dieser *induzierte Widerstand* größer als der viskose Widerstand und ist im Langsamflug sogar größer als 50% des Gesamtwiderstands. Um den Effekt der Nachlaufwirbel auf den Auftrieb und den Widerstand zu berechnen, werden wir uns im folgenden mit elementaren Eigenschaften dreidimensionaler reibungsfreier Wirbelströmungen beschäftigen.

5. C. Luhlmann, U. Lluwid Strömungsmechanik 2

Abbildung 3.2.: Darstellung des *Kaffelöffel-Experiments* mit Original-Bildern aus Klein (1910). Ein bewegtes Ruder induziert eine Strömung um das Ende herum (b). Wenn man das Ruder entfernt (c), hat man dort eine Wirbelschicht (d), weil die Stromlinien nicht senkrecht auf dem Ruder standen. Die Wirbelschicht wickelt sich vom Ende her auf (e) und führt schließlich über viskosen Impulsaustausch zu einem Wirbel (f).

3.1. Mathematisch-physikalische Grundlagen

3.1.1. Helmholtzsche Wirbelsätze

Für die nachfolgenden Betrachtungen werden einige Definitionen benötigt, welche sich auf die Vortizität $\vec{\omega} = \nabla \times \vec{u}$ beziehen. Ganz analog zu Stromlinien, Stromröhren und Stromfäden, die auf \vec{u} basieren, werden Wirbellinien, Wirbelröhren und Wirbelfäden definiert.

Eine *Wirbellinie* ist eine Raumkurve, deren Tangentialvektor in jedem Punkt die Richtung der Vortizität $\vec{\omega}$ aufweist. Als *Wirbelröhre* bezeichnet man eine Röhre, deren Mantel von Wirbellinien gebildet wird. Ein *Wirbelfaden* ist eine Wirbelröhre, die so schlank ist, daß die Feldgrößen über alle Querschnitte näherungsweise

Abbildung 3.3.: Eine Wirbellinie ist in jedem Punkt tangential zum Vektor der Vortizität $\vec{\omega}$.

Abbildung 3.4.: Wirbelröhre mit definierender Fläche S_0 . Die Kurve C_1 umschließt die Wirbelröhre einfach. Die Kurve C_2 liegt vollständig auf der Mantelfläche der Wirbelröhre, umschließt sie aber nicht.

konstant sind.

Die Integration der Identität $\nabla \cdot \vec{\omega} = \nabla \cdot (\nabla \times \vec{u}) = 0$ über ein beliebiges Volumen liefert unter der Verwendung des Gaußschen Satzes

$$\int_{V} \nabla \cdot \vec{\omega} \, \mathrm{d}V = \int_{S(V)} \vec{\omega} \cdot \mathrm{d}\vec{S} = 0.$$
(3.1)

Wenn man dieses Resultat auf das Volumen einer Wirbelröhre anwendet, welches durch die Querschnitte S_0 und S begrenzt wird (Abb. 3.4), erhält man (die Mantelfläche liefert keinen Beitrag, da $\vec{n} \cdot \vec{\omega} = 0$)

$$\int_{S} \vec{\omega} \cdot d\vec{S} = \int_{S_0} \vec{\omega} \cdot d\vec{S} = \text{const.}$$
(3.2)

Diese Gleichung (3.2) wird als *erster Helmholtzscher Wirbelsatz* bezeichnet.¹ Das Integral ist der Fluß der Vortizität durch die Fläche S. Für einen Wirbelfaden ist $\vec{\omega}$ über den Querschnitt S näherungsweise konstant. Dann vereinfacht sich (3.2) zu

$$\vec{\omega} \cdot \vec{n} S = \omega_n S = \text{const.} \tag{3.3}$$

Die Anwendung des Stokesschen Satzes auf (3.2) ergibt

$$\int_{S_1} \vec{\omega} \cdot d\vec{S} = \int_{S_1} (\nabla \times \vec{u}) \cdot d\vec{S} = \oint_{C_1} \vec{u} \cdot d\vec{\sigma} = \Gamma_1 = \text{const.}$$
(3.4)

wobei C_1 eine beliebige geschlossene Kurve ist, die den Wirbelfaden einfach umschließt. Damit kann man den Helmholtzschen Satz auch anders formulieren:

Die Zirkulation entlang jeder geschlossenen Kurve, die einfach um einen Wirbelfaden gewunden ist, besitzt ein und denselben Wert Γ .

5. C. Kuhlmann, U. Kluwid Strömungsmechanik 2

 $^{^1\}mathrm{Dieses}$ Ergebnis ist analog zur Massenerhaltung bei einer stationären Stromröhre.

Dieser Sachverhalt wird als *zweiter Helmholtzscher Wirbelsatz* bezeichnet. Die Anwendung des Stokesschen Satzes auf eine geschlossene Kurve C_2 auf der Mantelfläche einer Wirbelröhre, welche den Wirbelfaden *nicht* umschließt (siehe Abb. 3.4), liefert

$$\Gamma_2 = \oint_{C_2} \vec{u} \cdot d\vec{\sigma} = \int_{S_2} \underbrace{(\nabla \times \vec{u}) \cdot \vec{n}}_{=0} dS = 0.$$
(3.5)

Aus den Helmholtzschen Wirbelsätzen ergeben sich folgende Konsequenzen:

- Wegen (3.2) bleibt der Vortizitätsfluß entlang einer Wirbelröhre erhalten. Deshalb kann eine Wirbelröhre oder ein Wirbelfaden nicht einfach im Raum enden. Wirbelröhren und Wirbelfäden müssen daher entweder geschlossen sein (wie bei einem Ringwirbel – Rauchring), oder sie enden auf den Berandungen des Fluidvolumens (z.B. Tornado auf der Erde).
- 2. Aus (3.5) folgt zusammen mit dem Thomsonschen Satz (1.52), daß der Mantel eines Wirbelfadens immer aus denselben Fluidteilchen gebildet wird, also eine substantielle Fläche ist. Denn nach dem Thomsonschen Satz ändert sich die Zirkulation entlang einer beliebigen geschlossenen substantiellen Linie nicht.

Ringwirbel am Ätna.

3.1.2. Biot-Savart Gesetz

Für einen weiteren wichtigen Zusammenhang gehen wir vom (hier unbewiesenen) Hauptsatz der Vektoranalysis aus (siehe Fußnote 4 auf S. 9). Er besagt, daß jedes stetige Vektorfeld \vec{u} in einem einfach zusammenhängenden Gebiet eindeutig bestimmt ist, wenn überall im Innern $\nabla \cdot \vec{u}$ und $\nabla \times \vec{u}$ bekannt sind und u_n auf dem Rand angegeben ist; siehe zum Beispiel Wieghardt (1974) oder Saffman (1992).

Danach läßt sich die Geschwindigkeit \vec{u} aus einem skalaren Potential ϕ und einem *Vektorpotential* \vec{A} in der Weise

$$\vec{u} = \nabla \phi + \nabla \times \vec{A} \tag{3.6}$$

darstellen, wobei

$$\phi(\vec{r}) = -\frac{1}{4\pi} \int_{V} \frac{q(\vec{r'})}{|\vec{r} - \vec{r'}|} \mathrm{d}V'$$
(3.7)

ist, mit der *Quelldichte* $q = \nabla \cdot \vec{u}$, und

$$\vec{A}(\vec{r}) = \frac{1}{4\pi} \int_{V} \frac{\vec{\omega}(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}V'$$
(3.8)

mit der *Wirbeldichte* (Vortizität) $\vec{\omega} = \nabla \times \vec{u}$.

5. C. Luhlmann, U. Kluwic Strömungsmechanik 2

Abbildung 3.5.: Geometrie beim Biot-Savart-Gesetz. Die vom Linienelement dr' mit Vortizität $\vec{\omega}'$ induzierte Geschwindigkeit $\vec{u}(\vec{r})$ steht senkrecht auf der Ebene, die durch $d\vec{r}$ und $\vec{r} - \vec{r}'$ aufgespannt wird.

Eine inkompressible Strömung ist quellenfrei $q = \nabla \cdot \vec{u} = 0$. Deshalb läßt sich ein inkompressibles Geschwindigkeitsfeld allein durch $\nabla \times \vec{A}$ ausdrücken.² Wenn wir diese Darstellung verwenden und (3.8) in (3.6) einsetzen, erhalten wir³

$$\vec{u} = \nabla \times \vec{A} = \frac{1}{4\pi} \int \nabla \times \frac{\vec{\omega}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV' = -\frac{1}{4\pi} \int \vec{\omega}(\vec{r}') \times \nabla \frac{1}{|\vec{r} - \vec{r}'|} dV' \qquad (3.9)$$
$$= \frac{1}{4\pi} \int \frac{\vec{\omega}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} dV'.$$

Dies ist das *Biot-Savart-Gesetz* (siehe Abb. 3.5)

$$\vec{u} = \frac{1}{4\pi} \int \frac{\vec{\omega}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} dV'.$$
(3.10)

Das Biot-Savart-Gesetz wollen wir nun auf einen Wirbelfaden mit Linienelement d $\vec{l'}$ spezialisieren. Wenn außerhalb des Wirbelfadens $\vec{\omega} = 0$ ist, braucht man nur über den Wirbelfaden selbst zu integrieren. Dazu beachten wir einen dünnen Schlauch mit senkrechter Querschnittsfläche \vec{S} um den Wirbelfaden herum. Dann ist $\vec{S} \parallel \vec{\omega} \parallel d\vec{l'}$ und es gilt

$$\vec{\omega} \,\mathrm{d}V' = \vec{\omega}\,\vec{S} \cdot\mathrm{d}\vec{l}' = \vec{\omega}\cdot\vec{S}\,\mathrm{d}\vec{l}' = \Gamma\mathrm{d}\vec{l}'. \tag{3.11}$$

Eingesetzt in (3.8) erhält man

$$\vec{A} = \frac{\Gamma}{4\pi} \int \frac{\mathrm{d}\vec{l'}}{|\vec{r} - \vec{r'}|}.$$
(3.12)

³Im letzten Schritt haben wir hierbei verwendet

$$\nabla \frac{1}{|\vec{r} - \vec{r'}|} = \nabla \left[\left(\vec{r} - \vec{r'} \right)^2 \right]^{-1/2} = -\frac{1}{2} \left[\left(\vec{r} - \vec{r'} \right)^2 \right]^{-3/2} \, 2 \left(\vec{r} - \vec{r'} \right) \cdot \nabla \vec{r} = -\frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3}$$

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

 $^{^{2}}$ Die nichttrivialen zweidimensionalen Lösungen der Potentialgleichungen in Kap. 2.2.3 waren immer auf Quellen oder auf singuläre Vortizitätsverteilungen zurückzuführen.

3. Der Tragflügel endlicher Streckung

Abbildung 3.6.: Induzierte Geschwindigkeit am Ort $\vec{r} = 0$ im Abstand *a* von einem geradlinigen Wirbelfaden (rot).

und aus (3.10) wird

$$\vec{u} = \nabla \times \vec{A} = -\frac{\Gamma}{4\pi} \int \frac{(\vec{r} - \vec{r}') \times d\vec{l}'}{|\vec{r} - \vec{r}'|^3}.$$
(3.13)

Die Integration ist über die gesamte Länge des Wirbelfadens zu erstrecken. Meist handelt es sich um ein geschlossenes Integral (Ringwirbel).

Beispiel Berechne die von einem geraden Wirbelfaden induzierte Geschwindigkeit \vec{w} in einem Punkt im Abstand *a* vom Wirbelfaden! Dazu wollen wir die Integration über d $\vec{l'}$ auf eine Integration über φ zurückführen. Wenn wir den Ursprung des Koordinatensystems in den Punkt legen an dem die Geschwindigkeit berechnet werden soll, ist $\vec{r} = 0$. Nach Abb. 3.6 gilt dann

$$\vec{r}' = \frac{a}{\sin\varphi}\vec{e}_{r'}, \qquad \mathrm{d}\vec{l}' = \mathrm{d}l'\vec{e}_x = -\frac{r'\mathrm{d}\varphi}{\sin\varphi}\vec{e}_x.$$
 (3.14)

Desweiteren gilt mit $\vec{e}_{r'} = \cos \varphi \vec{e}_x + \sin \varphi \vec{e}_y$

$$\vec{r}' \times d\vec{l}' = -\frac{a}{\sin\varphi} \frac{r'd\varphi}{\sin\varphi} \underbrace{\vec{e}_{r'} \times \vec{e}_x}_{(-\vec{e}_z)\sin\varphi} \stackrel{r'=a/\sin\varphi}{=} \frac{a^2 d\varphi}{\sin^2\varphi} \vec{e}_z.$$
(3.15)

Aus (3.13) erhält man dann mit $r' = a/\sin\varphi$ und Integration in positiver x-Richtung (von φ_2 nach φ_1)

$$\vec{u} = \frac{\Gamma}{4\pi} \vec{e}_z \int_{\varphi_2}^{\varphi_1} \underbrace{\frac{\sin^3 \varphi}{a^3}}_{r'^{-3}} \frac{a^2}{\sin^2 \varphi} d\varphi = \frac{\Gamma}{4\pi a} \vec{e}_z \int_{\varphi_2}^{\varphi_1} \sin \varphi d\varphi = -\frac{\Gamma}{4\pi a} \left(\cos \varphi_1 - \cos \varphi_2\right) \vec{e}_z.$$
(3.16)

5. C. Luhlmann, U. Lluwid Strömungsmechanik 2
Für einen unendlich langen Wirbelfaden ist $\varphi_1 = 0$ und $\varphi_2 = \pi$ und man erhält für die induzierte Geschwindigkeit

$$\vec{u} = w\vec{e}_z = -\frac{\Gamma}{2\pi a}\vec{e}_z.$$
(3.17)

Dieses Ergebnis ist konsistent mit dem Geschwindigkeitsfeld eines Potentialwirbels (2.32). Für einen einseitig unendlich langen Wirbelfaden mit $\varphi_1 = 0$ und $\varphi_2 = \pi/2$ ergibt sich im Ursprung (x, y) = (0, 0)

$$w = -\frac{\Gamma}{4\pi a}.\tag{3.18}$$

3.2. Wirbelsystem eines Tragflügels endlicher, großer Streckung

Wenn man die Rotation der Eulergleichung bildet, erhält man mit $\nabla \times \nabla p = 0$ und unter Beachtung der Vektoridentität⁴ $\vec{u} \cdot \nabla \vec{u} = \frac{1}{2} \nabla \vec{u}^2 - \vec{u} \times \vec{\omega}$

$$\frac{\partial \vec{\omega}}{\partial t} + \nabla \times \left(\frac{1}{2}\nabla \vec{u}^2 - \vec{u} \times \vec{\omega}\right) = \frac{\partial \vec{\omega}}{\partial t} - \nabla \times (\vec{u} \times \vec{\omega}) \tag{3.19}$$

$$\stackrel{\text{Entwicklungssatz}}{=} \frac{\partial \vec{\omega}}{\partial t} - [\vec{u}(\nabla \cdot \vec{\omega}) - \vec{\omega}(\nabla \cdot \vec{u}) - \vec{u} \cdot \nabla \vec{\omega} + \vec{\omega} \cdot \nabla \vec{u}]$$

$$= \frac{\partial \vec{\omega}}{\partial t} + \vec{u} \cdot \nabla \vec{\omega} - \vec{\omega} \cdot \nabla \vec{u} = \frac{D \vec{\omega}}{D t} - \vec{\omega} \cdot \nabla \vec{u} = 0. \tag{3.20}$$

Hieran sieht man: Wenn die Vortizität zum Zeitpunkt t = 0 verschwindet, so verschwindet sie für alle Zeiten. Wirbel können also nicht entstehen. Wegen der oben gezeigten Wirbelsätze können sie aber auch nicht vergehen. Wie entsteht aber die für den Auftrieb erforderliche Zirkulation um einen Tragflügel?

Die Zirkulation um den Tragflügel entsteht beim Anfahr-Vorgang (Beschleunigung) des Flugzeugs. Viskose Effekte sorgen dafür, daß die Kutta-Bedingung erfüllt wird, was zu einem Wirbel um den Tragflügel führt. Dieser Wirbel um den Tragflügel wird *gebundener Wirbel* genannt. Aufgrund des zweiten Helmholtzschen Wirbelsatzes (Konstanz der Zirkulation entlang eines Wirbelfadens) kann der gebundene Wirbel nicht einfach am Ende des Tragflügels aufhören. Daher bildet sich eine *freie Wirbelschicht* hinter einem Tragflügel endlicher Streckung aus. An der Stelle, an welcher die Bewegung des Tragflügel begann, schließen sich die beiden Wirbelbänder. Am Ort des Anfahrens hinterläßt der Tragflügel daher einen *Anfahrwirbel*. Als

$$\vec{u} \times \vec{\omega} = \epsilon_{ijk} u_j \omega_k = \epsilon_{ijk} \epsilon_{klm} u_j \partial_l u_m = \epsilon_{ijk} \epsilon_{lmk} u_j \partial_l u_m = (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) u_j \partial_l u_m$$
$$= u_j \partial_i u_j - u_j \partial_j u_i = \frac{1}{2} \partial_i u_j u_j - u_j \partial_j u_i; \blacksquare.$$

⁴Dies sieht man folgendermaßen:

Abbildung 3.7.: Die Wirbellinien des gebunden Wirbels gehen an der Hinterkante des Tragflügels in freie Wirbellinien über und bilden dort über die gesamte Spannweite eine Wirbelschicht.

Folge der freien Wirbel werden am Ort des Tragflügels Abwärtsgeschwindigkeiten w_i induziert. Zu ihrer Berechnung kann von Gleichung (3.18) für halbunendliche gerade Wirbelfäden ausgegangen werden.

Die folgenden Betrachtungen gehen davon aus, daß die Spannweite b groß ist gegenüber der mittleren *Flügeltiefe* \bar{l} . Dann ist die *Flügelstreckung* $\Lambda = b/\bar{l} \gg 1$ groß. Wir wollen nun den Einfluß eines Wirbelbandes der Breite $d\eta$ bei $y = \eta$ auf die Luftkräfte untersuchen. Am Ende wird dann über die gesamte Breite b der Wirbelschicht integriert. Aus Gleichung (3.18) folgt für den vom (freien) Wirbelband (Wirbelfaden) zwischen $y = \eta$ und $y = \eta + d\eta$ mit der Zirkulation d Γ herrührenden Beitrag $dw_i(y)$ zur induzierten Vertikalgeschwindigkeit $w_i(y)$ an der Stelle y mit $a = \eta - y$

$$dw_i(y) = \frac{d\Gamma}{4\pi} \frac{1}{(y-\eta)} = \frac{1}{4\pi} \frac{d\Gamma}{d\eta} \frac{d\eta}{(y-\eta)}.$$
(3.21)

Durch Integration über das gesamte Wirbelband ergibt sich daher im Abstand y von der x-Achse die Vertikalgeschwindigkeit

$$w_i(y) = \frac{1}{4\pi} \int_{-b/2}^{b/2} \frac{\Gamma'(\eta)}{y - \eta} \mathrm{d}\eta.$$
(3.22)

Diese Geschwindigkeit ist im Intervall $y \in [-b/2, b/2]$ im Regelfall negativ. Damit ist also eine Abwärtsgeschwindigkeit mit Betrag $|w_i|$ verbunden. Die Zirkulationsverteilung $\Gamma(y)$ ist aber noch unbekannt.

Abbildung 3.8.: Geometrieverhältnisse zur Erklärung des induzierten Widerstands. Beachte, daß alle Größen von der Spannweiten-Koordinate y abhängen. Die Kräfte dR, dLund dD_i sind Kräfte pro Länge dy.

3.3. Prandtlsche Integralgleichung für die Zirkulationsverteilung

Da die Zirkulationsverteilung $\Gamma(y)$ und die indizierte Geschwindigkeit $w_i(y)$ von der Spannweitenkoordinate y abhängen, wird auch der Auftriebsbeiwert y-abhängig sein, so daß man auch den Anstellwinkel und die Flügeltiefe variabel läßt. Wir suchen dann die Zusammenhänge zwischen diesen Größen.

Für ein Flächenelement des Tragflügels mit der Breite dy in Spannrichtung und der Tiefe l(y) beträgt der Beitrag zum Auftrieb L an der Stelle y

$$dL(y) = \frac{\rho u_{\infty}^2}{2} c_L(y) \underbrace{l(y)dy}_{\text{Fläche}}.$$
(3.23)

Dabei gilt für den lokalen Auftriebsbeiwert der lineare Zusammenhang (siehe $(2.140), c_L \sim \alpha$)

$$c_L(y) = c'_{L\infty}(y)\alpha_e(y), \qquad (3.24)$$

welcher ein Funktion der Spannweitenkoordinate y ist. Hierbei ist $c'_{L\infty}(y) = (\mathrm{d}c_L/\mathrm{d}\alpha)_{\infty} (\approx 2\pi$ für übliche Tragflügelprofile) die Änderung von c_L mit dem Anstellwinkel α für einen Tragflügel unendlicher Spannweite (vergl. Profiltheorie). Der Anstellwinkel α_e ist der *effektive Anstellwinkel*.

Die am Ort des Tragflügels induzierte Vertikalgeschwindigkeit $w_i(y)$ führt zu einer Änderung der Richtung der effektiven Anströmung. Dies entspricht einer Reduktion des lokalen geometrischen Anstellwinkels α_g um den sogenannten induzierten Anstellwinkel $\alpha_i(y)$. Es resultiert ein effektiver Anstellwinkel $\alpha_e(y) = \alpha_g(y) - \alpha_i(y)$. Die Verhältnisse sind in Abb. 3.8 dargestellt. Für den induzierten Anstellwinkel gilt

$$\alpha_i(y) \approx \tan \alpha_i = \frac{w_i}{u_\infty} = \frac{1}{4\pi u_\infty} \int_{-b/2}^{b/2} \frac{\Gamma'(\eta)}{y-\eta} \mathrm{d}\eta.$$
(3.25)

1 10

3. C. Luhimann, A. Lluwic Strömungsmechanik 2

3. Der Tragflügel endlicher Streckung

Abbildung 3.9.: Konventionen der positiven Richtung der Zirkulation für die Tragflügeltheorie (entsprechend der tatsächlichen Zirkulation) und die Profiltheorie (mathematisch positiv).

Die resultierende Luftkraft dR für den Flügelabschnitt der Breite dy steht senkrecht auf der effektiven Anströmrichtung. Mit dem Satz von Kutta-Joukowski folgt

$$dR(y) = \underbrace{\rho u_{\infty} \Gamma(y)}_{\text{Auftrieb pro Länge}} dy.$$
(3.26)

Aufgrund der die Vorzeichenkonvention für die Zirkulation in der Tragflügeltheorie haben wir hier das Vorzeichen von Γ gewechselt (siehe Abb. 3.9 und vgl. (2.142)). Wenn man diesen Beitrag zur Luftkraft zerlegt in einen Anteil dL senkrecht zu \vec{u}_{∞} (Beitrag zur Auftriebskraft) und einen Anteil parallel zu \vec{u}_{∞} (Beitrag zum Widerstand), erhält man

$$dL(y) = dR(y) \cos \alpha_i(y) \overset{|\alpha_i| \ll 1}{\approx} dR(y) = \rho u_\infty \Gamma(y) dy, \qquad (3.27a)$$

$$dD_i(y) = dR(y) \sin \alpha_i(y) \stackrel{|\alpha_i| \ll 1}{\approx} dR(y) \alpha_i(y) = \rho u_\infty \Gamma(y) \alpha_i(y) dy.$$
(3.27b)

Die Luftkraft dR hat somit eine Komponente in Richtung der ungestörten Anströmung, entsprechend einem *induzierten Widerstand* dD_i , der von dem Flügelabschnitt mit der Breite dy herrührt.

Somit erhält man für den Auftrieb und den induzierten Widerstand des Gesamtflügels durch Integration über die Spannweite b

$$L = \rho u_{\infty} \int_{-b/2}^{b/2} \Gamma(y) \mathrm{d}y, \qquad (3.28a)$$

$$D_{i} = \rho u_{\infty} \int_{-b/2}^{b/2} \Gamma(y) \alpha_{i}(y) \mathrm{d}y \stackrel{(3.25)}{=} \frac{\rho}{4\pi} \int_{-b/2}^{b/2} \Gamma(y) \left(\int_{-b/2}^{b/2} \frac{\Gamma'(\eta)}{y - \eta} \mathrm{d}\eta \right) \mathrm{d}y. \quad (3.28b)$$

In erster Näherung hat die Wirbelschleppe also keinen Einfluß auf die Auftriebskraft. Sie bewirkt aber einen induzierten Widerstand. Dieser kann so verstanden werden, daß die von der resultierenden Luftkraft verrichtete Arbeit laufend in der Wirbelschleppe als kinetische Energie gespeichert und abtransportiert wird.

Mit den Gleichungen (3.28) sind Auftrieb und Widerstand eines Tragflügels großer aber endlicher Streckung auf die Zirkulationsverteilung $\Gamma(y)$ zurückgeführt worden. Man kann die Auftriebskraft sowohl über die Kutta-Joukowski-Beziehung (3.28a) als auch über den Auftriebsbeiwert entsprechend (3.23) beschreiben

$$L = \int_{-b/2}^{b/2} \frac{\rho u_{\infty}^2}{2} c'_{L\infty}(y) \alpha_e(y) l(y) \mathrm{d}y.$$
(3.29)

Ein Vergleich mit (3.28a) liefert einen (auch lokal gültigen) Zusammenhang zwischen $\Gamma(y)$ und dem effektiven Anstellwinkel $\alpha_e(y)$ beziehungsweise dem induzierten Anstellwinkel $\alpha_i(y)$

$$\alpha_e(y) = \alpha_g(y) - \alpha_i(y) = \frac{2\Gamma(y)}{u_\infty l(y)c'_{L\infty}(y)}.$$
(3.30)

Diese Gleichung können wir nach $\alpha_g(y) = \alpha_e(y) + \alpha_i(y)$ auflösen und den effektiven und den induzierten Anstellwinkel mittels (3.30) und (3.25) identifizieren. Wir erhalten so die *Prandtlsche Integralgleichung* (Prandtl, 1918)

$$\alpha_g(y) = \underbrace{\frac{2\Gamma(y)}{u_{\infty}l(y)c'_{L_{\infty}}(y)}}_{\alpha_e(y)} + \underbrace{\frac{1}{4\pi u_{\infty}} \int_{-b/2}^{b/2} \frac{\Gamma'(\eta)}{y - \eta} \mathrm{d}\eta}_{\alpha_i(y)}.$$
(3.31)

Ludwig Prandtl 1875–1953

Die Prandtlsche Integralgleichung ist eine Beziehung zwischen den vier Größen Zirkulationsverteilung $\Gamma(y)$, Flügeltiefe l(y), geometrischer Anstellwinkel $\alpha_g(y)$ und $c'_{L\infty}(y)$. Sie hat eine eindeutige Lösung, welche im allgemeinen numerisch bestimmt wer-

den muß.

Man unterscheidet zwei Hauptaufgaben der Tragflügeltheorie:

1. Entwurfsaufgabe

- a) gegeben: $\Gamma(y), l(y), c'_{L\infty}(y)$ gesucht: Tragflügelverwindung $\alpha_g(y)$
- b) gegeben: $\Gamma(y)$, $\alpha_g(y)$, $c'_{L\infty}(y)$ gesucht: *Flügeltiefe* l(y)

2. Nachrechnungsaufgabe

gegeben: l(y), $\alpha_g(y)$, $c'_{L\infty}(y)$ gesucht: Zirkulationsverteilung $\Gamma(y)$

Elliptische Zirkulationsverteilung Von besonderer praktischer Bedeutung ist die elliptische Zirkulationsverteilung

$$\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}.$$
(3.32)

Man kann nämlich zeigen, daß die elliptische Zirkulationsverteilung den induzierten Widerstand bei konstantem Auftrieb L = const. minimiert. Dazu muß man das Funktional $D_i[\Gamma(y)]$ betrachten und zeigen, daß D_i für (3.32) extremal wird. Dies ist ein Variationsproblem: Die erste Variation $\delta D_i[\Gamma(y)] = 0$ muß verschwinden.

3. Der Tragflügel endlicher Streckung

Abbildung 3.10.: Elliptische Zirkulationverteilung (rot) und zugehörige induzierte Geschwindigkeit (blau); Skizze (links) und Rechnung (rechts).

Die Auswertung von (3.22) und (3.28) liefert für die elliptische Zirkulationsverteilung⁵

$$w_i(y) = -\frac{\Gamma_0}{2b} = \text{const.}$$
 für $-b/2 \le y \le b/2$, (3.33a)

$$L = \frac{\pi}{4} \rho u_{\infty} b \Gamma_0, \qquad (3.33b)$$

$$D_i = \frac{\pi}{8} \rho \Gamma_0^2 = \frac{2L^2}{\pi \rho u_\infty^2 b^2}.$$
 (3.33c)

Die Zirkulation $\Gamma(y)$ und die induzierte Geschwindigkeit $w_i(y)$ sind in Abb. 3.10 dargestellt. Die induzierte Geschwindigkeit ist über die gesamte Spannweite konstant und negativ. Für |y| > b/2 erhält man aber einen Aufwind $w_i > 0.6$

Schließlich folgt aus der Prandtlschen Integralgleichung (3.31) für einen unverwundenen Flügel ($\alpha_g = \text{const.}$), mit $c'_{L\infty} = \text{const.}$ und mit (3.32), daß die Flügeltiefe proportional zur Zirkulationsverteilung ist: $l(y) \sim \Gamma(y)$. Damit ist auch der Flügel-

$$w_i(y) = -\frac{\Gamma_0}{\pi b^2} \int_{-b/2}^{b/2} \frac{\eta \mathrm{d}\eta}{(y-\eta)\sqrt{1-(2\eta/b)^2}}$$

Mit der Substitution $\eta = (b/2) \cos \theta$ mit $d\eta = -(b/2) \sin \theta$ und $y = (b/2) \cos \beta$ wird dann

$$w_i(\beta) = \frac{\Gamma_0}{2\pi b} \int_{\pi}^{0} \frac{\cos\theta}{\cos\beta - \cos\theta} \mathrm{d}\theta = -\frac{\Gamma_0}{2b},$$

da das Integral den Wert $-\pi$ hat. Mit derselben Substitution kann man den Auftrieb L mittels (3.28a) berechnen. Mit dem induzierten Anstellwinkel $\alpha_i = |w_i|/u_{\infty} = \Gamma_0/(2bu_{\infty})$ erhält man aus (3.28b) auch den induzierten Widerstand D_i .

⁶Der Aufwind wird von Enten bei ihrem keilförmigen Formationsflug ausgenutzt.

⁵Wenn man $\Gamma'(\eta)$ aus (3.32) berechnet und in (3.22) einsetzt, erhält man

grundriß elliptisch

$$l(y) = l_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}.$$
 (3.34)

Die Minimierung des Widerstands bei konstantem Auftrieb wurde zuerst bei der *Heinkel He 70* verwendet, die damit 1933 verschiedene Geschwindigkeitsrekorde aufstellte. Der elliptische Tragflügel wurde ab 1938 auch bei der *Supermarine Spit-fire* verwendet.

Sei F die Flügelgrundrißfläche. Dann definiert man die *Flügelstreckung* (Seitenverhältnis) als

$$\Lambda := \frac{b^2}{F} = \frac{b}{\bar{l}},\tag{3.35}$$

wobei $\bar{l} = F/b$ die mittlere Flügeltiefe ist. Mit $L = \frac{1}{2}\rho u_{\infty}^2 c_L F$ und $D_i = \frac{1}{2}\rho u_{\infty}^2 c_{D_i} F$ lassen sich die Ergebnisse für $w_i = u_{\infty}\alpha_i$ aus (3.33a) und D_i aus (3.33c) auch in der Form schreiben

$$\alpha_i = \frac{c_L}{\pi \Lambda},\tag{3.36a}$$

$$c_{D_i} = \frac{c_L^2}{\pi \Lambda}.$$
(3.36b)

Den funktionalen Zusammenhang $c_{D_i}(c_L)$ nennt man die *Flügelpolare*. Ein Beispiel ist in Abb. 3.11 gezeigt.

Abbildung 3.11.: Flügelpolare eines NACA-2412-Profils: Theoretische Polare $c_{wi}(c_a)$ (durchgezogene Kurve) und gemessene Polare $c_w(c_a)$ (Symbole \circ). Bei $\alpha_g = 22.4^\circ$ findet ein Strömungsabriß statt (nach Schlichting & Truckenbrodt 1967).

4.1. Gasdynamische Gleichung für stationäre Strömungen

Die Impuls-, Energie, und Kontinuitätsgleichung für stationäre reibungsfreie und isentrope Strömungen lauten

$$\vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho} \nabla p \tag{4.1a}$$

$$\vec{u} \cdot \nabla s = 0, \tag{4.1b}$$

$$\nabla \cdot (\rho \vec{u}) = 0. \tag{4.1c}$$

Die Schallgeschwindigkeit ist definiert als

$$c^2 := \frac{\partial p}{\partial \rho} \bigg|_s. \tag{4.2}$$

Wegen der *Isentropiebeziehung* (4.1b) ist die Entropie *s* entlang von Stromlinien konstant. Aus der Definition der Schallgeschwindigkeit folgt dann, daß entlang einer Stromlinie gilt $dp = c^2 d\rho$, oder

$$\vec{u} \cdot \nabla p = c^2 \vec{u} \cdot \nabla \rho. \tag{4.3}$$

Damit können wir ρ und p aus den Gleichungen eliminieren. Denn wenn wir (4.1c) ausdifferentieren

$$\rho \nabla \cdot \vec{u} + \vec{u} \cdot \nabla \rho = 0 \quad \stackrel{(4.3)}{\Rightarrow} \quad \rho \nabla \cdot \vec{u} = -\frac{1}{c^2} \vec{u} \cdot \nabla p, \tag{4.4}$$

(4.1a) auf \vec{u} projizieren

$$\vec{u} \cdot [\vec{u} \cdot \nabla \vec{u}] = -\frac{1}{\rho} \vec{u} \cdot \nabla p \tag{4.5}$$

und aus beiden Gleichungen $\vec{u} \cdot \nabla p$ eliminieren, erhalten wir

$$\vec{u} \cdot [\vec{u} \cdot \nabla \vec{u}] = c^2 \nabla \cdot \vec{u}. \tag{4.6}$$

Dies ist die stationäre Form der gasdynamischen Gleichung. In zwei Dimensionen mit $\vec{u} = u\vec{e}_x + v\vec{e}_y$ läßt sie sich schreiben als

$$(u^{2} - c^{2})\frac{\partial u}{\partial x} + uv\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) + (v^{2} - c^{2})\frac{\partial v}{\partial y} = 0.$$

$$(4.7)$$

3. C. Luhimann, A. Kluwiđ Strömungsmechanik 2

Für die Berechnung von kompressiblen Strömungen setzen wir im folgenden wie bei den früher behandelten inkompressiblen Strömungen — die kinematische Bedingung der Drehungsfreiheit voraus

$$\omega_z = \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} = 0. \tag{4.8}$$

Darüber hinaus gilt für ideale Gase der Energiesatz in der Form $(c^2 = \varkappa p/\rho, \varkappa = c_p/c_v)$

$$\frac{u^2 + v^2}{2} + \frac{c^2}{\varkappa - 1} = \frac{u_\infty^2}{2} + \frac{c_\infty^2}{\varkappa - 1} = \text{const.},\tag{4.9}$$

wobei der Index ∞ die konstanten Größen in der homogenen Anströmung (mit $v_{\infty} = 0$) kennzeichnet.

4.2. Linearisierte gasdynamische Gleichung für stationäre Strömungen

Motiviert durch die Fragestellung nach der Umströmung von dünnen Profilen betrachten wir nun kleine Abweichungen von einer reinen Parallelströmung (schwach gestörte Parallelströmung) mit dem Ziel, die Gleichungen zu vereinfachen. Deshalb nehmen wir $v \ll u_{\infty}$ an. Das Verhältnis v/u_{∞} definiert dann einen kleinen dimensionslosen Parameter $\tau \ll 1$ (vergleiche auch den Dickenparameter in Kap. 2.4), so daß die Abweichungen von der homogenen Anströmung

$$\frac{v}{u_{\infty}} = O(\tau), \quad \frac{u - u_{\infty}}{u_{\infty}} = O(\tau), \quad \frac{c - c_{\infty}}{c_{\infty}} = O(\tau), \quad \frac{p - p_{\infty}}{p_{\infty}} = O(\tau)$$
(4.10)

von der Ordnung $O(\tau)$ sind. Wenn man

$$u = u_{\infty} + (u - u_{\infty}), \tag{4.11a}$$

$$c = c_{\infty} + (c - c_{\infty}), \tag{4.11b}$$

in die gasdynamische Gleichung (4.7) einsetzt, erhält man mit $u_{\infty} = O(1)$ und $c_{\infty} = O(1)$

$$\begin{bmatrix} u_{\infty}^{2} + 2u_{\infty} \underbrace{(u - u_{\infty})}_{O(\tau)} + \underbrace{(u - u_{\infty})^{2}}_{O(\tau^{2})} - c_{\infty}^{2} + O(\tau) \end{bmatrix} \underbrace{\frac{\partial(u - u_{\infty})}{\frac{\partial x}{O(\tau)}}}_{O(\tau)} + \begin{bmatrix} u_{\infty} + O(\tau) \end{bmatrix} \underbrace{\frac{v}{O(\tau)}}_{O(\tau)} \underbrace{\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)}_{O(\tau)} + \begin{bmatrix} -c_{\infty}^{2} + O(\tau) \end{bmatrix} \underbrace{\frac{\partial v}{\partial y}}_{O(\tau)} = 0.$$
(4.12)

Hierbei wurde vorausgesetzt, daß die Störungen $u - u_{\infty}$, $c - c_{\infty}$ und v sowie deren Ableitungen von der Größenordnung $O(\tau)$ sind. In niedrigster Ordnung $O(\tau)$ verbleibt daher

$$\left(u_{\infty}^{2}-c_{\infty}^{2}\right)\frac{\partial u}{\partial x}-c_{\infty}^{2}\frac{\partial v}{\partial y}=0.$$
(4.13)

5. C. Luhlmann, U. Kluwić Strömungsmechanik 2 Nach Division durch c_{∞}^2 erhalten wir die *linearisierte gasdynamische Gleichung*

$$(1 - M_{\infty}^2) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
 (4.14)

Sie hat die physikalische Bedeutung einer Kontinuitätsgleichung, was man auch schon an (4.6) sieht. Hierbei ist $M_{\infty} = u_{\infty}/c_{\infty}$ die Anström-*Machzahl*.

Für den Energiesatz (4.9) erhält man in analoger Weise in erster (linearer) Ordnung $O(\tau)$

$$c - c_{\infty} = -\frac{\varkappa - 1}{2} \mathcal{M}_{\infty}(u - u_{\infty}).$$

$$(4.15)$$

Linearisiert man außerdem die x-Komponente der Bewegungsgleichung (4.1a) mit $\rho = \rho_{\infty} + O(\tau)$, so erhält man

$$u_{\infty}\frac{\partial u}{\partial x} = -\frac{1}{\rho_{\infty}}\frac{\partial p}{\partial x}.$$
(4.16)

Diese Gleichung können wir einmal in x-Richtung integrieren und erhalten unter Berücksichtigung der Randbedingung $p = p_{\infty}$ für $u = u_{\infty}$

$$u_{\infty}(u - u_{\infty}) = -\frac{1}{\rho_{\infty}}(p - p_{\infty}).$$
 (4.17)

Im Rahmen der linearisierten Gleichungen hängt der *Druckbeiwert* über diese Beziehung in einfacher Weise mit der Geschwindigkeitsstörung zusammen¹

$$c_p = \frac{p - p_{\infty}}{\rho_{\infty} u_{\infty}^2 / 2} = -2 \frac{u - u_{\infty}}{u_{\infty}}.$$
 (4.18)

Zusammenfassend lauten die linearisierten Kontinuitäts-(4.14), Energie-(4.15) und Impuls-Gleichungen (4.18)

$$(1 - M_{\infty}^2) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$
 (Kontinuität) (4.19a)

$$c - c_{\infty} = -\frac{\varkappa - 1}{2} \mathcal{M}_{\infty}(u - u_{\infty}), \qquad \text{(Energie)} \qquad (4.19b)$$

$$c_p = -2\frac{u - u_{\infty}}{u_{\infty}}.$$
 (Impuls) (4.19c)

Da das Geschwindigkeitsfeld drehungsfrei ist, verschwindet die Vortizität $\omega = u_y - v_x = 0$ und das Geschwindigkeitsfeld läßt sich aus einem Potential ableiten. Führt man wie im Kapitel 2.4 (Profiltheorie) ein Störpotential χ im Gesamtpotential ein

$$\phi = u_{\infty}x + u_{\infty}\chi(x,y), \qquad (4.20)$$

¹Derselbe Druckkoeffizient ergab sich auch schon im Rahmen der dünnen Profile bei inkompressiblen Strömungen, siehe (2.116).

so erhält man die Geschwindigkeitsstörung aus dem Störpotential

$$\chi_x = \frac{u - u_\infty}{u_\infty},\tag{4.21a}$$

$$\chi_y = \frac{v}{u_\infty}.\tag{4.21b}$$

Setzt man die Ableitungen des Störpotentials (4.21) in die linearisierte gasdynamische Gleichung, die Energiegleichung und die Gleichung für c_p ein, dann kann man (4.19a)–(4.19c) als Gleichungen für das Störpotential schreiben

$$(1 - M_{\infty}^2)\chi_{xx} + \chi_{yy} = 0, \qquad (4.22a)$$

$$\frac{c-c_{\infty}}{c_{\infty}} = -\frac{\varkappa - 1}{2} \mathcal{M}_{\infty}^2 \chi_x, \qquad (4.22b)$$

$$c_p = -2\chi_x. \tag{4.22c}$$

Diese Gleichungen gelten kleine für Störungen sowohl für Unter- $(0 \le M_{\infty} < 0.8)$ wie auch für Überschallanströmungen $(1.2 \le M_{\infty} < 3)$. Eine genauere Betrachtung (siehe Kap. 4.4) zeigt jedoch, daß sie nicht für den schallnahen Bereich gelten. Für schallnahe Strömungen wird $1 - M_{\infty}^2$ klein und ist nicht mehr O(1). In Kap. 4.4 wird gezeigt, daß man dann noch weitere Terme aus der vollen gasdynamischen Gleichung berücksichtigen muß. An der linearisierten gasdynamischen Gleichung (4.22a) sieht man aber schon, daß sie für $M_{\infty} < 1$ elliptisch (Kap. 4.3) und für $M_{\infty} > 1$ hyperbolisch ist (Kap. 4.5).

4.3. Prandtl-Glauert-Transformation

Für Unterschallströmungen mit $M_{\infty} < 1$ kann man einen Zusammenhang zwischen der kompressiblen Strömung und einer zugeordneten inkompressiblen Strömung herstellen. Dazu schreiben wir die linearisierte gasdynamische Gleichung und die Bedingung für Drehungsfreiheit in der erweiterten Form

$$(1 - M_{\infty}^{2})\frac{\partial}{\partial x}\left(\frac{u - u_{\infty}}{u_{\infty}}\right) + \frac{\partial}{\partial y}\left(\frac{v}{u_{\infty}}\right) = 0, \qquad (4.23a)$$

$$\frac{\partial}{\partial y} \left(\frac{u - u_{\infty}}{u_{\infty}} \right) - \frac{\partial}{\partial x} \left(\frac{v}{u_{\infty}} \right) = 0.$$
 (4.23b)

Der einzige Unterschied zu dem inkompressiblen Gleichungen besteht in dem sogenannten *Prandtl-Faktor*

$$\beta := \sqrt{1 - M_{\infty}^2} < 1. \tag{4.24}$$

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2 Um ihn durch eine Transformation zu eliminieren, schreibt man das Gleichungssystem in der Form

$$\frac{\partial}{\partial x} \left(\beta \frac{u - u_{\infty}}{u_{\infty}} \right) + \frac{\partial}{\partial (\beta y)} \left(\frac{v}{u_{\infty}} \right) = 0, \qquad (4.25a)$$

$$\frac{\partial}{\partial(\beta y)} \left(\beta \frac{u - u_{\infty}}{u_{\infty}} \right) - \frac{\partial}{\partial x} \left(\frac{v}{u_{\infty}} \right) = 0.$$
(4.25b)

Mit der affinen Transformation²

$$x_{\rm i} = x,$$
 $\left(\frac{u - u_{\infty}}{u_{\infty}}\right)_{\rm i} = \beta \left(\frac{u - u_{\infty}}{u_{\infty}}\right),$ (4.26a)

$$y_{\rm i} = \beta y, \qquad \left(\frac{v}{u_{\infty}}\right)_{\rm i} = \frac{v}{u_{\infty}}, \qquad (4.26b)$$

kann man die Gleichungen dann auch in der Form

$$\frac{\partial}{\partial x_{i}} \left(\frac{u - u_{\infty}}{u_{\infty}} \right)_{i} + \frac{\partial}{\partial y_{i}} \left(\frac{v}{u_{\infty}} \right)_{i} = 0, \qquad (4.27a)$$

$$\frac{\partial}{\partial y_{i}} \left(\frac{u - u_{\infty}}{u_{\infty}} \right)_{i} - \frac{\partial}{\partial x_{i}} \left(\frac{v}{u_{\infty}} \right)_{i} = 0, \qquad (4.27b)$$

schreiben. Diese Gleichungen sind formal identisch mit denjenigen für inkompressible Strömungen ($M_{\infty} \approx 0$). Der Index i steht demnach für *inkompressibel*.

Hermann Glauert 1892–1934

Mit der *Prandtl-Glauert-Transformation* (4.26) ist eine eineindeutige Beziehung zwischen einer inkompressiblen (Index i) und einer entsprechenden kompressiblen (Index k) Unterschallströmung ($M_{\infty} < 1$) hergestellt (siehe Abb. 4.1). Man kann nun zwei Fälle unterscheiden.

Gleiches Profil Ist die Profilform vorgegeben, so ergeben sich daraus die Randbedingungen für v/u_{∞} auf der Belegungslinie $y = y_i = 0$ (siehe Kap. 2.4.1). An (4.26) erkennt man, daß die transversale Geschwindigkeit v nicht von β beeinflußt wird und damit unabhängig von der Machzahl ist. Die Verteilung der longitudinalen Geschwindigkeit u auf der Belegungslinie errechnet sich im kompressiblen Fall aus der Lösung der inkompressiblen Strömung gemäß

$$\left[\frac{u-u_{\infty}}{u_{\infty}}(x,0^{\pm})\right]_{\mathbf{k}} = \frac{1}{\beta} \left[\frac{u-u_{\infty}}{u_{\infty}}(x,0^{\pm})\right]_{\mathbf{i}}.$$
(4.28)

²Eine affine Abbildung bewahrt Kollinearität, Parallelität und Teilverhältnisse. Dies bedeutet, daß das Abbild von Punkten, die auf einer Gerade liegen, auch auf einer Geraden liegen, daß parallele Graden auch wieder auf parallele Geraden abgebildet werden und daß die relativen Abstände von Punkten auf einer Geraden erhalten bleiben.

Abbildung 4.1.: Größen, die durch die Prandtl– Glauert-Transformation in Beziehung zueinander gesetzt werden. In der schematischen Darstellung bezeichnen die gestrichenen Größen die skalierten Störungen, z.B. $\vec{u}'_{\rm k} = [(u - u_{\infty})/u_{\infty})]_{\rm k}$.

Für den Druck- und Auftriebsbeiwert ergibt sich in analoger Weise

$$(c_p)_{\mathbf{k}} = \frac{1}{\beta} (c_p)_{\mathbf{i}} \quad \text{und} \quad (c_L)_{\mathbf{k}} = \frac{1}{\beta} (c_L)_{\mathbf{i}}.$$
 (4.29)

Für die Störungen an einem beliebigen Punkt (x_k, y_k) (siehe Abb. 4.1) gilt

$$\frac{u_{k} - u_{\infty}}{u_{\infty}}(x_{k}, y_{k}) = \frac{1}{\beta} \frac{u_{i} - u_{\infty}}{u_{\infty}}(x_{i}, y_{i}) = \frac{1}{\beta} \frac{u_{i} - u_{\infty}}{u_{\infty}}(x_{k}, \beta y_{k}),$$
(4.30a)

$$\frac{v_{\mathbf{k}}}{u_{\infty}}(x_{\mathbf{k}}, y_{\mathbf{k}}) = \frac{v_{\mathbf{i}}}{u_{\infty}}(x_{\mathbf{i}}, y_{\mathbf{i}}) = \frac{v_{\mathbf{i}}}{u_{\infty}}(x_{\mathbf{k}}, \beta y_{\mathbf{k}}).$$
(4.30b)

Wir können daher schließen, daß die Druckstörungen und die Geschwindigkeitsstörungen u, die durch ein und dasselbe schlanke, gering angestelltes Profil bei kompressibler Strömung verursacht werden, um den Faktor $1/\beta$ größer sind als im inkompressiblen Fall. Die Störungen wachsen also mit Erhöhung der Machzahl sehr stark an. Wegen $y_i = \beta y_k$ mit $\beta < 1$ verläuft die zugeordnete inkompressible Strömung flacher, während die kompressible Strömung vergleichsweise aufgebläht erscheint.

Gleiche Kräfte Andererseits kann man fragen, um welchen Faktor man die Dicke eines Profils (bei gleicher Profilform) ändern muß, um in kompressibler und in inkompressibler Strömung identische Kräfte zu erreichen. Dazu muß offenbar der Faktor β^{-1} in (4.28) und (4.29) kompensiert werden. Die Geschwindigkeits- und Druckstörungen sind proportional zum Dickenparameter τ , denn

$$\frac{u - u_{\infty}}{u_{\infty}} = \chi_x = \tau \chi_{1,x},\tag{4.31}$$

wobei bei χ_1 das Störpotential für den Dickeneffekt ist. Dann kann man gleiche Kräfte erreichen, wenn man die Dicke $\tau_k = \beta \tau_i$ des Profils in kompressibler Strömung um den Faktor β geringer wählt als die Dicke des Profils in der inkompressiblen Strömung. Denn es ist

$$c_{p,k}(\tau_{k}) = -2\left(\frac{u-u_{\infty}}{u_{\infty}}\right)_{k} = -2\tau_{k}\left(\frac{\partial\chi_{1}}{\partial x}\right)_{k} = -2\beta\tau_{i}\left(\frac{\partial\chi_{1}}{\partial x}\right)_{k}$$

$$\stackrel{(4.28)}{=} -2\beta\tau_{i}\frac{1}{\beta}\left(\frac{\partial\chi_{1}}{\partial x}\right)_{i} = -2\tau_{i}\left(\frac{\partial\chi_{1}}{\partial x}\right)_{i} = c_{p,i}(\tau_{i}). \quad (4.32)$$

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2

y

 $M_{\infty} = 0$ Abbildung 4.2.: Aufsicht auf zwei Flügelformen, auf welche identische Kräfte wirken. Dazu muß die Spannweite (wie auch die Dicke des Profils) im Fal- $M_\infty=0.5$ le einer kompressiblen Strömung (blaue Form) um einen Faktor β im Vergleich zum inkompressiblen Fall (graue Form) gestaucht sein. Hier gezeigt für x $\beta = \sqrt{1 - 0.5^2} = 0.866.$ 21 $\chi_{1d,x}(x,0)$ 0 $^{-1}$ -2-0.20 0.20.40.6 0.81 1.2

Abbildung 4.3.: Umströmung eines Parabelbogenzweiecks für $M_{\infty} = 0$ (schwarz), $M_{\infty} = 0.5$ (blau gestrichelt) und $M_{\infty} = 0.8$ (rot gestrichelt) im Gültigkeitsbereich der Prandtl-Glauert-Transformation. Vergleiche auch Abb. 2.20a.

x

Für die kompressible Strömung benötigt man also schlankere Profile. Im dreidimensionalen Fall kann die Koordinate in Spannweitenrichtung ganz analog zur Koordinate in Dickenrichtung behandelt werden. Um in der kompressiblen Strömung gleiche Kräfte wie im inkompressiblen Fall zu erhalten, muß man deshalb nicht nur die Dicke um eine Faktor β reduzieren, sondern auch die Spannweite. Dies ist in Abb. 4.2 illustriert.

Für $M \to 1$ bzw. $\beta \to 0$ divergiert der Druckbeiwert. Diese unphysikalische Divergenz des Drucks wird auch *Prandtl-Glauert-Singularität* genannt. Daher ist die Prandtl-Glauert-Transformation nur für einen nach oben begrenzten Bereich von Anström-Machzahlen gültig ($M \leq 0.8$). Die normierte Geschwindigkeitsstörung in x-Richtung bei x = 0 ist in Abb. 4.3 für ein Parabelbogenzweieck gezeigt. Bei gegebener Profildicke nimmt die Geschwindigkeitsstörung für ansteigende Machzahlen mit dem Faktor β^{-1} zu.

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

4.4. Gültigkeitsbereich der Prandtl-Glauert Transformation

Für $M_{\infty} \rightarrow 1$ geht $\beta \rightarrow 0$ und $1/\beta \rightarrow \infty$. Es erhebt sich damit die Frage nach der Gültigkeit der linearisierten gasdynamischen Gleichung (4.22a) und damit der Prandtl-Glauert-Beziehungen (4.26). Um zu sehen, ob die obige Vernachlässigung der Terme höherer Ordnung in τ gerechtfertigt ist, wenn $M_{\infty} \rightarrow 1$ bzw. $\beta \rightarrow 0$ geht, betrachten wir den ersten Term der vollen nichtlinearen gasdynamischen Gleichung (4.7)

$$(u^{2} - c^{2})\frac{\partial u}{\partial x} = \left[u_{\infty}^{2} - c_{\infty}^{2} + \underbrace{2u_{\infty}(u - u_{\infty}) - 2c_{\infty}(c - c_{\infty}) + \dots}_{\text{Störungen durch das Profil}}\right]\frac{\partial u}{\partial x}.$$
 (4.33)

Unter der Annahme kleiner Störungen entsprechend (4.10) skaliert die Geschwindigkeitsstörung wie $(u - u_{\infty})/u_{\infty} = O(\tau)$. Wenn aber u_{∞} in die Nähe der Schallgeschwindigkeit c_{∞} kommt wird auch β ein kleiner Parameter und nach der Prandtl-Glauert Transformation sollte dann die kompressibele Geschwindigkeitsstörung wie $(u - u_{\infty})/u_{\infty} = O(\tau/\beta)$ skalieren. Aus dem Energiesatz (4.15) erhält man dann die Größenordnungsabschätzung

$$-\frac{\varkappa - 1}{2} \left(\frac{u - u_{\infty}}{u_{\infty}}\right) \stackrel{(4.15)}{=} \frac{1}{\mathrm{M}_{\infty}^2} \frac{c - c_{\infty}}{c_{\infty}} = O\left(\frac{\tau}{\beta}\right). \tag{4.34}$$

Wenn man diese Skalierung in (4.33) berücksichtigt, erhält man die genauere Abschätzung

$$\frac{u^2 - c^2}{c_{\infty}^2} = \underbrace{\mathbf{M}_{\infty}^2 - 1}_{-\beta^2} + \underbrace{\mathbf{2}\mathbf{M}_{\infty}^2 \frac{u - u_{\infty}}{\underline{u}_{\infty}}}_{\sim \tau/\beta} - 2\underbrace{\frac{c - c_{\infty}}{\underline{c}_{\infty}}}_{\sim \mathbf{M}_{\infty}^2(\tau/\beta)} + \dots$$
(4.35)

Die Vernachlässigung des zweiten und dritten Terms der Größenordnung $O(\tau/\beta)$ in der linearisierten gasdynamischen Gleichung (4.14) ist also nur unter der Voraussetzung

$$\beta^2 \gg \frac{\tau}{\beta} = \frac{\tau}{\sqrt{1 - M_\infty^2}} \tag{4.36}$$

gerechtfertigt, also nur für $\beta^3/\tau \gg 1$. Führt man den *schallnahen Ähnlichkeitsparameter* $K := \beta^2/\tau^{2/3} = (\beta^3/\tau)^{2/3} \gg 1$ ein, so lautet die Bedingung (4.36)

$$K = \frac{1 - M_{\infty}^2}{\tau^{2/3}} \gg 1.$$
(4.37)

Die Prandtl-Glauert Transformation ist daher nur dann gültig, wenn der schallnahe Ähnlichkeitsparameter K wesentlich größer ist als 1.

Steigt jedoch M_{∞} an, so daß K = O(1), dann kann $(u^2 - c^2)\partial u/\partial x$ nicht mehr linearisiert werden. Der zweite Term $uv(\partial u/\partial y + \partial v/\partial x)$ in der gasdynamischen Gleichung (4.7) bleibt weiterhin von der Größenordnung τ^2 (siehe (4.12)) und damit vernachlässigbar. Der dritte Term $(v^2 - c^2)\partial v/\partial y$ in gasdynamischen Gleichung (4.7) kann weiterhin durch $-c_{\infty}^2 \partial v/\partial y$ approximiert werden, da v nicht mit β skaliert. Unter der Verwendung des linearisierten Energiesatzes (4.15) und des Störpotentials (4.21) erhält man dann eine genauere Form der gasdynamischen Gleichung (siehe (4.35))

$$\left[1 - M_{\infty}^{2} - (\varkappa + 1)M_{\infty}^{2}\chi_{x}\right]\chi_{xx} + \chi_{yy} = 0.$$
(4.38)

Sie ist nichtlinear. Im schallnahen Bereich ist K = O(1) und $M_{\infty} \approx 1$. Daher kann man $M_{\infty}^2 \chi_x$ durch χ_x approximieren

$$\left[1 - M_{\infty}^{2} - (\varkappa + 1)\chi_{x}\right]\chi_{xx} + \chi_{yy} = 0.$$
(4.39)

Dies ist die schallnahe Form der gasdynamischen Gleichung.

Wie kommt man nun auf den schallnahen Ahnlichkeitsparameter K? Im allgemeinen versucht man, die Anzahl der Parameter eines Problems durch Skalierung zu reduzieren.³ In die gasdynamische Gleichung für schlanke Profile in der Nähe der Schallgeschwindigkeit (4.39) geht der kleine Dickenparameter τ (über die Randbedingungen) und der kleine Parameter β ein. Mit Hilfe der Skalierung

$$X = x, \quad Y = \tau^{1/3}y, \quad \chi = \tau^{2/3}\phi,$$
 (4.40)

kann man (4.39) so umformen, daß alle Terme der Gleichung von gleicher Größenordnung sind, auch in den Randbedingungen. Dann erhält man aus (4.39)

$$\left[1 - M_{\infty}^{2} - (\varkappa + 1)\tau^{2/3}\phi_{X}\right]\phi_{XX} + \tau^{2/3}\phi_{YY} = 0, \qquad (4.41)$$

beziehungsweise

$$\left[\underbrace{\frac{1 - M_{\infty}^2}{\tau^{2/3}}}_{K} - (\varkappa + 1)\phi_X\right]\phi_{XX} + \phi_{YY} = 0.$$
(4.42)

Hierin sind nun alle Größen von O(1). Die linearisierten Randbedingungen lauten

$$\frac{v(X,0^+)}{u_{\infty}} = \tau h'_o(X), \tag{4.43a}$$

$$\frac{v(X,0^{-})}{u_{\infty}} = -\tau h'_u(X), \qquad (4.43b)$$

oder in skalierter Form mit $v = u_{\infty}\chi_y$

$$\tau^{2/3}\phi_Y(X,0^{\pm})\tau^{1/3} = \pm \tau h'_{o,u}(X).$$
(4.44)

Damit erhalten wir letztendlich das Gleichungssystem

$$[K - (\varkappa + 1)\phi_X]\phi_{XX} + \phi_{YY} = 0, \qquad (4.45a)$$

$$\phi_Y(X, 0^+) = h'_o(X), \tag{4.45b}$$

$$\phi_Y(X, 0^-) = -h'_u(X). \tag{4.45c}$$

³So wird man bei der Navier-Stokes-Gleichung auf die Reynoldszahl geführt.

Für verschiedene τ und β aber gleiche Werte von K ergeben sich dann bei gegebenen Profilfunktionen $h_{o,u}$ dieselben Lösungen für das skalierte Potential $\phi(X, Y)$. Diese Tatsache wird als *schallnahes Ähnlichkeitsgesetz* bezeichnet.

Wir versuchen nun, für ein dünnes Profil diejenige Anströmmachzahl zu bestimmen, für welche die Prandtl-Glauert-Transformation noch gültig ist. Dabei definieren wir die *untere kritische Anströmmachzahl* $M_{\infty krit}$ als jene Anströmmachzahl, für die an einer bestimmten Stelle des Profils erstmals Schallgeschwindigkeit erreicht wird. An dieser Stelle ist dann $u_{\max} = c = c^*$.⁴ Dann gilt für die maximale Geschwindigkeit u_{\max}

$$M_{\infty} \to M_{\infty krit} \quad \iff \quad \frac{u_{\max} - u_{\infty}}{u_{\infty}} \to \frac{c^* - u_{\infty}}{u_{\infty}} = \frac{1 - M_{\infty}^*}{M_{\infty}^*}, \qquad (4.46)$$

wobei wir $M_{\infty}^* := u_{\infty}/c^*$ definiert haben. Aus der Profiltheorie (Dickeneffekt) kennen wir die Beziehung⁵

$$\left(\frac{u_{\max} - u_{\infty}}{u_{\infty}}\right)_{i} = C\tau, \qquad (4.47)$$

wobei die positive Konstante C von der Profilform abhängt. Im kompressiblen Fall gilt nach der Prandtl-Glauert-Transformation

$$\left(\frac{u_{\max} - u_{\infty}}{u_{\infty}}\right)_{k} = \frac{1}{\beta} \left(\frac{u_{\max} - u_{\infty}}{u_{\infty}}\right)_{i} = \frac{C\tau}{\sqrt{1 - M_{\infty}^{2}}}.$$
(4.48)

Setzt man näherungsweise voraus, daß die Prandtl-Glauert-Transformation bis zur unteren kritischen Machzahl $M_{\infty krit}$ gültig ist, dann gilt (dies ist die Bedingung für $M_{\infty krit}$, aber der Index 'krit' wird hier noch unterdrückt)

$$\frac{C\tau}{\sqrt{1 - M_{\infty}^2}} = \frac{1 - M_{\infty}^*}{M_{\infty}^*}.$$
(4.49)

Aus dem Energiesatz zwischen ∞ und dem Punkt, an dem die maximale Geschwindigkeit $u_{\text{max}} = c^*$ erreicht wird,

$$\frac{u_{\infty}^2}{2} + \frac{c_{\infty}^2}{\varkappa - 1} = \frac{c^{*2}}{2} + \frac{c^{*2}}{\varkappa - 1}$$
(4.50)

erhält man mit $|1 - M_{\infty}| \ll 1$ nach einigen Umformungen⁶ die Näherung

$$M_{\infty}^{*^{2}} - 1 \approx \frac{2}{\varkappa + 1} (M_{\infty}^{2} - 1).$$
 (4.51)

⁵Es ist $(u - u_{\infty})/u_{\infty} = \tau \chi_{1x}$, siehe (2.82) und (2.81).

$$M_{\infty}^{*2} - 1 = (M_{\infty}^2 - 1) \frac{2}{2 + (\varkappa - 1)M_{\infty}^2}$$

Wegen $|1 - M_{\infty}| \ll 1$ kann man im zweiten Faktor der rechten Seite M_{∞}^2 durch 1 approximieren, denn der erste Faktor $(M_{\infty}^2 - 1)$ ist auch schon klein.

⁴Beachte, daß die so definierte untere kritische Anström-Machzahl $M_{\infty krit} = (u_{\infty}/c_{\infty})_{krit}$ nicht identisch ist mit der lokalen kritischen Machzahl $M^* = u_{\max}/c^* = 1$ und auch verschieden ist von $M^*_{\infty} := u_{\infty}/c^*$.

 $^{^6}$ Wenn man den Energie-Satz durch u_∞ dividiert, den Kehrwert bildet und nach ${\rm M}_\infty^{*2}-1$ auflöst, bekommt man

Da auch M_{∞}^* nur wenig von 1 verschieden ist, folgt⁷

$$\frac{C\tau}{\sqrt{1-M_{\infty}^2}} \approx \frac{1}{\varkappa + 1} (1-M_{\infty}^2), \qquad (4.52)$$

beziehungsweise

$$\underbrace{\frac{\tau^{2/3}}{1 - M_{\infty}^2}}_{1/K} \approx \left[\frac{1}{(\varkappa + 1)C}\right]^{2/3}.$$
(4.53)

Schließlich ist (setzte nun endlich $M_{\infty} = M_{\infty krit}$ und entwickle mit $M_{\infty krit} = 1 - \epsilon$)

$$1 - M_{\infty krit}^2 \approx 2(1 - M_{\infty krit}) \approx [(\varkappa + 1)C\tau]^{2/3},$$
 (4.54)

oder, ausgedrückt durch K,

$$K_{\rm krit} \approx \left[(\varkappa + 1)C \right]^{2/3} = O(1).$$
 (4.55)

Für ein Parabelbogenzweieck (siehe S. 45 in Kap. 2.4.2) ist zum Beispiel $C = 4/\pi$ und demnach

$$1 - M_{\infty krit} \approx \frac{1}{2} \left[\frac{4(\varkappa + 1)}{\pi} \tau \right]^{2/3}.$$
 (4.56)

Bei einem Dickenparameter von $\tau = 0.1$ ergibt das eine untere kritische Anströmmachzahl von $M_{\infty krit} = 0.77$,⁸ unterhalb der die Prandtl-Glauert-Transformation für dieses spezielle Profil angewandt werden kann.

4.5. Schwach gestörte Überschallparallelströmung

Zur Berechnung der Uberschallströmung um dünne Profile (siehe Abb. 4.4) legen wir wieder die linearisierte Form der gasdynamischen Gleichung (4.22a)

$$(1 - M_{\infty}^2)\chi_{xx} + \chi_{yy} = 0 \tag{4.57}$$

zugrunde. Für $M_{\infty} > 1$ hat diese Gleichung jedoch fundamental andere Eigenschaften als für den Fall $M_{\infty} < 1$. Im Unterschallbereich ist die Gleichung von elliptischem Typ (wie z.B. bei der stationären Diffusion). Störungen machen sich dann im gesamten Raumgebiet bemerkbar. Im Überschallbereich ändert sich das Vorzeichen vor dem Term mit der zweiten Ableitung nach x. Dann ist die Gleichung von hyperbolischem Typus (wie z.B. bei der eindimensionalen Wellengleichung im (x, t)-Raum). Störungen breiten sich in diesem Fall nur in einem bestimmten Bereich aus, dem sogenannten *Einflußgebiet*. Das Verhalten ist in Abb. 4.5 skizziert.

⁷Setze in (4.49) und (4.51) $M_{\infty}^* = 1 - \epsilon$ und entwickle den Nenner von $(1 - M_{\infty}^*)/M_{\infty}^*$ in (4.49). Der Vergleich liefert $M_{\infty}^*{}^2 - 1 \approx (-2)(1 - M_{\infty}^*)/M_{\infty}^*$.

⁸In der alten Version des Skriptums wurde der Faktor 4 nicht berücksichtigt was in einer zu hohen kritischen Anströmmachzahl $M_{\infty krit} = 0.9$ resultierte.

Abbildung 4.4.: Überschallströmung um ein dünnes Profil.

Abbildung 4.5.: Einflußgebiete bei Unterschall- (a) und bei Überschallströmung (b).

Das Einflußgebiet wird von *Machlinien* (Charakterisiken im mathematischen Sinne, Abb. 4.6) begrenzt, welche unter dem *Machwinkel* α_{∞} gegenüber der ungestörten Außenströmung geneigt sind, und zwar gemäß

$$\sin \alpha_{\infty} = \frac{c_{\infty}}{u_{\infty}} = \frac{1}{M_{\infty}}.$$
(4.58)

Der Wertebereich von α_{∞} ist gegeben durch

$$1 \le M_{\infty} < \infty \quad \Rightarrow \quad \frac{\pi}{2} \ge \alpha_{\infty} > 0.$$
 (4.59)

Für die Machlinien gilt $y = \pm \tan \alpha_{\infty} x$. Betrachtet man parallele Kurvenscharen mit x-Achsenabschnitten ξ bzw. η , erhält man

$$\xi = x - y \cot \alpha_{\infty}, \tag{4.60a}$$

$$\eta = x + y \cot \alpha_{\infty}. \tag{4.60b}$$

Die Machlinien werden also durch die Werte von ξ und η festgelegt. Man bezeichnet diejenigen Machlinien, auf denen $\xi = \text{const.}$ ist, als linkslaufende Machlinien, und diejenigen mit $\eta = \text{const.}$ als rechtslaufende Machlinien. Als Beispiel ist in Abb. 4.7 die Überschallströmung um einen Keil skizziert.

Aus physikalischen Gründen erscheint es sinnvoll, die linearisierte gasdynamische Gleichung mit Hilfe von (4.60) auf Machlinien-Koordinaten $\xi(x, y)$ und $\eta(x, y)$ zu

Abbildung 4.6.: Links- und rechtslaufende Machlinien (ML).

Abbildung 4.7.: Überschallströmung um einen Keil.

transformieren. Für die Ableitungen gelten die Relationen⁹

$$\frac{\partial}{\partial x} = \left(\frac{\partial \xi}{\partial x}\right) \frac{\partial}{\partial \xi} + \left(\frac{\partial \eta}{\partial x}\right) \frac{\partial}{\partial \eta} = \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta},\tag{4.61a}$$

$$\frac{\partial}{\partial y} = \left(\frac{\partial\xi}{\partial y}\right)\frac{\partial}{\partial\xi} + \left(\frac{\partial\eta}{\partial y}\right)\frac{\partial}{\partial\eta} = -\cot\alpha_{\infty}\frac{\partial}{\partial\xi} + \cot\alpha_{\infty}\frac{\partial}{\partial\eta},\tag{4.61b}$$

$$\frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial \xi^2} + 2\frac{\partial^2}{\partial \xi \partial n} + \frac{\partial^2}{\partial n^2},\tag{4.61c}$$

$$\frac{\partial^2}{\partial y^2} = \cot^2 \alpha_\infty \left(\frac{\partial^2}{\partial \xi^2} - 2 \frac{\partial^2}{\partial \xi \partial \eta} + \frac{\partial^2}{\partial \eta^2} \right).$$
(4.61d)

⁹Beachte die Kettenregel, z.B.

$$\frac{\partial}{\partial x}F[\xi(x,y),\eta(x,y)] = \frac{\partial F}{\partial \xi}\underbrace{\frac{\partial \xi}{\partial x}}_{=1} + \frac{\partial F}{\partial \eta}\underbrace{\frac{\partial \eta}{\partial x}}_{=1}.$$

弓. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

Nach (4.58) gilt $\sin \alpha_{\infty} = M_{\infty}^{-1}$ und damit

$$\cot^2 \alpha_{\infty} = \frac{1 - \sin^2 \alpha_{\infty}}{\sin^2 \alpha_{\infty}} = \mathcal{M}_{\infty}^2 - 1.$$
(4.62)

Wenn man diese Beziehungen in die linearisierte gasdynamische Gleichung (4.22a) einsetzt, erhält man die einfache Differentialgleichung

$$\frac{\partial}{\partial\xi}\frac{\partial}{\partial\eta}\chi = 0. \tag{4.63}$$

Dies ist gerade die sogenannte *Normalform* einer zweidimensionalen hyperbolischen Differentialgleichung zweiter Ordnung. Sie besitzt die allgemeine Lösung

$$\chi(\xi,\eta) = F(\xi) + G(\eta),$$
 (4.64)

wobe
i ${\cal F}$ und ${\cal G}$ beliebige Funktionen sind. Das in die ursprünglichen Koordinaten transformierte Ergebnis lautet

$$\chi(x,y) = F(x - y \cot \alpha_{\infty}) + G(x + y \cot \alpha_{\infty}).$$
(4.65)

Mit $\cot \alpha_{\infty} = \sqrt{M_{\infty}^2 - 1}$ ist diese Lösung auch als *D'Alembertsche Lösung der Wellengleichung* bekannt.

Mit Hilfe der gewonnenen Erkenntnis wollen wir nun die Störungen berechnen, die von einem Profil ausgehen. Aufgrund des hyperbolischen Charakters der Differentialgleichung (4.63) kann man die Gebiete oberhalb und unterhalb des Profils getrennt betrachten (Abb. 4.8).

(i) y > 0: Störungen, die von der Profiloberseite ausgehen Für y > 0 kommen alle rechtslaufenden Machlinien $\eta = \text{const.}$ aus dem ungestörten Gebiet vor dem Profil. Deshalb muß die Funktion $G(\eta) \equiv 0$ identisch verschwinden. Für das Störpotential verbleibt

$$\chi(x,y) = F(\xi) = F\left(x - y\sqrt{M_{\infty}^2 - 1}\right).$$
 (4.66)

Die bereits bekannte Randbedingung

$$\chi_y(x,0^+) = \tau h'_o(x) \tag{4.67}$$

führt mit $\xi(x, 0^+) = x$ auf

$$\chi_{y}|_{x,0^{+}} = \frac{\mathrm{d}F}{\mathrm{d}\xi} \frac{\partial\xi}{\partial y}\Big|_{x,0^{+}} = F' \frac{\partial\xi}{\partial y}\Big|_{\xi=x} = F'(x) \left(-\cot \alpha_{\infty}\right)$$
$$= F'(x) \left(-\sqrt{\mathrm{M}_{\infty}^{2} - 1}\right) = \tau h'_{o}. \tag{4.68}$$

3. C. Kuhlmann, U. Kluwid Strömungsmechanik 2

Abbildung 4.8.: Links- (ξ) und rechtslaufende Machlinien (η) . Auf allen Machlinien, die aus dem ungestörten Gebiet kommen ist F = 0 bzw. G = 0. Der rot (grün) hinterlegte Bereich kann nur durch Störungen von der Oberseite (Unterseite) des Profils beeinflußt werden.

Nach Integration ergibt sich

$$F(x) = -\frac{\tau}{\sqrt{M_{\infty}^2 - 1}} h_o(x) \quad \text{auf} \quad x \in [0, 1].$$
(4.69)

Zusammenfassend kann man schreiben

$$\chi(x,y) = -\frac{\tau}{\sqrt{M_{\infty}^2 - 1}} h_o \left(x - y \sqrt{M_{\infty}^2 - 1} \right), \qquad (4.70a)$$

$$\frac{v}{u_{\infty}} = \chi_y(x, y) = \tau h'_o \left(x - y \sqrt{\mathcal{M}_{\infty}^2 - 1} \right), \qquad (4.70b)$$

$$\frac{u - u_{\infty}}{u_{\infty}} = \chi_x(x, y) = -\frac{\tau}{\sqrt{M_{\infty}^2 - 1}} h'_o \left(x - y\sqrt{M_{\infty}^2 - 1} \right).$$
(4.70c)

(ii) y < 0: $F \equiv 0$ In analoger Weise erhält man für die Unterseite y < 0

$$\chi(x,y) = G\left(x + y\sqrt{M_{\infty}^2 - 1}\right), \qquad (4.71)$$

und wieder über die entsprechende Randbedingung $\chi_y(x,0^-)=-h_u'(x)\tau$

$$\chi(x,y) = -\frac{\tau}{\sqrt{M_{\infty}^2 - 1}} h_u \left(x + y \sqrt{M_{\infty}^2 - 1} \right), \qquad (4.72a)$$

$$\frac{v}{u_{\infty}} = \chi_y(x, y) = -\tau h'_u \left(x + y\sqrt{M_{\infty}^2 - 1} \right), \qquad (4.72b)$$

$$\frac{u - u_{\infty}}{u_{\infty}} = \chi_x(x, y) = -\frac{\tau}{\sqrt{M_{\infty}^2 - 1}} h'_u \left(x + y\sqrt{M_{\infty}^2 - 1} \right).$$
(4.72c)

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Abbildung 4.9.: Qualitativer Verlauf der Geschwindigkeitsstörung $(u-u_{\infty})/u_{\infty}$ und des Druckbeiwerts c_p auf der Oberseite eines parabolischen Profils. Entlang der Machlinien, die sich bis ins Unendliche erstrecken, sind u und v konstant.

Aus den Gleichungen für Profilober- und Profilunterseite ergibt sich die wichtige *Formel von Ackeret*

$$\frac{u - u_{\infty}}{u_{\infty}} = \mp \frac{1}{\sqrt{\mathcal{M}_{\infty}^2 - 1}} \frac{v}{u_{\infty}}, \quad y \ge 0.$$

$$(4.73)$$

Jakob Ackeret 1898–1981

Bemerkenswert ist die Tatsache, daß die *u*- und *v*-Störungen in einem Raumpunkt (x, y) nur von der Neigung des Profils $(h'_{o,u})$ im Punkt $(x \mp y\sqrt{M_{\infty}^2 - 1}, 0^{\pm})$ abhängen. Zusammenfassend kann gesagt werden:

- 1. Störungen auf der Profiloberseite und Profilunterseite können *unabhängig* voneinander berechnet werden.
- 2. Die vom Profil ausgehenden Störungen auf rechts- und linkslaufenden Machlinien sind konstant. Sie erstrecken sich daher bis ins Unendliche und bewirken damit einen *nichtverschwindenden* Profilwiderstand (Abb. 4.9).

Abschließend folgt die Bestimmung der auf das Profil wirkenden Luftkräfte. Für den Druckbeiwert erhält man

$$c_{po} = -2\frac{u - u_{\infty}}{u_{\infty}}(x, 0^{\pm}) = \frac{2\tau}{\sqrt{M_{\infty}^2 - 1}} h'_o(x), \qquad (4.74a)$$

$$c_{pu} = \frac{2\tau}{\sqrt{M_{\infty}^2 - 1}} h'_u(x).$$
(4.74b)

5. C. Luhlmann, U. Lluwid Strömungsmechanik 2

Abbildung 4.10.: Vergleich eines angestellten Profils (a) mit einer angestellten Platte (b).

Der Auftriebsbeiwert bestimmt sich aus dem negativen Oberflächenintegral über den Druckbeiwert. Für die Normalenvektoren auf der Profiloberseite und der Profilunterseite kann näherungsweise $n_y(x, 0^+) \simeq 1$ und $n_y(x, 0^-) \simeq -1$ gesetzt werden. Damit ergibt sich

$$c_L = -\oint_S c_p n_y dS = -\int_0^1 (c_{po} - c_{pu}) dx = \frac{2\tau}{\sqrt{M_\infty^2 - 1}} \int_0^1 \left(\frac{dh_u}{dx} - \frac{dh_o}{dx}\right) dx.$$
(4.75)

Ausgewertet erhalten wir

$$c_L = \frac{2\tau}{\sqrt{M_{\infty}^2 - 1}} \left[h_u(1) - h_u(0) - h_o(1) + h_o(0) \right].$$
(4.76)

Ohne Einschränkung kann immer $h_o(0) = h_u(0) = 0$ vorausgesetzt werden (die Profilspitze liegt damit im Koordinatenursprung). Es verbleibt dann

$$c_L = \frac{2\tau}{\sqrt{M_{\infty}^2 - 1}} \left[h_u(1) - h_o(1) \right].$$
(4.77)

Für geschlossene Profile gilt $h_u(1) = -h_o(1)$ und daher

$$c_L = \frac{4}{\sqrt{M_{\infty}^2 - 1}} \tau h_u(1).$$
(4.78)

Damit hängt der Auftrieb nur von der Lage des Endpunktes $h_u(1)$ des Profils ab. Ein um den Winkel $\alpha = \tan[\tau h_u(1)] \approx \tau h_u(1)$ angestelltes Profil endlicher Dicke erzeugt damit denselben Auftrieb wie eine gleich stark angestellte dünne ebene Platte, unabhängig von der Profilwölbung. Die dünne, ebene Platte hat dabei noch den geringstmöglichen Widerstand und ist damit (wenn man von konstruktiven Schwierigkeiten und den Eigenschaften im Unterschallbereich absieht) das ideale Überschallprofil (Abb. 4.10).

Zur Berechnung des Widerstandsbeiwerts verwenden wir die Näherung

$$n_x(x,0^+) \simeq -\tau \frac{\mathrm{d}h_o}{\mathrm{d}x}, \qquad n_x(x,0^-) \simeq -\tau \frac{\mathrm{d}h_u}{\mathrm{d}x}.$$
(4.79)

3. C. Luhimann, A. Lluwid Strömungsmechanik 2

Abbildung 4.11.: Druckbeiwerte und Auftriebskraft einer angestellten ebenen dünnen Platte für Überschall- (a) und Unterschallströmung (b) (vergleiche Abb. 2.23).

Damit erhalten wir den Widerstandsbeiwert

$$c_D = -\oint_S c_p n_x \mathrm{d}S = \frac{2\tau^2}{\sqrt{\mathrm{M}_\infty^2 - 1}} \int_0^1 \left[\left(\frac{\mathrm{d}h_o}{\mathrm{d}x}\right)^2 + \left(\frac{\mathrm{d}h_u}{\mathrm{d}x}\right)^2 \right] \mathrm{d}x.$$
(4.80)

Als Beispiel betrachten wir eine angestellte dünne Platte mit den Profilkoordinaten $h_o(x) = -x$ und $h_u(x) = x$ (Abb. 4.10b). Mit dem Anstellwinkel $\alpha = \tan[\tau h_u(1)] \approx \tau h_u(1)$ erhält man die Kraftbeiwerte $(h'_o = -h'_u = -1, h_o(1) = -h_u(1) = -1)$

$$c_{po,u} = \mp \frac{2\alpha}{\sqrt{\mathcal{M}_{\infty}^2 - 1}},\tag{4.81a}$$

$$c_L = \frac{4\alpha}{\sqrt{M_{\infty}^2 - 1}}$$
 (vergleiche Unterschall: $c_L = 2\pi\alpha$), (4.81b)

$$c_D = \frac{4\alpha^2}{\sqrt{M_{\infty}^2 - 1}} \qquad (\text{vergleiche Unterschall: } c_D = 0). \tag{4.81c}$$

Der Auftriebsbeiwert steigt linear mit dem Anstellwinkel α an, während der Widerstandsbeiwert quadratisch mit α ansteigt. Der Widerstandsbeiwert fällt bei Erhöhung der Machzahl ($M_{\infty} > 1$) ab. Er kommt aber von sehr hohen Werten und bleibt (auch in Realität) deutlich größer als im Unterschallbereich.

Ein qualitativer Vergleich der lokalen Druckbeiwerte für Über- und Unterschallströmungen ist in Abb. 4.11 gezeigt. Beim Übergang von einer Unterschall- zu einer Überschallströmung verschiebt sich der Kraftangriffspunkt von x = 1/4 zu x = 1/2(und umgekehrt). Diese Verschiebung wird als *Druckpunktwanderung* bezeichnet. Bei überschalltauglichen Luftfahrzeugen muß diesem Umstand mit entsprechenden Trimm- und/oder Steuermaßnahmen Rechnung getragen werden.¹⁰

¹⁰Dies könnte der Grund gewesen sein, warum Felix Baumgartner am 15.10.2012 beim Duchbrechen der Schallmauer während seines Sprungs aus 39 km Höhe ins Trudeln kam.

5. Nichtlineare Effekte bei Überschallströmung

5.1. Schiefer Verdichtungsstoß

Im letzten Kapitel haben wir gesehen, daß die Neigung der Machlinien im Fall schwach gestörter Parallelströmung nur von der Anströmmachzahl M_{∞} abhängig ist. Die Machlinien werden nicht von der Profilform beeinflußt (lineare Theorie). Bei einer starken Umlenkung der Überschallströmung treten jedoch nichtlineare Effekte auf. Wird die Strömung an einer konkaven Ecke um den Strömungswinkel ϑ umgelenkt, so bildet sich von der Ecke her ein schiefer Verdichtungsstoß unter dem Stoßwinkel γ im Strömungsfeld aus. Hinter dem Verdichtungsstoß sind die Machlinien unter einem Winkel $\hat{\alpha} \neq \alpha$ geneigt (Abb. 5.1).

Um die Feldgrößen vor und nach dem schiefen Verdichtungsstoß miteinander in Beziehung setzen zu können, benutzen wir die Eigenschaft, daß die Tangentialkomponente der Strömungsgeschwindigkeit über den Stoß hinweg stetig ist, das heißt daß $v_t = \hat{v}_t$ ist. Wenn man den schiefen Stoß in einem Koordinatensystem betrachtet, welches sich mit der konstanten Geschwindigkeit v_t in der Stoßebene bewegt (Galileitransformation der Stoßbeziehungen für den senkrechten Verdichtungsstoß), verbleiben nur noch die normalen Komponenten der Geschwindigkeit und man hat in dem bewegten System einen senkrechten Verdichtungsstoß. Folglich können die entsprechenden Ergebnisse für den senkrechten Verdichtungsstoß aus der Grundlagen-Vorlesung hier sofort verwendet werden, wenn man berücksichtigt, daß diese im Fall des schiefen Stoßes für die Normalkomponente der Strömungsge-

Abbildung 5.1.: Machlinien (blau) und schiefer Verdichtungsstoß (rot) im Rahmen der linearen Theorie für kleine Störungen (a) und im Rahmen der nichtlinearen Theorie für große Störung (b).

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2 5. Nichtlineare Effekte bei Überschallströmung

Abbildung 5.2.: Zerlegung der Geschwindigkeiten bei einem schiefen Stoß in Komponenten normal und senkrecht zur Stoßebene. (a): In einem Koordinatensystem, in dem der Stoß senkrecht auf der *x*-Achse steht und (b) in einem Koordinatensystem, in dem die Anströmrichtung \vec{v} parallel zur *x*-Achse ist.

schwindigkeit gelten (Abb. 5.2). Die Normalkomponente berechnet sich über den Stoßwinkel γ aus

$$M_n = \frac{v_n}{c} = \frac{v}{c} \sin \gamma = M \sin \gamma.$$
(5.1)

Es ist daher in den Gleichungen für den senkrechten Stoß die Machzahl M durch $M_n = M \sin \gamma$ zu ersetzen, um die für den schiefen Verdichtungsstoß gültigen Gleichungen (für ideale Gase) zu erhalten¹

$$\frac{\rho}{\hat{\rho}} = \frac{\hat{v}_n}{v_n} = 1 - \frac{2}{\varkappa + 1} \left(1 - \frac{1}{M^2 \sin^2 \gamma} \right),$$
(5.2a)

$$\frac{\hat{p}}{p} = 1 + \frac{2\varkappa}{\varkappa + 1} \left(\mathbf{M}^2 \sin^2 \gamma - 1 \right), \tag{5.2b}$$

$$\frac{\hat{T}}{T} = \frac{\hat{p}}{p} \frac{\rho}{\hat{\rho}} \stackrel{c^2 = \varkappa RT}{=} \frac{\hat{c}^2}{c^2} \\
= \frac{1}{M^2 \sin^2 \gamma} \left[1 + \frac{2\varkappa}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1 \right) \right] \left[1 + \frac{\varkappa - 1}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1 \right) \right],$$
(5.2c)

$$\frac{\hat{p}_0}{p_0} = \frac{\hat{\rho}_0}{\rho_0} = \left[1 + \frac{2\varkappa}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1\right)\right]^{-\frac{1}{\varkappa - 1}} \left[1 - \frac{2}{\varkappa + 1} \left(1 - \frac{1}{M^2 \sin^2 \gamma}\right)\right]^{-\frac{\varkappa}{\varkappa - 1}}$$
(5.2d)

$$\frac{\hat{s}-s}{c_v} = \ln\frac{\hat{p}}{p} - \varkappa \ln\frac{\hat{\rho}}{\rho}.$$
(5.2e)

Ein senkrechter Verdichtungsstoß kann nur in einer Überschallströmung existieren. Auf den schiefen Stoß übertragen gilt daher

$$M\sin\gamma > 1. \tag{5.3}$$

¹In Gleichung (5.2d) sind p_0 und ρ_0 die Ruhegrößen.

Dies schränkt den Stoßwinkel γ auf den Wertebereich ein

$$\operatorname{arcsin}\left(\frac{1}{\mathrm{M}}\right) < \gamma < \frac{\pi}{2}.$$
 (5.4)

An (5.2a) sieht man, daß die untere Grenze $\gamma = \arcsin(M^{-1})$ einem Stoß mit verschwindender Stärke entspricht. Im Limes geht der Stoß in eine Machlinie mit $\gamma = \alpha$ über. Die obere Grenze ($\gamma = \pi/2$) ergibt den Stoß mit dem größtmöglichen Druckanstieg, entsprechend dem senkrechten Verdichtungsstoß.

Multipliziert man \hat{v}_n/v_n aus (5.2a) mit v_n^2 , so erhält man unter Verwendung des Energiesatzes²

$$v_{n}\hat{v}_{n} = v_{n}^{2}\frac{\hat{v}_{n}}{v_{n}} \stackrel{(5.2a)}{=} \underbrace{\underbrace{\frac{v_{n}^{2}}{M^{2}\sin^{2}\gamma}}_{=c^{2}} \left(\frac{\varkappa - 1}{\varkappa + 1}\underbrace{\frac{M^{2}\sin^{2}\gamma}{v_{n}^{2}/c^{2}}}_{v_{n}^{2}/c^{2}} + \frac{2}{\varkappa + 1}\right)}_{=c^{2}}$$
$$= \frac{\varkappa - 1}{\varkappa + 1}v_{n}^{2} + \frac{2}{\varkappa + 1}c^{2} + \underbrace{\frac{\varkappa - 1}{\varkappa + 1}v_{t}^{2}}_{=0} - \frac{\varkappa - 1}{\varkappa + 1}v_{t}^{2}}_{=0} \stackrel{\text{Energiesatz}}{=} c^{*2} - \frac{\varkappa - 1}{\varkappa + 1}v_{t}^{2}. \quad (5.5)$$

Es gilt also die *Prandtl-Relation*

$$v_n \hat{v}_n + \frac{\varkappa - 1}{\varkappa + 1} v_t^2 = c^{*2}, \tag{5.6}$$

welche eine Verallgemeinerung der Prandtl-Relation $v\hat{v} = c^{*2}$ für den senkrechten Verdichtungsstoß ist.

Legt man den schiefen Verdichtungsstoß so in ein Koordinatensystem, daß die Anströmrichtung mit der x-Richtung zusammenfällt, gelten die Beziehungen (siehe Abb. 5.3)

$$v_n = u \sin \gamma, \tag{5.7a}$$

$$v_t = u \cos \gamma \stackrel{u \text{ aus (5.7d)}}{=} \hat{u} \cos \gamma + \hat{v} \sin \gamma, \qquad (5.7b)$$

$$\hat{v}_n = v_n - \frac{\dot{v}}{\cos\gamma},\tag{5.7c}$$

$$\tan \gamma = \frac{u - \hat{u}}{\hat{v}}.\tag{5.7d}$$

²Der Energiesatz lautet (Vergleich zu Energie im kritischen Zustand)

$$\frac{v_n^2 + v_t^2}{2} + \frac{c^2}{\varkappa - 1} = \frac{c^{*2}}{2} + \frac{c^{*2}}{\varkappa - 1} = \frac{1}{2} \frac{\varkappa + 1}{\varkappa - 1} c^{*2}.$$

Hieraus folgt

$$\frac{\varkappa - 1}{\varkappa + 1} \left(v_n^2 + v_t^2 \right) + \frac{2}{\varkappa + 1} c^2 = c^{*2}.$$

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Abbildung 5.3.: Zerlegung der Geschwindigkeitsvektoren \vec{v} und $\hat{\vec{v}}$ vor und nach dem Stoß (rot). Die Zerlegung erfolgt einerseits in die (x, y)-Komponenten (u, v) bzw. (\hat{u}, \hat{v}) sowie in die normalen und tangentialen Komponeten.

Wenn man v_n , v_t und \hat{v}_n aus (5.7) in the Prandtl-Relation (5.6) einsetzt, erhält man

$$u\sin\gamma\left(u\sin\gamma - \frac{\hat{v}}{\cos\gamma}\right) = c^{*2} - \frac{\varkappa - 1}{\varkappa + 1}\left(\hat{u}\cos\gamma + \hat{v}\sin\gamma\right)^2.$$
 (5.8)

Mit Hilfe von (5.7d) kann man γ aus (5.8) eliminieren und man erhält nach einigen Umformungen die sogenannte $Sto\betapolare^3$

$$\left(\frac{\hat{v}}{c^*}\right)^2 \left[1 + \frac{2}{\varkappa + 1} \left(\frac{u}{c^*}\right)^2 - \frac{u\hat{u}}{c^{*2}}\right] = \left[\frac{u\hat{u}}{c^{*2}} - 1\right] \left[\frac{u}{c^*} - \frac{\hat{u}}{c^*}\right]^2.$$
(5.9)

Stoßpolaren wurden zuerst von Busemann eingeführt. Gleichung (5.9) ist eine Beziehung zwischen den normierten Geschwindigkeitskomponenten $(\hat{u}/c^*, \hat{v}/c^*)$ nach dem Stoß. Die nor-

1901–1986 Schwindigkeitskomponenten $(u/c^*, v/c^*)$ nach dem Stoß. Die hörmierte Anströmgeschwindigkeit u/c^* fungiert als vorgegebener Parameter. Eine Stoßpolare ist also eine Kurve in der Ebene der normierten Geschwindigkeitskomponenten \hat{u}/c^* und \hat{v}/c^* . Sie spezifiziert die möglichen Geschwindigkeitskomponenten nach dem Stoß für gegebene Anströmbedingung. Der normier-

te Parameter ist die Machzahl $M^* = u/c^*$. Für sie gilt (siehe Fußnote 2 oder die

$$\frac{v_t}{v_n} = \frac{\hat{v}}{u - \hat{u}}, \quad \frac{v_t}{u} = \frac{\hat{v}}{v_n - \hat{v}_n}, \quad u^2 = v_n^2 + v_t^2, \quad \hat{v}^2 = \hat{v}_n^2 + v_t^2.$$

verwenden, die sich aus ähnlichen Dreiecken in Abb.5.3ergeben.

Adolf Busemann

³Alternativ zu (5.7) kann man auch die Gleichungen

Abbildung 5.4.: Form der Polaren in der Hodgraphenebene (qualitativ).

Grundvorlesung)

$$\frac{1}{M^{*2}} = \frac{c^{*2}}{u^2} = \frac{\varkappa - 1}{\varkappa + 1} + \frac{2}{\varkappa + 1} \frac{1}{M^2},$$
(5.10)

wobei $M = 1 \Leftrightarrow M^* = 1$ und $M \to \infty \Leftrightarrow M^* \to \sqrt{6}$. Mit M^* wird der Überschall-Machzahlbereich also nur auf den endlichen Bereich $[1, \sqrt{6}]$ abgebildet. Es ist nur eine Skalierung.

Die Gesamtheit der Polaren für alle Machzahlen ergibt eine Kurvenschar. Die Ebene $(\hat{u}/c^*, \hat{v}/c^*)$, in welcher diese Kurvenschar liegt, nennt man auch *Hodographenebene*. Die Polare ist eine Strophoide.⁴

Zunächst betrachten wir $\hat{v} = 0$ und $\hat{u} \neq 0$. Dann liefert (5.9) zwei Lösungen: Den senkrechten Verdichtungsstoß mit $(u/c^*)(\hat{u}/c^*) = M^* \hat{M}^* = 1$ (Punkt Q in Abb. 5.4) und den infinitesimalen Stoß mit $\hat{u} = u$ (Punkt P in Abb. 5.4).⁵ Für $M \to \infty$ geht $M^* = u/c^* \to \sqrt{(\varkappa + 1)/(\varkappa - 1)} = \sqrt{6}$. Wenn man dies in der Gleichung für die Stoßpolaren (5.9) verwendet, erhält man eine Kreisgleichung um einen Punkt auf der \hat{u}/c^* -Achse.⁶ Diese Polaren sind qualitativ in Abb. 5.4 gezeigt.

Für gegebenen Umlenkwinkel ϑ ist $\tan \vartheta = \hat{v}/\hat{u}$. Deshalb müssen die Komponenten der Strömungsgeschwindigkeit nach dem Stoß auf der Geraden $\hat{v} = \hat{u} \tan \vartheta$ liegen (rote Kurve in Abb. 5.5). Die Schnittpunkte dieser Geraden mit der Polaren

⁶Für M^{*} = $u/c^* = \sqrt{6}$ erhält man aus (5.9)

$$\left(\frac{\hat{v}}{c^*}\right)^2 \left(6 - \sqrt{6}\frac{\hat{u}}{c^*}\right) = \left(\frac{\hat{u}}{c^*}\sqrt{6} - 1\right) \left(\sqrt{6} - \frac{\hat{u}}{c^*}\right)^2.$$

Polynomdivision der rechten Seite durch $\sqrt{6}(\hat{u}/c^*) - 6$ und quadratische Ergänzung führt auf

$$\left(\frac{\hat{v}}{c^*}\right)^2 + \left(\frac{\hat{u}}{c^*} - \frac{7}{2\sqrt{6}}\right)^2 = \left(\frac{7}{2\sqrt{6}}\right)^2 - 1.$$

Die Polare für M $\rightarrow \infty$ is damit ein Kreis um $\hat{u}/c^* = 7/(2\sqrt{6}) = 1.429$ mit Radius $\sqrt{[7/(2\sqrt{6})]^2 - 1} = 1.021.$

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

⁴Eine Strophoide in der (x, y)-Ebene genügt der Gleichung $(a + x)x^2 - (a - x)y^2 = 0$.

⁵Die Fortsetzung der Polaren hinter den Kuspen, also für $\hat{u} > u$ beschreiben das inverse Problem, wobei (\hat{u}, \hat{v}) die Strömung vor dem Stoß und (u, v) die Strömung hinter dem Stoß sind. Diesen Fall blenden wir hier aus.

Abbildung 5.5.: Die Schnittpunkte von $\hat{v} = \hat{u} \tan \vartheta$ (rot) mit der Polaren (schwarz) ergeben die beiden Lösungen für den schwachen (W) und für den starken Stoß (S). Für den schwachen Stoß ist die Rekonstruktion des Stoßwinkels γ_S dargestellt. Vergleiche dazu auch Abb. 5.3. Für den starken Stoß kann man analog vorgehen.

für gegebene Anström-Machzahl ergeben die beiden Lösungen, die einem schwachen (W) und einem starken Stoß (S) entsprechen (Abb. 5.5). Die Stoßwinkel γ_W bzw. γ_S , unter dem der schwache bzw. starke Stoß zur *x*-Achse auftritt, sind gegeben durch die Geraden durch den Ursprung, welche senkrecht auf der Verbindungslinie \overline{PW} bzw. \overline{PS} steht (blau für den schwachen Stoß (W) in Abb. 5.5). Die Konstruktion ist klar, wenn man sich überlegt, daß die Kuspe bei $(\hat{u}, \hat{v}) = (u, 0)$ liegt und die Komponenten \hat{u} und \hat{v} durch den Punkt W (S) fixiert sind (Analogie zu Abb. 5.3).

Für einen verschwindenden Umlenkwinkel ϑ geht der schwache Stoß in eine Machlinie über. Dann wandert der Punkt $W \to P$ und $\gamma_W \to \arcsin(M^{-1})$. Daher ist die Tangente an die Polare im Punkt P gegenüber der \hat{v} -Achse geneigt, entsprechend dem Komplement des Machwinkels. Für den starken Stoß geht $\gamma_S \to \pi/2$ für $\vartheta \to 0$.

Eine quantitative graphische Darstellung der Stoßpolaren (5.9) ist in Abb. 5.6 gezeigt (siehe auch Anhang A). Für eine Anström-Machzahl M = 1 gilt die Beziehung $u^2 + v^2 = c^2$, welche auch in der Form

$$\left(\frac{u}{c^*}\right)^2 + \left(\frac{v}{c^*}\right)^2 = M^2 = M^{*2} = 1$$
 (5.11)

geschrieben werden kann und als *Schallkreis* in der Geschwindigkeitsebene (*Hodo-graphenebene*) eingezeichnet ist. Diese allgemeine Beziehung gilt auch für (\hat{u}, \hat{v}) . Für Punkte innerhalb des Schallkreises hat man hinter dem Stoß eine Unterschallgeschwindigkeit, für Punkte außerhalb des Schallkreises hat man hinter dem Stoß eine Überschallgeschwindigkeit. Für $u \to c^*$ (M^{*} $\to 1$) zieht sich die Polare auf den

Abbildung 5.6.: Berechnete Polaren nach (5.9) (schwarz) für $\varkappa = 1.4$. In rot sind der Schallkreis $M = M^* = 1$ und die maximale Machzahl nach dem Stoß $M^*_{max} = \sqrt{6}$ eingezeichnet. Diese maximale Machzahl $M^* = \sqrt{6}$ wird für Anström-Machzahl $M = u/c \to \infty$ erreicht. Die gezeigten Polaren enstprechen $u/c^* = M^* = 1.05$, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4495.

Abbildung 5.7.: Wenn der Punkt Wauf dem Schallkreis (rot) liegt, hat man hinter dem schwachen Stoß gerade $\hat{M} = 1$ (grün: Polare). Für $\vartheta =$ ϑ_{max} (blau) fallen schwacher und starker Stoß zusammen und für $\vartheta >$ ϑ_{max} existiert keine Lösung mit ebener Stoßfront mehr.

Punkt $(\hat{u}/c^*, \hat{v}/c^*) = (1, 0)$ zusammen. Der Maximalwert der normierten Geschwindigkeit ist gegeben durch (siehe (5.10))

$$\mathcal{M}_{\max}^{*} = \frac{v_{\max}}{c^{*}} = \sqrt{\frac{\varkappa + 1}{\varkappa - 1}} \stackrel{\varkappa = 1.4}{=} \sqrt{6} = 2.4495.$$
(5.12)

Wenn der Umlenkwinkel größer wird, wandern die Punkte S und W aufeinander zu bis der starke und der schwache Stoß zusammenfallen ($\vartheta = \vartheta_{\max}$). Für $\vartheta > \vartheta_{\max}$ existiert keine Lösung der beschriebenen Form mehr (Abb. 5.7). In Realität löst dann der Stoß von der Spitze des Körpers ab und bildet sich in gebogener Form vor dem Körper aus.

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2

Abbildung 5.8.: Druckverhältnis-Umlenkwinkel-Polaren (Herzkurven). Gezeigt ist das Druckverhältnis \hat{p}/p als Funktion des Umlenkwinkels ϑ für große Anström-Machzahlen M = 2, 3, 4 und 5 (a) und kleine Anström-Machzahlen $M = 1.1 \dots 1.6$ (b).

Zwischen den drei Größen (γ, ϑ, M) kann man den funktionalen Zusammenhang

$$\cot \vartheta = \tan \gamma \left[\frac{(\varkappa + 1)}{2} \frac{M^2}{(M^2 \sin^2 \gamma - 1)} - 1 \right]$$
(5.13)

finden. Dies ist dieselbe Relation, die schon in der Grundlagenvorlesung abgeleitet wurde, hier nur aufgelöst nach dem Umlenkwinkel. Eine graphische Darstellung von (5.13) findet sich im Anhang in Abb. A.2.

Eine andere mögliche Darstellungsform der Stoßpolaren ist das sogenannte Herzkurvendiagramm, das in Abb. 5.8 gezeigt ist. In dem Diagramm sind die Polaren in einer Ebene gezeichnet, die durch das Druckverhältnis \hat{p}/p und den Umlenkwinkel ϑ aufgespannt wird. Dazu verwendet man die Rankine-Hugoniot-Beziehung (5.2b), welche ($\hat{p}/p, M, \gamma$) in Beziehung setzt, und löst nach sin γ auf. Dies setzt man in (5.13) ein und erhält eine längliche aber explizite Beziehung zwischen ($\hat{p}/p, \vartheta, M$), bei welcher M als Parameter dient.

Zur graphischen Darstellung der Herzkurven-Polaren, ist es einfacher, für feste Machzahl M den Stoßwinkel γ im Bereich $\arcsin(1/M) < \gamma < \pi - \arcsin(1/M)$ zu variieren (Parametrisierung der Polare) und den Druckanstieg \hat{p}/p nach (5.2b) gegen den Umlenkwinkel ϑ nach (5.13) aufzutragen. Für $\gamma = \arcsin(1/M)$ hat man die eine Machwelle, für $\gamma = \pi - \arcsin(1/M)$ hat man die andere Machwelle. Beide Situationen entsprechen dem Punkt ($\hat{p}/p, \vartheta$) = (1,0). Für $\gamma = \pi/2$ hat man einen senkrechten Stoß entsprechend dem Punkt ($\hat{p}/p, \vartheta$) = $[1 + (2\varkappa/(\varkappa + 1))(M^2 - 1)), 0]$.

Beispiel Als Beispiel betrachten wir die Strömung um einen Keil (Abb. 5.9). Gegeben sei der Anströmzustand mit M = 3, p = 1 bar, T = 288 K, der Umlenkwinkel (Strömungswinkel) sei $\vartheta = 20^{\circ}$. Gesucht sind der Stoßwinkel γ , Druck \hat{p} , Temperatur \hat{T} und Machzahl \hat{M} sowie der Ruhedruck \hat{p}_0 nach dem schiefen Stoß.

Abbildung 5.9.: Überschallströmung um einen Keil mit schrägem Stoß.

Lösung Den Stoßwinkel γ erhält man für die schwache Lösung aus dem Stoßpolarendiagramm wie in Abb. 5.5 oder aus (5.13) bzw. Abb. A.2. Es ergibt sich $\gamma = 37.5^{\circ}$. Mit (5.1) erhält man dann die senkrechte Machzahl M_n

$$\mathbf{M}_n = \mathbf{M}\sin\gamma = 1.826,\tag{5.14}$$

und daraus mit der *Isentropentabelle* oder mittels (5.10) $M_n^* = 1.55$. Die Prandtl-Relation für den senkrechten Stoß, $u\hat{u} = c^{*2}$ bzw. $M_n^*\hat{M}_n^* = 1$, liefert sofort $\hat{M}_n^* = 1/M_n^* = 0.64$. Mit der Isentropentabelle für den Unterschallbereich erhält man dann $\hat{M}_n = 0.61$. Mit der Isentropentabelle für den Überschall erhält man für $M_n = 1.826$ das Verhältnis der Ruhedrücke $\hat{p}_0/p_0 = 0.80$.⁷

Um das Druckverhältnis \hat{p}/p zu erhalten kann man die Rankine-Hugoniot-Beziehung (5.2b) zusammen mit (5.14) verwenden, oder man erweitert

$$\frac{\hat{p}}{p} = \underbrace{\hat{p}}_{0.78} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} \underbrace{\hat{p}}_{0} = 3.7,$$
(5.15)

wobei die einzelnen Werte aus der Isentropentabelle stammen (obere Werte: Uberschall $M_n = 1.826$, untere Werte: Unterschall $\hat{M}_n = 0.61$). Damit wird $\hat{p} = 3.7$ bar.

Hierbei ist zu bemerken, daß z.B. der Wert für das Verhältnis p_0/p fiktiv ist und nichts mit den tatsächlichen Werten in der Strömung zu tun hat, da p_0 als Ruhegröße nicht Galilei-invariant ist. Hingegen sind thermodynamische Größen wie T, p und s oder auch Verhältnisse von Ruhegrößen sehr wohl Galilei-invariant.

In analoger Weise erhält man das Temperaturverhältnis mittels (5.2c) oder durch

$$\frac{u_1^2}{2} + h_1 = \frac{u_2^2}{2} + h_2 = h_0.$$

 $^{^7\}mathrm{F}$ ür adiabatische Zustandsänderungen zwischen zwei Zuständen 1 und 2 gilt die Energiebilanz

Hierbei ist die Ruheenthalpie h_0 eine Erhaltungsgröße. Dasselbe gilt wegen $h_0 = c_p T_0$ auch für die Ruhetemperatur T_0 . Für den Druck gilt dies allerdings nur im Falle isentroper Zustandsänderungen. Beim Durchgang des Gases durch einen Stoß nimmt die Entropie aber zu. Daher ist $\hat{p}_0/p_0 \neq 1$.

5. Nichtlineare Effekte bei Überschallströmung

Abbildung 5.10.: Struktur der Stoßfronten bei der Keilumströmung.

Erweiterung

$$\frac{\hat{T}}{T} = \underbrace{\hat{T}}_{0.93} \underbrace{\hat{T}}_{1} \underbrace{\hat{T}}_{0} \underbrace{\hat{T}}_{0} \underbrace{\hat{T}}_{0} \underbrace{\hat{T}}_{0} = 1.55, \qquad (5.16)$$

so daß nach dem Stoß die Temperatur $\hat{T}=447\,\mathrm{K}$ herrscht.

Die Auswertung des Geschwindigkeitsdreiecks in Abb. 5.3, welches den Differenzwinkel $\gamma - \vartheta$ enthält, ergibt $\hat{v}_n = \hat{v} \sin(\gamma - \vartheta)$. Daraus folgt nach Division durch \hat{c}

$$\hat{\mathbf{M}} = \frac{\hat{\mathbf{M}}_n}{\sin(\gamma - \vartheta)} = 2.03.$$
(5.17)

Die Machzahl nach dem Stoß ist in diesem Fall größer als $\hat{M} = 1$, im Gegensatz zum senkrechten Verdichtungsstoß, bei welchem immer $\hat{M} < 1$ gilt.

Zur Berechnung der tatsächlichen Werte der Ruhegrößen verwenden wir wieder die Isentropentabelle und erhalten

$$\mathbf{M} = 3: \quad \Rightarrow \quad \frac{p}{p_0} = 0.027 \quad \Rightarrow \quad p_0 = 36.7 \text{ bar}, \tag{5.18}$$

Abbildung 5.11.: Reflexion eines schiefen Verdichtungsstoßes an einer ebenen Wand und entsprechende Konstruktion mittels der Stoßpolaren.

Abbildung 5.12.: (a) Grenzfall der regulären Stoßreflexion ($\vartheta = \vartheta_{\text{max}}$) und (b) Stoßkonfiguration für $\vartheta > \vartheta_{\text{max}}$.

und daher $\hat{p}_0 = 0.8p_0 = 29.6$ bar.

$$M = 3: \Rightarrow \frac{T}{T_0} = 0.357 \Rightarrow T_0 = \hat{T}_0 = 806.7 \,\mathrm{K}.$$
 (5.19)

Die Ruhetemperatur entspricht der Temperatur in einem Staupunkt der Strömung.

Die qualitative Lage des Stoßes ist in Abb. 5.10 für die verschiedenen Fälle skizziert.

Mit den bisher erarbeiteten Ergebnissen läßt sich die Reflexion eines schiefen Verdichtungsstoßes an einer festen, ebenen Wand leicht ermitteln. Die graphische Lösung ist in Abb. 5.11 dargestellt. Für $\vartheta > \vartheta_{\max}$ erreicht man den Sonderfall der sogenannten *Machreflexion* (Abb. 5.12). Die Berechnung des Strömungsfeldes stellt in diesem Fall eine schwierige Aufgabe dar, die über den Rahmen dieser Vorlesung hinausgeht.

5.2. Prandtl-Meyer Expansion

Bisher wurde bei der Behandlung von nichtlinearen Effekten bei Überschallströmungen die Umströmung konkaver Ecken betrachtet. Erfährt die Überschallströmung hingegen eine Umlenkung um eine konvexe Ecke, kommt es zur Ausbildung

Abbildung 5.14.: (a) Massenstrom durch ein Kontrollvolumen in Polarkoordinaten. (b) Berechnung der Zirkulation $d\Gamma$ in Polarkoordinaten.

eines sogenannten *Prandtl-Meyer-Fächers* oder einfach *Expansionsfächers*, in dem die Strömung kontinuierlich und ohne Entropiezuwachs, also verlustfrei, expandiert und daher beschleunigt.

A. The Meyer

Theodor Meyer 1882–1972

Es zeigt sich, daß man die Strömung um eine konvexe Ecke am einfachsten in zylindrischen Polarkoordinaten beschreibt. Daher formulieren wir die Grundgleichungen für ebene, stationäre Strömungen in Polarkoordinaten (r, β) . Nach Abb. 5.13 gilt

$$x = r \cos \beta, \qquad y = r \sin \beta.$$
 (5.20)

Wenn man den Geschwindigkeitsvektor \vec{v} am Punkt \vec{x} in eine radiale Komponente q_1 und eine azimutale Komponente q_2 zerlegt (Abb. 5.13), so gilt für die kartesischen Komponenten (u, v)

$$u = q_1 \cos \beta - q_2 \sin \beta, \qquad v = q_1 \sin \beta + q_2 \cos \beta. \tag{5.21}$$

Die Massenbilanz für das in Abb. 5.14a gezeichnete Kontrollvolumen lautet somit

in Polarkoordinaten

$$\frac{\partial}{\partial r}(\rho q_1 r) + \frac{\partial}{\partial \beta}(\rho q_2) = 0.$$
(5.22)

Für die Zirkulation d Γ ergibt sich (siehe Abb. 5.14b)

$$d\Gamma = \frac{\partial}{\partial r} (q_2 r) dr d\beta - \frac{\partial q_1}{\partial \beta} dr d\beta.$$
(5.23)

Für drehungsfreie Strömungen ($d\Gamma = 0$) gilt daher

$$\frac{\partial}{\partial r}(q_2 r) - \frac{\partial q_1}{\partial \beta} = 0. \tag{5.24}$$

Auf analoge Weise — oder durch direkte Anwendung von (5.20) und (5.21) — lassen sich auch die Bewegungsgleichungen und die gasdynamische Gleichung in Polarkoordinaten herleiten.

Im folgenden benötigen wir nur die volle nichtlineare *gasdynamische Gleichung*, die hier ohne Beweis angegeben wird. In Zylinderkoordinaten lautet sie (vgl. (4.7))

$$(c^{2} - q_{1}^{2})\frac{\partial q_{1}}{\partial r} + (c^{2} - q_{2}^{2})\frac{1}{r}\frac{\partial q_{2}}{\partial \beta} - \frac{q_{1}q_{2}}{r}\frac{\partial q_{1}}{\partial \beta} - q_{1}q_{2}\frac{\partial q_{2}}{\partial r} + c^{2}\frac{q_{1}}{r} = 0.$$
(5.25)

Schließlich lautet der Energiesatz in Zylinderkoordinaten ($c^2 = \varkappa RT$)

$$\frac{q_1^2 + q_2^2}{2} + \frac{c^2}{\varkappa - 1} = \text{const.}$$
(5.26)

Die Gleichungen (5.22) bis (5.26) stellen ein vollständiges Gleichungssystem für q_1 , q_2 , ρ und c dar.

Das Problem der Strahlerweiterung an einer scharfen Kante ist unabhängig von einer Längenskala. Es ist skaleninvariant. Deshalb kann man annehmen, daß es Lösungen gibt, die nicht von der Längenskala abhängen. Aus diesem Grund suchen wir Lösungen, die unabhängig von r sind und nur vom Polarwinkel β abhängen. Dazu setzen wir $\partial q_1/\partial r = \partial q_2/\partial r = 0$. Dann ergibt sich zunächst aus der Drehungsfreiheit (5.24)

$$q_2 = \frac{\partial q_1}{\partial \beta}.\tag{5.27}$$

Gleichung (5.25) reduziert sich auf

$$(c^{2} - q_{2}^{2})\frac{\partial q_{2}}{\partial \beta} - q_{1}q_{2}\underbrace{\frac{\partial q_{1}}{\partial \beta}}_{q_{2}} + c^{2}q_{1} = 0, \qquad (5.28)$$

also

$$(c^2 - q_2^2) \left(\frac{\partial q_2}{\partial \beta} + q_1\right) = 0.$$
(5.29)

Diese Gleichung hat zwei verschiedene Lösungen, je nach dem, welcher der beiden Faktoren verschwindet.

3. C. Luhlmann, U. Lluwid Strömungsmechanik 2

Abbildung 5.15.: Wegen $q_2 = -c$ sind die radialen Strahlen identisch mit Machlinien.

Fall 1: $\partial q_2 / \partial \beta = -q_1$: Um q_1 zugunsten von q_2 zu eliminieren, leiten wir nach β ab,

$$\frac{\partial^2 q_2}{\partial \beta^2} + \underbrace{\frac{\partial q_1}{\partial \beta}}_{q_2} = 0, \tag{5.30}$$

und erhalten die Lösung

$$q_2 = -A\sin\beta + B\cos\beta,\tag{5.31a}$$

$$q_1 = A\cos\beta + B\sin\beta. \tag{5.31b}$$

In (5.21) eingesetzt ergibt dies einfach eine homogene Strömung

$$u = A, \qquad v = B. \tag{5.32}$$

Diese homogene Lösung kann nicht die Umlenkung der Strömung beschreiben. Sie beschreibt aber die homogene Strömung parallel zur ebenen Wand vor der Umlenkstelle. Um die Umlenkung der Strömung hinter der scharfen Kante zu beschreiben, betrachten wir den zweiten Fall.

Fall 2: $|q_2| = c$: Dies ist die interessantere Lösung. Da q_2 lediglich die azimutale Komponente der Geschwindigkeit ist, kann die Lösung $|q_2| = c$ nur bei Überschallströmungen $|\vec{v}| \ge c$ auftreten. Da bei einer Zerlegung der Geschwindigkeit in Komponenten parallel und senkrecht zu den Machlinien die senkrechte Geschwindigkeitskomponente gerade die Schallgeschwindigkeit ist (siehe (4.58) und Abb. 4.5), folgt aus $|q_2| = c$ und der Unabhängigkeit von r, daß die radialen Strahlen $(\beta = \text{const.})$ Machlinien darstellen (Abb. 5.15)!

Zur Berechnung der Geschwindigkeitskomponenten betrachten wir den Energiesatz $(5.26)^8$

$$\frac{q_1^2 + q_2^2}{2} + \underbrace{\frac{c^2}{\varkappa - 1}}_{q_2^2/(\varkappa - 1)} = \frac{v_{\max}^2}{2}.$$
(5.33)

⁸Betrachte die Energie
erhaltung für den Ruhezustand und den Zustand, in dem alle Energie in kinetische Energie umgesetzt wurde (Expansion in Vakuum). Dann ist
 $0 + c_0^2/(\varkappa - 1) = v_{\max}^2/2$. Mit $c^2 = \varkappa RT$ folgt
 $v_{\max} = \sqrt{2\varkappa RT_0/(\varkappa - 1)}$, wobei T_0 die Ruhetemperatur ist.

Hieraus erhalten wir die azimutale Geschwindigkeit q_2 als Funktion der radialen Geschwindigkeit q_1

$$q_2 = \pm \sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \sqrt{v_{\max}^2 - q_1^2}.$$
 (5.34)

Im folgenden betrachten wir eine negative azimutale Geschwindigkeit (negatives Vorzeichen, $q_2 < 0$). Dies entspricht der Situation, in der eine Strömung in positiver *x*-Richtung in negativer *y*-Richtung umgelenkt wird. Zur Bestimmung von q_1 und q_2 benötigen wir noch eine zweite Gleichung. Deshalb setzen wir q_2 aus (5.34) in die Drehungsfreiheit (5.27) ein und erhalten eine Gleichung für q_1 allein

$$\frac{\partial q_1}{\partial \beta} = -\sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \sqrt{v_{\max}^2 - q_1^2}.$$
(5.35)

Die Gleichung kann man durch Trennung der Variablen lösen⁹ mit dem Ergebnis

$$q_1 = v_{\max} \sin\left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}}(C - \beta)\right], \qquad (5.36)$$

wobe
i ${\cal C}$ eine Integrationskonstante ist.

Zur Bestimmung der Integrationskonstante betrachten wir im folgenden nur den speziellen Fall einer Anströmung mit M = 1 (Abb. 5.16). Durch die Expansion hinter der Kante wird das Gas auf Überschallgeschwindigkeit beschleunigt. In der Anströmung mit M = 1 verlaufen die Machlinien parallel zur *y*-Achse. Auf der *y*-Achse bei $\beta = \pi/2$ ist daher die Azimutalgeschwindigkeit $q_2 = -c$ und die Radialgeschwindigkeit verschwindet dort (Abb. 5.16). Für M = 1 und $\beta < \pi/2$ wird die Strömung umgelenkt und die radiale Geschwindigkeit erhöht sich.¹⁰ Deshalb fordern wir

$$q_1\left(\beta = \frac{\pi}{2}\right) = 0. \tag{5.37}$$

Damit wird $C = \pi/2$ und wir erhalten

$$q_1 = v_{\max} \sin\left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \left(\frac{\pi}{2} - \beta\right)\right], \qquad (5.38a)$$

$$q_2 = -v_{\max}\sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \cos\left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \left(\frac{\pi}{2} - \beta\right)\right], \qquad (5.38b)$$

wobei man die Azimutalgeschwindigkeit (5.38b) aus (5.34) erhält oder entsprechend (5.27) durch Ableiten von (5.38a) nach β .

⁹Unter Beachtung der Stammfunktion

$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) \quad \text{erhält man} \quad \arcsin\left(\frac{q_1}{v_{\max}}\right) = -\sqrt{\frac{\varkappa - 1}{\varkappa + 1}}\beta + C'.$$

¹⁰Für eine Anströmung mit M > 1 sind die Machlinen geneigt ($\alpha < \pi/2$) und die Strömung wird erst für Polarwinkel $\beta < \alpha$ umgelenkt.

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

Abbildung 5.17.: Winkel bei der Strömungsumlenkung um eine scharfe konvexe Ecke mit Umlenkwinkel $-\vartheta$, Polarwinkel β und Machwinkel α . Die Anströmung erfolgt in *x*-Richtung mit M = 1.

Wir wenden uns nun der Berechnung des lokalen Umlenkwinkels ϑ zu, den die lokale Strömungsrichtung gegenüber der *x*-Achse macht. Aus der Skizze in Abb. 5.17 folgt

$$-\vartheta = \alpha - \beta = \left(\frac{\pi}{2} - \beta\right) - \left(\frac{\pi}{2} - \alpha\right) > 0.$$
(5.39)

Man kann ϑ alle
in durch die lokale Machzahl M ausdrücken. Dazu berechnen wir zunächst
 $\pi/2 - \beta$. Es gilt

$$M^{2} = \frac{\vec{v}^{2}}{c^{2}} = \frac{q_{1}^{2} + q_{2}^{2}}{c^{2}} \stackrel{c^{2} = q_{2}^{2}}{=} \frac{q_{1}^{2} + q_{2}^{2}}{q_{2}^{2}} = 1 + \frac{q_{1}^{2}}{q_{2}^{2}},$$

$$\Rightarrow M^{2} - 1 = \frac{q_{1}^{2}}{q_{2}^{2}} \stackrel{(\mathbf{5.38})}{=} \frac{\varkappa + 1}{\varkappa - 1} \tan^{2} \left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \left(\frac{\pi}{2} - \beta \right) \right].$$
(5.40)

Hieraus folgt

$$\frac{\pi}{2} - \beta = \sqrt{\frac{\varkappa + 1}{\varkappa - 1}} \arctan\left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}}\sqrt{M^2 - 1}\right].$$
(5.41)

子. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

110

Zur Berechnung von $\pi/2 - \alpha$ beachten wir

$$\frac{q_2}{|\vec{v}|} = \frac{c}{|\vec{v}|} = \frac{1}{M} = \sin\alpha \quad \Rightarrow \quad \tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha = \sqrt{\sin^{-2}\alpha - 1} = \sqrt{M^2 - 1},$$
(5.42)

und somit

$$\frac{\pi}{2} - \alpha = \arctan\sqrt{M^2 - 1}.$$
(5.43)

Wenn wir (5.41) und (5.43) in (5.39) einsetzen, erhalten wir den lokalen Umlenkwinkel ϑ als Funktion der lokalen Machzahl M

$$-\vartheta = \underbrace{\sqrt{\frac{\varkappa + 1}{\varkappa - 1}} \arctan\left[\sqrt{\frac{\varkappa - 1}{\varkappa + 1}}\sqrt{M^2 - 1}\right]}_{\pi/2 - 1} - \underbrace{\arctan\sqrt{M^2 - 1}}_{\arctan\sqrt{M^2 - 1}}.$$
 (5.44)

Die Funktion $-\vartheta(M)$ wird *Prandtl-Meyer-Funktion* genannt.¹¹ Die Prandtl-Meyer-Funktion gibt den Strömungswinkel als Funktion der Machzahl an, bezogen auf die Strömungsrichtung bei M = 1.

Wenn man M durch M^* ausdrückt, 12 erhält man

$$-\vartheta = \sqrt{\frac{\varkappa + 1}{\varkappa - 1}} \arctan \sqrt{\frac{M^{\ast 2} - 1}{\frac{2}{\varkappa - 1} - (M^{\ast 2} - 1)}} - \arctan \sqrt{\frac{\varkappa + 1}{\varkappa - 1}} \frac{M^{\ast 2} - 1}{\frac{2}{\varkappa - 1} - (M^{\ast 2} - 1)}}.$$
(5.45)

Der maximale Umlenkwinkel ergibt sich bei der Expansion ins Vakuum (Abb. 5.18). Am Ende der Expansion bei $\beta = \beta_{\min}$ ist $q_2 = c = 0$. Aus (5.38b) mit $q_2 = 0$ folgt

$$q_2 = 0 \quad \stackrel{(\mathbf{5.38b})}{\Rightarrow} \quad \sqrt{\frac{\varkappa - 1}{\varkappa + 1}} \left(\frac{\pi}{2} - \beta_{\min}\right) = \frac{\pi}{2} \quad \Rightarrow \quad \beta_{\min} = -\frac{\pi}{2} \left\lfloor \sqrt{\frac{\varkappa + 1}{\varkappa - 1}} - 1 \right\rfloor. \tag{5.46}$$

Wegen $q_2 = c = 0$ ist auch der Machwinkel $\alpha = 0$ und aus der Definition $-\vartheta = \alpha - \beta$ folgt $|\vartheta_{\max}| = -\beta_{\min}$, so daß

$$\left|\vartheta_{\max}\right| = \frac{\pi}{2} \left[\sqrt{\frac{\varkappa + 1}{\varkappa - 1}} - 1 \right].$$
(5.47)

$$M^{2} = \frac{M^{*2} - 1}{1 - (\varkappa - 1) (M^{*2} - 1) / 2}$$

¹¹In der vor-numerischen Zeit hatte es sich als sinnvoll erwiesen, die Funktion Ch(M) so zu definieren, daß Ch(M) := $1000 + \vartheta$ ist. Dabei sind ϑ und Ch in Winkelgraden anzugeben.

¹²Auflösen von (5.10) nach M² liefert

Abbildung 5.18.: Maximaler Umlenkwinkel bei der Expansion ins Vakuum. Die Machlinien sind gestrichelt dargestellt.

Für Luft ($\varkappa = 1.4$) ergibt sich damit der maximale Umlenkwinkel $|\vartheta_{\text{max}}| = 2.2769 = 130.45^{\circ}$.

Die Strömungseigenschaften bei der Prandtl-Meyer-Expansion kann man bequem in der *Hodographenebene* ablesen (Abb. 5.19, siehe auch Anhang A), die durch u/c^* und v/c^* aufgespannt wird. In dieser Ebene sind Linien konstanter Machzahl M^{*} Kreise um den Ursprung. Man kann nun den Umlenkwinkel $\vartheta(M^*)$ nach (5.45) als Polarwinkel in der Hodographenebene auftragen. Jeder Punkt dieser Kurve entspricht dann der lokalen Machzahl M^{*} (radiale Koordinate) bei gegebenem lokalen Umlenkwinkel ϑ (Polarwinkel). Gleichzeitig kann man die zugehörigen kartesischen Komponenten der lokalen Geschwindigkeit $(u/c^*, v/c^*)$ ablesen. Die Kurve $u^*(\mathbf{M}), v^*(\mathbf{M}),$ die sich für Anströmmachzahl $\mathbf{M} = 1$ ergibt, ist blau dargestellt. Entlang der Kurve variiert die lokale Machzahl von M = 1 bei $\vartheta = 0$ bis $M \to \infty$ bei $\vartheta = \vartheta_{\rm max} = -130.45^{\circ}$. Die beiden schwarzen Kurven sind um $\pm \pi/4$ gegenüber der blauen verschoben. Eine der Kurven schneidet die u/c^* -Achse bei einer endlicher Machzahl. Der weitere Verlauf beschreibt dann die Expansion bei einer Anström-Machzahl, die gerade dem Schnittpunkt mit der u/c^* -Achse entspricht. Die gepunkteten Kurven beschreiben die Expansion bei positiven Werten von ϑ (Expansion in die positive y-Richtung). Alle Kurven haben die Form von Epizykloiden.

Beispiel: Expansionsfächer an konvexer Ecke (Abb. 5.20) Gegeben ist der Anströmzustand mit $M_{\infty} = 1.40$ und die Umlenkung mit $\vartheta = -20^{\circ}$. Gesucht sind die Machzahl M_e und der Machwinkel α_e am Ende der Umlenkung sowie die Verhältnisse p_e/p_{∞} , ρ_e/ρ_{∞} und T_e/T_{∞} . Bei welcher Machzahl hat die Strömung eine Umlenkung von $\vartheta = -10^{\circ}$ erreicht?

Lösung Zur Lösung bedient man sich des Diagramms in der Hodographenebene bzw. der tabellierten Werte der auf den Ruhezustand (Index 0) bezogenen normierten Zustandsgrößen als Funktion des Umlenkwinkels $-\vartheta$. Diese Größen sind in Tabelle A.4 (Anhang A) gelistet.

1. Zunächst muß man denjenigen Winkel bestimmen, um den man die Kurve

Abbildung 5.19.: Hodographenebene für die Expansion einer Überschallströmung. Die blaue Kurve gibt die kartesischen Geschwindigkeitskomponenten als Funktion des Umlenkwinkels ϑ für den Fall einer Anströmung mit M = 1 an. Im Laufe der Expansion erhöht sich die lokale Machzahl bis M $\rightarrow \infty$ (bei Expansion ins Vakuum). Die Punkte, an denen die lokalen Machzahlen M = 1, 2, ..., 10 betragen, sind als blaue Kreise eingetragen.

Abbildung 5.20.: Strömungsumlenkur und Expansionsfächer an einer konvexen Ecke.

für M = 1 drehen muß, damit die Anström-Machzahl M_{∞} auf der *x*-Achse liegt. Dies ist gerade der Winkel, um welchen eine Anströmung mit M = 1 umgelenkt wird, wenn sie durch Expansion auf M_{∞} = 1.4 beschleunigt wurde. Aus Tabelle A.4 (Anhang A) ergibt sich für M = 1.4: $\vartheta_{T_{\infty}} = -9^{\circ}$. Weiter ist

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Abbildung 5.21.: Rechtslaufende Machlinie $\eta(x, y) = \text{const.}$ und lokale Koordinaten (x, y).

kann man ablesen: $\alpha_{\infty} = 45^{\circ}35'$ und

$$\frac{p_{\infty}}{p_0} = 0.3142, \quad \frac{\rho_{\infty}}{\rho_0} = 0.4374, \quad \frac{T_{\infty}}{T_0} = 0.7184.$$
 (5.48)

2. Wenn man nun die blaue Kurve für M = 1 um den Winkel $\vartheta_{T_{\infty}} = -9^{\circ}$ dreht, ist hat man auf der x-Achse gerade M = M_{∞} = 1.4. Mit dem vorgegebenen Umlenkwinkel $\vartheta = -20^{\circ}$ für M = 1.4 müßte eine Strömung mit M = 1 um den Winkel $\vartheta_{Te} = -9^{\circ} - 20^{\circ} = -29^{\circ}$ umgelenkt werden, um dieselbe Machzahl nach der Expansion zu erreichen. Dann ergibt sich wieder aus der Tabelle M_e = 2.096 und $\alpha_e = 28^{\circ}30'$. Damit ergeben sich die Werte

$$\frac{p_e}{p_0} = 0.1099 \quad \Rightarrow \quad \frac{p_e}{p_\infty} = 0.350,$$
 (5.49a)

$$\frac{\rho_e}{\rho_0} = 0.2066 \quad \Rightarrow \quad \frac{\rho_e}{\rho_\infty} = 0.472, \tag{5.49b}$$

$$\frac{T_e}{T_0} = 0.5322 \quad \Rightarrow \quad \frac{T_e}{T_\infty} = 0.741. \tag{5.49c}$$

3. Die Machlinie für $\vartheta=-10^\circ$ bestimmt sich über $\vartheta_T=-9^\circ-10^\circ=-19^\circ$ zu

$$M = 1.741, \quad \alpha = 35^{\circ}3' \tag{5.50}$$

und daher

$$\vartheta + \alpha = 25^{\circ}3'. \tag{5.51}$$

5.3. Charakteristikenverfahren

Die bisher gewonnenen Ergebnisse können noch erheblich verallgemeinert werden. Um dies zu sehen, greifen wir aus einem beliebigen Strömungsfeld eine Machlinie heraus, und führen kartesische Koordinaten so ein, daß die x- und y Achsen im betrachteten Punkt tangential und normal auf die Machlinie stehen (Abb. 5.21). In diesem Koordinatensystem lautet die gasdynamische Gleichung (4.7) mit v = c

$$(u^{2} - c^{2})\frac{\partial u}{\partial x} + uv\underbrace{\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)}_{2\partial v/\partial x, \ (4.8)} + \underbrace{\left(v^{2} - c^{2}\right)}_{=0}\frac{\partial v}{\partial y} = 0,$$
(5.52)

also

$$(u^2 - c^2)\frac{\partial u}{\partial x} + 2uc\frac{\partial v}{\partial x} = 0.$$
(5.53)

Man beachte, daß in dieser Beziehung nur mehr die Ableitungen nach einer Richtung, in Richtung tangential zur Machlinie auftreten. Dies bedeutet, daß u, c und v auf einer Machlinie nicht beliebig vorgegeben werden können, sondern eine Verträglichkeitsbedingung erfüllen müssen.

Der Energiesatz läßt sich ja wegen der Bedingung v = c so schreiben

$$\frac{u^2 + v^2}{2} + \frac{c^2}{\varkappa - 1} = \frac{u^2}{2} + \frac{\varkappa + 1}{2(\varkappa - 1)}c^2 = \frac{c_0^2}{\varkappa - 1}.$$
(5.54)

Längs der Machlinie besteht som
it ein eindeutiger Zusammenhang zwischen \boldsymbol{u} und
 \boldsymbol{c}

$$c = c(u). \tag{5.55}$$

Damit kann (5.53) durch Trennung der Variablen im Prinzip gelöst werden,

$$-\frac{u^2 - c^2(u)}{2uc(u)} du = dv.$$
(5.56)

Die gesuchte Lösung können wir in der Form v = f(u) schreiben, wobei u und v nun wieder die üblichen Komponenten der Strömungsgeschwindigkeit in kartesischen Koordinaten bedeuten, oder zweckmäßigerweise als

$$\vartheta = g(\mathbf{M}^*) \tag{5.57}$$

formulieren. In dieser Form kennen wir die Lösung allerdings bereits. Um dies zu erkennen, betrachten wir noch einmal eine Prandtl-Meyer-Eckenströmung (Abb. 5.22). Bekanntermaßen gilt nach Gleichung (5.45) $\vartheta = Ch(M^*) - const.$, also

$$g(\mathcal{M}^*) = \mathrm{Ch}(\mathcal{M}^*) - \mathrm{const.}, \qquad (5.58)$$

oder

$$Ch(M^*) - \vartheta = const.$$
 auf $\eta = const.$ (5.59)

Dies ist die integrierte Form der *Verträglichkeitsbedingung* längs rechtslaufenden Machlinien.

Das entsprechende Resultat für linkslaufende Machlinien erhält man aus der Betrachtung der Prandtl-Meyer-Expansion um eine Ecke wie in Abb. 5.23 gezeigt. Man erkennt unmittelbar, daß nur ϑ durch $-\vartheta$ ersetzt werden muß. Dies ergibt

Abbildung 5.22.: Prandtl-Meyer-Eckenströmung.

Abbildung 5.23.: Prandtl-Meyer-Eckenströmung.

schließlich

$$Ch(M^*) - \vartheta = 2\mu \quad \text{auf} \quad \eta = \text{const.}, Ch(M^*) + \vartheta = 2\lambda \quad \text{auf} \quad \xi = \text{const.},$$
(5.60)

wobei die sogenannten Richtungsbedingungen

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{\xi} = \tan(\vartheta + \alpha), \tag{5.61a}$$

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{\eta} = \tan(\vartheta - \alpha). \tag{5.61b}$$

gelten.

Als Anwendungsbeispiel dieser Ergebnisse betrachten wir den Fall, daß auf einer Kurve C die Werte von ϑ und M^{*} vorgegeben sind (Abb. 5.24). Hierbei können folgende Gebiete unterschiedene werden:

l: Abhängigkeitsgebiet Die Lösung im Punkt 6 hängt nur von den Anfangsdaten auf C zwischen den Punkten 2 und 3 ab,

II: Fortsetzungsgebiet Hier liegt die Lösung eindeutig durch die Anfangsdaten auf C fest,

III: Einflußgebiet Die Lösung liegt durch die Anfangsdaten auf C nicht eindeutig fest, wird aber durch sie beeinflußt.

Abbildung 5.24.: Abhängigkeits- (I), Fortsetzungs- (II) und Einflußgebiet (III).

Aus der Skizze in Abb. 5.24 ist unmittelbar ersichtlich, daß die Konstanten λ und μ die folgenden Bedingungen erfüllen.

- $\lambda_1 = \lambda_5 = \lambda_8 = \lambda_{10}, \tag{5.62a}$
- $\lambda_2 = \lambda_6 = \lambda_9. \tag{5.62b}$
- $\lambda_3 = \lambda_7, \tag{5.62c}$
- $\mu_4 = \mu_7 = \mu_9 = \mu_{10}, \tag{5.62d}$
- $\mu_3 = \mu_6 = \mu_8, \tag{5.62e}$

$$\mu_2 = \mu_5. \tag{5.62f}$$

Aus der Auflösung der Gleichungen (5.60)

$$Ch(M^*) = \lambda + \mu, \qquad (5.63a)$$

$$\vartheta = \lambda - \mu \tag{5.63b}$$

folgen dann sofort die Zustandsgrößen in 5-10, z.B.

$$\vartheta_9 = \lambda_2 - \mu_4, \tag{5.64a}$$

$$Ch(M_9^*) = \lambda_2 + \mu_4.$$
 (5.64b)

Die Lage des Punktes 9 findet man durch die Anwendung von Gleichung (5.61).

3. C. Kuhlmann, A. Kluwiđ Strömungsmechanik 2

Abbildung 5.25.: Stoßpolare und Verträglichkeitsbedingung.

5.4. Schwache Stöße

Da schwache Stöße in erster und zweiter Näherung als isentrop angesehen werden können,¹³ stimmt die Neigung und Krümmung der Charakteristiken und der Stoßpolaren in der Geschwindigkeitsebene im ungestörten Zustand überein.

Taylorreihenentwicklung der Verträglichkeitsbedingung um den ungestörten Zustand $u = u_1, v = 0$ ergibt:

$$v = a(u_1 - u) - \frac{b}{2}(u_1 - u)^2 + \underbrace{O\left((u_1 - u)^3\right)}_{(*)}.$$
(5.65)

Der durch (*) gekennzeichnete Term weicht von jenem für die Stoßpolare ab; die Entropiezunahme im Stoß ist von der Größenordnung $O[(u_1 - u)^3]$.

Die Orthogonalitätsrelationen lauten (ohne Beweis)

$$\frac{\mathrm{d}V}{\mathrm{d}u} = -\cot(\vartheta \pm \alpha),\tag{5.66}$$

daher gilt

$$\left. \frac{\mathrm{d}V}{\mathrm{d}u} \right|_{u=u_1} = -a = \mp \cot \alpha_1, \tag{5.67a}$$

$$\left. \frac{\mathrm{d}V}{\mathrm{d}u} \right|_{u=\hat{u}_1} = -a + b(u_1 - \hat{u}_1) = -\cot(\hat{\vartheta}_1 \pm \hat{\alpha}_1), \tag{5.67b}$$

daraus ergibt sich der Stoßwinkel wegen (5.7d)

$$\cot \gamma = \frac{\hat{v}_1}{u_1 - \hat{u}_1} \tag{5.68}$$

¹³Siehe auch die dynamischen Adiabaten und Isentropen bei eindimensionaler, stationärer Strömung bei idealen Gasen, Skriptum zu Grundlagen der Strömungslehre

Abbildung 5.26.: Pfriemsche Regel.

Abbildung 5.27.: Schlanker Körper und Machlinien.

zu

$$\cot \gamma = a - \frac{b}{2}(u_1 - \hat{u}_1) + \ldots = \frac{a}{2} - \frac{1}{2}\left[-a + b(u_1 - \hat{u}_1)\right] = \pm \frac{1}{2}\cot(\hat{\vartheta}_1 \pm \hat{\alpha}_1). \quad (5.69)$$

Allgemein gilt

$$\cot \gamma = \pm \frac{1}{2} \left[\cot(\alpha_1 \pm \vartheta_1) + \cot(\hat{\alpha}_1 \pm \hat{\vartheta}_1) \right].$$
 (5.70)

Diese Beziehung wird als *Pfriemsche Regel* (bisector rule) bezeichnet (Abb. 5.26).

5.5. Schlanke Profile (Einfache Wellen)

Wie in Abschnitt 4.5 betrachten wir die Strömung um ein schlankes Profil (Abb. 5.27). Im Gegensatz zu früher wollen wir aber nicht mehr die Gleichungen linearisieren, sondern die in Abschnitt 5.3 erhaltenen nichtlinearen Ergebnisse verwenden.

Wir betrachten hier nur die Strömung auf der Oberseite des Profils. Die Behandlung der Strömung auf der Unterseite erfolgt ganz analog. Da alle rechtslaufenden

3. C. Luhimann, A. Kluwid Strömungsmechanik 2

Abbildung 5.28.: Schwache Stöße und Machlinien.

Machlinien aus dem Gebiet der ungestörten Anströmung $\vartheta=0,\, {\rm M}^*={\rm M}^*_\infty$ kommen, gilt

$$\mu_{\infty} = \frac{1}{2} \operatorname{Ch}(\mathcal{M}_{\infty}^*).$$
(5.71)

Auf der linkslaufenden Machlinie durch P gilt nach Gleichung (5.63)

$$\vartheta = \lambda - \mu_{\infty} = \text{const.} = \vartheta_W, \tag{5.72}$$

also

$$\lambda = \vartheta_W + \mu_\infty, \tag{5.73}$$

daher

$$Ch(M^*) = \lambda + \mu_{\infty} = \vartheta_W + 2\mu_{\infty} = \vartheta_W + Ch(M^*_{\infty}).$$
(5.74)

Somit gilt auf jeder Machlinie $\xi = \text{const.}$

$$\vartheta = \vartheta_W, \tag{5.75a}$$

$$Ch(M^*) = \vartheta_W + Ch(M^*_\infty). \tag{5.75b}$$

Dies bedeutet, daß ϑ und M^{*} und alle Feldgrößen auf linkslaufenden Machlinien konstant sind. Daraus wiederum folgt, daß linkslaufende Machlinien Geraden darstellen (Abb. 5.28).

Im allgemeinen ändert sich die Stoßstärke mit y (sie nimmt mit zunehmendem y ab), das heißt, daß d $s/d\psi$ im allgemeinen von 0 verschieden ist und daraus folgt wieder, daß die Strömung stromabwärts von Stößen i.a. rotationsbehaftet ist (Croccoscher Wirbelsatz). Bei schlanken Profilen kann dieser Effekt wegen der Kleinheit der Entropieänderungen näherungsweise vernachlässigt werden.

Abbildung 5.29.: Stöße und Prandtl-Meyer-Expansion.

Abbildung 5.30.: Ackeret-Theorie.

5. Nichtlineare Effekte bei Überschallströmung

6. Dünne Reibungsschichten

In diesem Kapitel wollen wir uns mit dem Einfluß der inneren Reibung auf Strömungen beschäftigen. Um den Rechenaufwand gering zu halten, beschränken wir uns auf den Fall dünner Reibungsschichten, bei denen sich die Feldgrößen in der Hauptströmungsrichtung x wesentlich langsamer ändern als quer dazu. Strömungen dieser Art sind bei vielen praktischen Problemen von Bedeutung (hydrodynamische Schmierung, Grenzschichtströmung), lassen aber wesentliche Vereinfachungen der Grundgleichungen zu. Die folgenden Betrachtungen setzen eine ebene (zweidimensionale) Geometrie und stationäre Zustände voraus.

Betrachten wir also einen schmalen Spalt (Abb. 6.1) mit einer Querschnittsfläche A(x), die langsam variiert, d.h. für welche $dA/dx \ll 1$. Wenn A(x) langsam in x variiert, dann wird auch die x-Komponente der Geschwindigkeit langsam in x-Richtung variieren: $\partial u/\partial x \ll 1$ (in einer geeigneten Skalierung).

Die Grundgleichungen umfassen die Massenbilanz

$$\frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} = 0, \tag{6.1}$$

und die Bewegungsgleichungen. Die x-Komponente der Bewegungsgleichung können wir an dem Gleichgewicht der Kräfte in x-Richtung ablesen, die in Abb. 6.2 dargestellt ist. Hierbei ist τ_{xy} die Schubspannung und τ_{xx} die viskose Normalspannung in x-Richtung als Folge der inneren Reibung. Die auf das Volumen wirkende Kraft in x-Richtung lautet pro Volumen $\Delta x \Delta y$

$$F_x = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}.$$
(6.2)

Abbildung 6.1.: Schmaler Spalt.

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

Abbildung 6.2.: Bilanzierung aller in *x*-Richtung wirkenden Kräfte (Druck- und Reibungskräfte) auf ein infinitesimales Volumenelement.

Da sich die Feldgrößen in x-Richtung nur sehr langsam ändern, gilt

$$\left|\frac{\partial \tau_{xx}}{\partial x}\right| \ll \left|\frac{\partial \tau_{xy}}{\partial y}\right|. \tag{6.3}$$

Unter Vernachlässigung des kleinen Terms $\partial \tau_{xx} / \partial x$ vereinfacht sich die x-Komponente der Bewegungsgleichung zu

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}.$$
(6.4)

Um den Spanungstensor durch die Geschwindigkeiten auszudrücken, nehmen wir an, daß es sich bei dem strömenden Medium um ein *Newtonsches Fluid* handelt. Dann gilt im Rahmen der hier betrachteten Näherung

$$\tau_{xy} = \mu \frac{\partial u}{\partial y},\tag{6.5}$$

wobei $\mu(\rho, T)$ die *dynamische Viskosität* ist.

Da die Stromlinien nur sehr schwach gekrümmt sind, ist der Druckgradient in y-Richtung sehr klein. Die Bewegungsgleichung in y-Richtung vereinfacht sich daher zu

$$\frac{\partial p}{\partial y} = 0, \tag{6.6}$$

oder p = p(x). Damit lauten die approximierten Bewegungsgleichungen

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right), \qquad (6.7a)$$

$$p = p(x). \tag{6.7b}$$

Abbildung 6.3.: Bilanzierung der Wärmequellen (mitbewegtes Koordinatensystem).

Im allgemeinen wird zur Beschreibung der Strömung noch der *Energiesatz* (1. Hauptsatz der Thermodynamik in einem mit dem betrachteten Fluidelement mitbewegten Bezugssystem) benötigt. Die dem Volumenelement zugeführte Wärme und die am Element verrichtete Arbeit pro Zeiteinheit ist (siehe Abb. 6.3, q_y ist die Wärmestromdichte in *y*-Richtung)

$$\frac{1}{\mathrm{d}x\mathrm{d}y}\left[-\frac{\partial q_y}{\partial y}\mathrm{d}x\mathrm{d}y + \tau_{xy}\frac{\partial u}{\partial y}\mathrm{d}x\mathrm{d}y\right] = -\frac{\partial q_y}{\partial y} + \tau_{xy}\frac{\partial u}{\partial y}.$$
(6.8)

Mit diesen Energiequellen erhält man aus (1.24)

$$\rho \left[\frac{Dh}{Dt} - \frac{1}{\rho} \frac{Dp}{Dt} \right] = -\frac{\partial q_y}{\partial y} + \tau_{xy} \frac{\partial u}{\partial y}.$$
(6.9)

Hierbei wurde schon die für dünne Schichten zulässige Näherung

$$\left|\frac{\partial q_x}{\partial x}\right| \ll \left|\frac{\partial q_y}{\partial y}\right| \tag{6.10}$$

berücksichtigt (die Wärmestromdichte variiert nur langsam in x-Richtung).

Im weiteren setzen wir die Gültigkeit des *Fourierschen Wärmeleitungsgesetzes* voraus

$$q_y = -\lambda \frac{\partial T}{\partial y},\tag{6.11}$$

wobe
i $\lambda(\rho,T)$ die Wärmeleitfähigkeit ist. Dann erhält man schließlich den Energiesatz in der Form

$$\rho \left[\frac{Dh}{Dt} - \frac{1}{\rho} \frac{Dp}{Dt} \right] = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^2.$$
(6.12)

3. C. Luhimann, A. Kluwid Strömungsmechanik 2 125

Abbildung 6.4.: Geometrie eines Gleitschuhs mit Spaltweite h(x).

6.1. Grundlagen der hydrodynamischen Schmierungstheorie

Die Fähigkeit eines Gleitlagers oder Spurlagers, Belastungen aufzunehmen, ohne daß es dabei zu einer Berührung zwischen Welle und Lagerschale kommt, beruht auf dem hohen Druck, der sich bei der Strömung einer zähen Flüssigkeit (Schmiermittel, z.B. Öl) zwischen zwei relativ zueinander bewegten Flächen einstellt, wenn die Spaltweite klein ist und die Flächen leicht zueinander geneigt sind. Da es uns hier nur um die grundsätzlichen Eigenschaften solcher Strömungen geht, wollen wir im folgenden den Einfluß von Dichteänderungen vernachlässigen und setzen $\rho = \text{const.}$ Darüber hinaus beschränken wir uns auf die Untersuchung der Strömung in einem Spalt der Höhe h(x) zwischen einem Gleitschuh und einer bewegten ebenen Wand (Abb. 6.4).

6.1.1. Skalierte Gleichungen

In nahezu allen wichtigen Fällen von praktischer Bedeutung können die oben abgeleiteten Grundgleichungen noch weiter vereinfacht werden. Um das zu sehen, führen wir in den Gleichungen (6.1), (6.4) und (6.5) vorübergehend dimensionslose Größen ein, die wir durch einen Stern (*) kennzeichnen,

$$u = Uu^*,$$
 $v = Vv^*,$ $p = \mu_0 \frac{UL}{H^2} p^*,$
 $\mu = \mu_0 \mu^*,$ $x = Lx^*,$ $y = Hy^*,$ (6.13)

wobe
iHund μ_0 charakteristische Werte von
 hund μ darstellen. Damit wird aus der Kontinuität
sgleichung (6.1)

$$\frac{\partial u^*}{\partial x^*} + \frac{VL}{UH} \frac{\partial v^*}{\partial y^*} = 0.$$
(6.14)

Diese Beziehung ist nur dann sinnvoll, wenn VL/(UH) = O(1) die Größenordnung O(1) aufweist. Deshalb können wir ohne Einschränkung die vertikale Geschwindigkeitsskala

$$V = U \frac{H}{L} \tag{6.15}$$

wählen. Sie skaliert also mit dem kleinen Höhen-zu-Längenverhältnis H/L. Die x-Komponente der Bewegungsgleichung (6.7a) läßt sich damit schreiben als

$$\frac{U}{L}\left(u^*\frac{\partial u^*}{\partial x^*} + v^*\frac{\partial u^*}{\partial y^*}\right) = -\frac{\mu_0}{\rho H^2}\frac{\partial p^*}{\partial x^*} + \frac{\mu_0}{\rho H^2}\frac{\partial}{\partial y^*}\left(\mu^*\frac{\partial u^*}{\partial y^*}\right),\tag{6.16}$$

oder, mit $\mu_0 = \rho \nu$,

$$\operatorname{Re}^{*}\left(u^{*}\frac{\partial u^{*}}{\partial x^{*}}+v^{*}\frac{\partial u^{*}}{\partial y^{*}}\right)=-\frac{\partial p^{*}}{\partial x^{*}}+\frac{\partial}{\partial y^{*}}\left(\mu^{*}\frac{\partial u^{*}}{\partial y^{*}}\right),$$
(6.17)

wobei

$$\operatorname{Re}^{*} = \frac{UL}{\nu} \left(\frac{H}{L}\right)^{2} \tag{6.18}$$

die um den kleinen Faktor $(H/L)^2$ reduzierte Reynoldszahl bedeutet.

6.1.2. Schleichende Strömung

Meist ist $\text{Re}^* \ll 1$. Dann spricht man von *schleichender Strömung*. Dann können die Trägheitkräfte vernachlässigt werden und die Bewegungsgleichung in *x*-Richtung reduziert sich auf das Gleichgewicht zwischen Druck- und Schubspannungskräften

$$0 = -\frac{\partial p^*}{\partial x^*} + \frac{\partial}{\partial y^*} \left(\mu^* \frac{\partial u^*}{\partial y^*} \right), \qquad (6.19)$$

oder unter Verwendung dimensionsbehafteter Größen

$$0 = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right). \tag{6.20}$$

Integration von (6.20) über y liefert dann wegen p = p(x)

$$\mu \frac{\partial u}{\partial y} = y \frac{\mathrm{d}p}{\mathrm{d}x} + C_1(x). \tag{6.21}$$

Zur weiteren Vereinfachung sei noch $\mu = \text{const.}$ angenommen. Dann kann noch eine weitere Integration ausgeführt werden

$$\mu u = \frac{y^2}{2} \frac{\mathrm{d}p}{\mathrm{d}x} + C_1(x)y + C_2(x).$$
(6.22)

3. C. Luhlmann, A. Kluwic Strömungsmechanik 2 127

Die Randbedingungen für das Gleitschuh-Problem (6.4) lauten

$$u(y=0) = U,$$
 (6.23a)

$$u[y = h(x)] = 0.$$
 (6.23b)

Wenn man diese Randbedingungen in der allgemeinen Lösung verwendet, erhält man für die Integrationskonstanten

$$C_2(x) = \mu U = \text{const.},\tag{6.24a}$$

$$C_1(x) = -\frac{h}{2}\frac{\mathrm{d}p}{\mathrm{d}x} - \frac{\mu U}{h}.$$
(6.24b)

Damit erhalten wir das Geschwindigkeitsprofil

$$u(x,y) = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x} \underbrace{(y^2 - yh)}_{\leq 0} + \frac{U}{h} \underbrace{(h - y)}_{\geq 0}.$$
 (6.25)

Der erste Term auf der rechten Seite entspricht dem Hagen-Poiseuille-Anteil der Strömung, die durch den Druckgradienten dp/dx verursacht wird. Der zweite Term entspricht dem Couette-Anteil der Strömung, der durch die Relativbewegung der Berandungen bewirkt wird. Die beiden Effekte treten hier als Superposition auf, weil (6.20) eine lineare Differentialgleichung für u(y) ist.

Um die x-Abhängigkeit von p(x) und damit von u(x, y) zu erhalten, betrachten wir den Volumenstrom pro Tiefeneinheit \dot{V} . Dazu integrieren wir u(x, y) über y und bekommen

$$\dot{V} = \int_0^h u \mathrm{d}y = -\frac{h^3}{12\mu} \frac{\mathrm{d}p}{\mathrm{d}x} + \frac{Uh}{2}.$$
(6.26)

Die Kontinuitätsgleichung fordert $\dot{V}(x) = \text{const.}$ Aus $d\dot{V}/dx = 0$ folgt

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{h^3}{\mu} \frac{\mathrm{d}p}{\mathrm{d}x} \right) = 6U \frac{\mathrm{d}h}{\mathrm{d}x}.$$
(6.27)

Gleichung (6.27) ist ein Spezialfall der sogenannten *Reynoldsgleichung* für Spaltströmungen.¹ Wenn man (6.26) formal nach dp/dx auflöst, kann man auch schreiben

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{12\mu}{h^3} \left(\frac{Uh}{2} - \dot{V}\right) = 6\mu U \frac{h - \bar{h}}{h^3},\tag{6.28}$$

wobei $\bar{h} = 2\dot{V}/U$ die Bedeutung einer Integrationskonstante hat.² Damit haben wir p(x) auf h(x) zurückgeführt.

 $^{^1\}mathrm{Dies}$ ist nicht zu verwechseln mit den Reynolds-gemittelten Gleichungen für turbulente Strömungen.

 $^{^2\}bar{h}$ bedeutet hier *nicht* eine Mittelung des Spalthöhe. Es ist die Spalthöhe, bei welcher der Druck eine Extremum (Maximum) hat.

Abbildung 6.5.: Keilspalt.

6.1.3. Keilspalt

Um die Druck- und Geschwindigkeitsverteilung zu berechnen, betrachten wir den Spezialfall, daß die Weite des Schmierspalts linear mit x variiert. Dann ist

$$h(x) = h_0 \left(1 - \frac{x}{A}\right) \tag{6.29}$$

mit A = const. Mit den Geometrieparametern aus Abb. 6.5 ergibt sich die Beziehung

$$dh = -\frac{h_0}{A}dx = -\frac{h_1}{A-L}dx.$$
 (6.30)

Zur Charakterisierung der Geometrie definieren wir den Verengungsparameter

$$K := (h_0 - h_1)/h_1 > 0. (6.31)$$

Dann gilt

$$K = \frac{h_0}{h_1} - 1 = \frac{A}{A - L} - 1 = \frac{L}{A - L}$$
(6.32)

und man erhält

$$\mathrm{d}x = -\frac{L}{h_1 K} \mathrm{d}h. \tag{6.33}$$

Wenn man diese Beziehung in der Gleichung für den Druckgradienten (6.28) verwendet, erhält man

$$\mathrm{d}p = -\frac{6\mu UL}{h_1 K} \left(\frac{1}{h^2} - \frac{\bar{h}}{h^3}\right) \mathrm{d}h.$$
(6.34)

Einfache Integration liefert

$$p[h(x)] = -\frac{6\mu UL}{h_1 K} \left(-\frac{1}{h} + \frac{\bar{h}}{2h^2} + C \right).$$
(6.35)

Wenn man die Randbedingungen

$$p(x=0) = p(h=h_0) = 0,$$
 (6.36a)

$$p(x = L) = p(h = h_1) = 0,$$
 (6.36b)

3. C. Luhimann, A. Kluwiđ Strömungsmechanik 2 129

6. Dünne Reibungsschichten

einsetzt, erhält man zwei Gleichungen für die beiden Integrationskonstanten \bar{h} und C

$$0 = -\frac{1}{h_0} + \frac{\bar{h}}{2h_0^2} + C, \qquad (6.37a)$$

$$0 = -\frac{1}{h_1} + \frac{\bar{h}}{2h_1^2} + C.$$
 (6.37b)

Die Auflösung dieser in \bar{h} und C linearen Gleichungen liefert

$$\bar{h} = \frac{2h_0h_1}{h_0 + h_1},\tag{6.38a}$$

$$C = \frac{1}{h_0 + h_1}.$$
 (6.38b)

Damit erhalten wir

$$p[h(x)] = \frac{6\mu UL}{h_1 K} \left[\frac{1}{h} - \frac{h_0 h_1}{h^2 (h_0 + h_1)} - \frac{1}{h_0 + h_1} \right].$$
(6.39)

Wenn man dimensionslose Größen mit Längenskala $H \equiv h_1$ in y-Richtung verwendet, lauten die dimensionslose Spaltweite und der dimensionslose Druck (siehe (6.13)), dem wir noch einen Faktor 6 spendieren,

$$h^* = \frac{h}{h_1},\tag{6.40a}$$

$$p^* = \frac{h_1^2}{6\mu UL} p.$$
 (6.40b)

Damit ergibt sich die dimensionslose Druckverteilung

$$p^* = \frac{1}{K} \left[\frac{1}{h^*} - \frac{K+1}{(K+2){h^*}^2} - \frac{1}{K+2} \right].$$
(6.41)

Wie man aus (6.28) unmittelbar erkennt, tritt das Maximum des Druckes bei $h = \bar{h}$ auf. Wenn man diese Bedingung auswertet, erhält man

$$p_{\max}^* = \frac{K}{4(K+1)(K+2)},\tag{6.42a}$$

$$p_{\max} = \frac{6\mu UL}{h_1 K} \frac{(h_0 - h_1)^2}{4h_0 h_1 (h_0 + h_1)}.$$
 (6.42b)

Die Druckverteilung entlang dem Spalt und die charakteristischen Geschwindigkeitsprofile sind in Abb. 6.6 dargestellt.

Als Maß für die vom Schmierspalt übertragene Kraft führen wir den mittleren Druck \bar{p} ein

$$\bar{p} = \frac{1}{L} \int_0^L p \,\mathrm{d}x. \tag{6.43}$$

3. C. Kuhlmann, A. Kluwiđ Strömungsmechanik 2

130

Abbildung 6.6.: Druckverteilung entlang dem Keilspalt und typische Geschwindigkeitsprofile. An der mit \bar{h} bezeichneten Stelle ist die Spaltweite $h = \bar{h}$ und das Geschwindigkeitsprofil linear (Couette).

Wenn man die Integration über dx durch Integration über dh entsprechend (6.33) ausdrückt und für p (6.39) verwendet, ergibt sich

$$L\bar{p} = -\frac{L}{h_1 K} \int_{h_0}^{h_1} p(h) \,\mathrm{d}h = \frac{6\mu U L^2}{h_1^2 K^2} \int_{h_1}^{h_0} \left[\frac{1}{h} - \frac{h_0 h_1}{h^2 (h_0 + h_1)} - \frac{1}{h_0 + h_1}\right] \mathrm{d}h, \quad (6.44)$$

und nach Integration

einführt

$$\frac{h_1^2}{6\mu UL}\bar{p} = \frac{1}{K^2} \left[\ln h + \frac{h_0 h_1}{h(h_0 + h_1)} - \frac{h}{h_0 + h_1} \right]_{h_1}^{h_0} = \frac{1}{K^2} \left[\ln \frac{h_0}{h_1} - \frac{2(h_0 - h_1)}{h_0 + h_1} \right].$$
(6.45)

 $So := \frac{\bar{p}h_1^2}{6\mu UL},\tag{6.46}$

Wenn man die *Sommerfeldzahl* als Maß für den mittleren Druck

und in (6.45) K verwendet, dann erhält man den normierten mittleren Druck in der Form

So =
$$\frac{1}{K^2} \left[\ln(1+K) - \frac{2K}{K+2} \right].$$
 (6.47)

Dies ist das Ähnlichkeitsgesetz für die Strömung durch einen Gleitschuh. In Abb. 6.7 ist So(K) für verschiedene Tiefen (in z-Richtung) gezeigt.

Arnold Johannes Wilhelm Sommerfeld 1868–1951

Abbildung 6.7.: (a) Sommerfeldzahl als Funktion des Verengungsparameters K (Keilspalt) nach (6.47). In (b) ist der Einfluß des Tiefen-/Längenverhältnis (Parameter b/L) des Gleitschuhs dargestellt (aus Cameron 1976).

K	0	0.5	1	1.5	2	3	4
X^*	0.5	0.5404	0.5687	0.5902	0.6074	0.6338	0.6536

Tabelle 6.1.: Normierte Kraftangriffspunkte X^* als Funktion des Spaltparameters K.

Für K = O(1) $(h_0/h_1 \gtrsim 2)$ ist auch So = O(1). Gleichung (6.46) liefert dann

$$\bar{p} = O\left(\frac{6\mu UL}{h_1^2}\right). \tag{6.48}$$

Bei kleinen Spalthöhen können also sehr große Kräfte übertragen werden.

Die Berechnung des Kraftangriffspunktes Xerfolgt über das Drehmoment bzgl. $\boldsymbol{x}=\boldsymbol{0}$

$$\bar{p}LX = \int_0^L p(x)x \,\mathrm{d}x,\tag{6.49}$$

und führt zu dem Ergebnis (siehe z.B. Cameron (1976), S. 53)

$$X^* = \frac{X}{L} = \frac{2(3+K)(1+K)\ln(1+K) - K(6+5K)}{2K[(2+K)\ln(1+K) - 2K]}.$$
 (6.50)

Diese Funktion ist in Abb. 6.8 dargestellt. Einige numerische Werte sind in Tabelle 6.1 angegeben.

Abbildung 6.8.: Angriffspunkt der Kraft X/L im Schmierfilm eines Keilspalts als Funktion des Spaltparameters K.

6.2. Laminare Grenzschichten

PSfrag

Wie wir schon früher gesehen haben, ist die *Reynoldszahl*

$$Re = \frac{UL}{\nu} \tag{6.51}$$

ein wichtiges Maß für die relative Bedeutung von Trägheits- ($\sim U^2/L$) zu Reibungskräften ($\sim \nu U/L^2$) in der Strömung eines Fluids, wobei U eine charakteristische Geschwindigkeit und L eine charakteristische Länge darstellen. Die *kinematische Viskosität* wird mit ν bezeichnet.

Betrachtet man den Grenzübergang $\nu \to 0$ bei festen Werten von U und L, so erkennt man, daß für $\text{Re} \to \infty$ der Einfluß der Reibung unbedeutend ist und somit die Strömung näherungsweise als reibungsfrei betrachtet werden kann. Es gelten dann die Ergebnisse der Potentialtheorie, die wir in den früheren Abschnitten behandelt haben. Es ist aber Vorsicht geboten, denn diese Aussage gilt nicht in unmittelbarer Nähe fester Wände. Denn die Haftbedingung kann von einer reibungsfreien Strömung nicht erfüllt werden. Vor dem viskosen Term $\nabla^2 \vec{u}$ steht nämlich der Faktor $\text{Re}^{-1} \to 0$. Wenn man den viskosen Term vernachlässigt, verliert die Differentialgleichung die Terme mit den höchsten Ableitungen. Die höchsten Ableitungen bestimmen aber die Anzahl der Randbedingungen. Daher kann die reibungsfreie Strömung (ohne den viskosen Term) nicht alle drei Randbedingungen (u, v, w) = 0(Relativgeschwindigkeiten) erfüllen.

Für sehr kleine Viskosität, oder besser für große Reynoldszahlen Re $\gg 1$, erfolgt die Geschwindigkeitsabnahme auf den Wert 0 an der Wand in einer dünnen Schicht nahe der Wand. Diese Schicht wird *Grenzschicht* genannt. Vergleiche zwischen der Potentialströmung und der Grenzschichtströmung sind in Abb. 6.9 und 6.10 gezeigt.

Abbildung 6.9.: Vergleich der Strömung in der Nähe fester Wände: (a) reibungsfreie Strömung, (b) schnelle reibungsbehaftete (viskose) Strömung.

Abbildung 6.10.: Unterschied zwischen Potential und Grenzschichtströmung in Wandnähe.

Die Strömung innerhalb der Grenzschicht wird durch die bereits hergeleiteten Beziehungen für dünne Reibungsschichten beschrieben. Außerhalb der Grenzschicht, wo die Beziehungen der Potentialtheorie gelten, sind im allgemeinen die Beschleunigungsterme in den Bewegungsgleichungen von Bedeutung. Dies legt nahe, daß sie auch in der Grenzschicht berücksichtigt werden müssen. Aus den Gleichungen für dünne Reibungsschichten in dimensionsloser Form erkennt man, daß dies gleichbedeutend ist mit (siehe (6.18))

$$\operatorname{Re}^{*} = \underbrace{\frac{UL}{\nu}}_{\operatorname{Re}} \left(\frac{\delta}{L}\right)^{2} = O(1), \qquad (6.52)$$

wobe
i δ eine charakteristische Grenzschichtdicke bedeutet. Daraus folgt un
mittelbar

6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

eine Abschätzung für die Grenzschichtdicke

$$\delta = LO\left(\frac{1}{\sqrt{\text{Re}}}\right) = O\left(\sqrt{\frac{\nu L}{U}}\right). \tag{6.53}$$

In Übereinstimmung mit den früheren Überlegungen gilt $\delta/L \ll 1$ für Re $\gg 1$. Die zu lösenden *Grenzschichtgleichungen* lauten damit (vgl. (6.7) und (6.12))

$$\frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} = 0, \tag{6.54a}$$

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\mathrm{d}p}{\mathrm{d}x} + \frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right),\tag{6.54b}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = u \frac{\mathrm{d}p}{\mathrm{d}x} + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^2.$$
(6.54c)

Wegen $\partial p/\partial y = 0$ (siehe (6.6)) wird der Druck p(x) in der Grenzschicht durch die reibungslosen Außenströmung (Potentialtheorie) aufgeprägt. Der Druck kann aus der Außenströmung über die Bernoulli-Gleichung für eine Wandstromlinie mit der reibungsfreien Wandgeschwindigkeit U(x) in Beziehung gesetzt werden

$$-\frac{\mathrm{d}p}{\mathrm{d}x} = \rho U \frac{\mathrm{d}U}{\mathrm{d}x}.$$
(6.55)

6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

Um das Problem zu vereinfachen, wollen wir in diesem Abschnitt annehmen, daß die Dichteänderungen vernachlässigbar klein sind, so daß $\rho = \text{const.}$ ist. Im Rahmen dieser Näherung ist es dann vielfach auch gerechtfertigt, die Änderungen der Stoffwerte λ und μ mit der Temperatur T zu vernachlässigen und $\lambda = \text{const.}$ und $\mu = \text{const.}$ zu setzen. Weiter nehmen wir an, daß die Strömung einer ebenen Platte folgt. Die Potentialtheorie liefert hierfür eine konstante Wandgeschwindigkeit $U = U_{\infty} = \text{const.}$, die gleich der ungestörten Anströmgeschwindigkeit U_{∞} ist. Aus (6.55) folgt dann, daß auch der Druck p = const konstant ist. Damit vereinfachen sich die Grenzschichtgleichungen (6.54) zu

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{6.56a}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2},\tag{6.56b}$$

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \kappa \frac{\partial^2 T}{\partial y^2} + \frac{\nu}{c_p} \left(\frac{\partial u}{\partial y}\right)^2, \qquad (6.56c)$$

Abbildung 6.11.: Grenzschichtdicke δ nach (6.69) als Funktion des Abstands x von der Vorderkante einer angeströmten Platte (gestrichelt). Die Geschwindigkeitsprofile sind in blau angedeutet. Alle Längen sind in Einheiten von $4\nu/U_{\infty}$ angegeben. Das Geschwindigkeitsdefizit ist grau angedeutet.

wobe
i κ die thermische Diffusivität ist. Die Randbedingungen lauten

$$y = 0: \quad u = v = 0$$
 (Haftbedingung), (6.57a)

$$T = T_W \quad \text{oder} \quad \frac{\partial T}{\partial y} = 0 \text{ (adiabatische Wand)},$$
 (6.57b)

$$y = \infty$$
: $u = U_{\infty}, \quad T = T_{\infty}.$ (6.57c)

Wegen der Konstanz der Stoffwerte kann die Geschwindigkeitsverteilung unabhängig von der Temperaturverteilung berechnet werden. Wir werden uns hier mit der Bestimmung der Geschwindigkeitsverteilung in der Grenzschicht beschäftigen, für die Ermittlung der Temperaturverteilung wird auf die weiterführende Vorlesung Wärmeübertragung verwiesen. Die Strömungsverhältnisse in Wandnähe sind in Abb. 6.11 skizziert.

Zur Bestimmung der Geschwindigkeitsverteilung in der Grenzschicht ist zweckmäßig, die Stromfunktion ψ

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x},$$
 (6.58)

in gewohnter Weise einzuführen. Dann lautet die Bewegungsgleichung in x-Richtung (6.56b)

$$\psi_y \psi_{yx} - \psi_x \psi_{yy} = \nu \psi_{yyy}. \tag{6.59}$$

Dies ist eine nichtlineare partielle Differentialgleichung dritter Ordnung mit den

6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

Randbedingungen

$$\psi(y=0) = 0, \tag{6.60a}$$

$$\psi_y(y=0) = 0, \tag{6.60b}$$

$$\psi_y(y=\infty) = U_\infty. \tag{6.60c}$$

Wie schon in Kap. 6.1.1 versuchen wir, die Gleichung und ihre Lösung in dimensionsloser Form darzustellen. Wegen $u = \partial \psi / \partial y = O(U_{\infty})$ muß die Stromfunktion in der Grenzschicht von der Größenordnung $\psi = O(U_{\infty}\delta)$ sein. Mit der Größenordnung der Grenzschichtdicke $\delta = \sqrt{\nu L/U_{\infty}}$ (6.53) skalieren wir deshalb die Stromfunktion mit der Skala $\sqrt{\nu L U_{\infty}}$

$$\psi = \sqrt{\nu L U_{\infty}} \psi^*(x^*, y^*), \qquad (6.61)$$

wobei wir die dimensionslosen Koordinaten

$$x^* = \frac{x}{L}$$
, und $y^* = \frac{y}{\delta} = \sqrt{\frac{U_{\infty}}{\nu L}}y$ (6.62)

verwenden.

Bisher hatten wir die Länge L der Platte nicht spezifiziert. Für den Fall einer halbunendlich ausgedehnten Platte $L \to \infty$ darf die Lösung ψ nicht von der Länge L abhängen. Damit ψ für alle Werte von x^* und y^* unabhängig von L ist, darf ψ nur von der Ähnlichkeitsvariablen

$$\eta = \frac{y^*}{\sqrt{x^*}} = \frac{y\sqrt{U_\infty/\nu L}}{\sqrt{x/L}} = y\sqrt{\frac{U_\infty}{\nu x}}$$
(6.63)

abhängen. Die Ähnlichkeitsvariable η ist derart aus x^* und y^* konstruiert, so daß L aus η eliminiert ist. Darüber hinaus muß für eine vollständige Elimination von L auch noch der Faktor \sqrt{L} vor ψ^* in (6.61) kompensiert werden. Um dies zu erreichen, machen wir den Ähnlichkeitsansatz

$$\psi^*(x^*, y^*) = \sqrt{x^*} f(\eta) \quad \Rightarrow \quad \psi(x, y) = \sqrt{\nu U_\infty x} f(\eta). \tag{6.64}$$

Wenn wir diesen Ansatz in (6.59) einsetzen und die partiellen Ableitungen

$$u = \psi_y = U_\infty f'(\eta), \tag{6.65a}$$

$$\psi_{yy} = U_{\infty} \sqrt{\frac{U_{\infty}}{\nu x}} f''(\eta), \qquad (6.65b)$$

$$\psi_{yyy} = \frac{U_{\infty}^2}{\nu x} f^{\prime\prime\prime}(\eta), \qquad (6.65c)$$

$$-v = \psi_x = \frac{1}{2} \sqrt{\frac{U_{\infty}\nu}{x}} (f - \eta f'), \qquad (6.65d)$$

$$\psi_{xy} = \frac{U_{\infty}}{2x} (f - \eta f')' = -\frac{U_{\infty}}{2x} \eta f'', \qquad (6.65e)$$

3. C. Luhimann, A. Lluwid Strömungsmechanik 2 6. Dünne Reibungsschichten

Abbildung 6.12.: Blasius-Profil $u(\eta)$ (blau) für die Grenzschichtströmung entlang einer halbunendlichen, ebenen Platte. Außerdem ist die Abhängigkeit der Normalgeschwindigkeit v (grün) und der Schubspannung T_{xy} (rot) von η gezeigt.

beachten, erhalten wir die gewöhnliche Differentialgleichung für $f(\eta)$

$$2f''' + ff'' = 0. (6.66)$$

Dies ist die *Blasius-Gleichung* (Blasius 1908). Die Lösung muß den Randbedingungen

$$f(0) = 0, (6.67a)$$

$$f'(0) = 0, (6.67b)$$

$$f'(\infty) = 1. \tag{6.67c}$$

genügen. Die Blasius-Gleichung ist eine gewöhnliche aber nichtlineare Differentialgleichung und muß numerisch gelöst werden. Die Lösung ist Abb. 6.12 gezeigt. Abbildung 6.13 zeigt einen Vergleich mit gemessenen Werten.

Für die v-Komponente am Grenzschichtrand $\eta \to \infty$ erhält man

$$v_{\infty} := v(\eta \to \infty) = \sqrt{\frac{U_{\infty}\nu}{x}} \frac{(\eta f' - f)}{2} \bigg|_{\infty} \approx 0.8604 \sqrt{\frac{\nu x}{U_{\infty}}}.$$
 (6.68)

Die *Grenzschichtdicke* läßt sich nicht in eindeutiger Weise angeben, da die Reibungswirkung in der Strömung nach außen nur asymptotisch abnimmt. Das Geschwindigkeitsprofil $u(\eta)$ geht für $\eta \to \infty$ asymptotisch in U_{∞} über. Daher kann man $\delta(x)$ als den Abstand von der Platte definieren, an dem die Geschwindigkeit $u = 0.99u_{\infty}$ ist. Aus den numerischen Ergebnissen und nach Nach Abb. 6.12 liegt dieser Punkt bei $\eta = 5.0$. Mit (6.63) gilt dann

$$\delta_{99}(x) \approx 5.0 \sqrt{\frac{\nu x}{U_{\infty}}}.$$
(6.69)

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2
6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

Abbildung 6.13.: Geschwindigkeitsprofil der Plattengrenzschichtströmung – Vergleich von Theorie und Experiment (Landau & Lifschitz 1991).

Abbildung 6.14.: Die Verdrängungsdicke $\delta_1(x)$ ist die Dicke, um welche ein reibungsfrei strömendes Fluid verdrängt werden muß (a), damit der Volumenstrom (graue Fläche \dot{V}) im gleichen Maße verringert wird wie durch den Einfluß der Reibung in einer viskosen Grenzschicht der Dicke $\delta_{99}(x)$ (b).

Diese Definition der Grenzschichtdicke hat den Nachteil, daß δ von der geforderten Genauigkeit abhängt.

Ein physikalisch sinnvolleres Maß für die Grenzschichtdicke stellt die Verdrängungsdicke δ_1 dar. Durch das Anwachsen der Grenzschichtdicke in x-Richtung wird eine immer dicker werdende Fluidschicht um das Geschwindigkeitsdefizit $U_{\infty} - u$ verlangsamt (grau in Abb. 6.14). Dadurch wird der Volumenstrom in x-Richtung um $\int_0^{\infty} (U_{\infty} - u) dy$ vermindert. Als Folge muß das Fluid seitlich ausweichen, was zu der v-Komponente in der Grenzschicht führt. Zur Beschreibung des Verdrängungseffekts wird die Verdrängungsdicke $\delta_1(x)$ eingeführt. Dazu betrachtet man die reibungsfreie Strömung über eine ebene Platte mit endlichen Dicke δ_1 . Gegenüber einer unendlich dünnen Platte ist der Volumenstrom über die endlich dicke Platte um $\int_0^{\delta_1} U_{\infty} dy = U_{\infty} \delta_1$ verringert (Abb. 6.14a). In einer Grenzschicht über einer un-

6. Dünne Reibungsschichten

endlich dünnen Platte ist der Volumenstrom gegenüber der reibungsfreien Strömung auch vermindert, und zwar um $\int_0^\infty (U_\infty - u) dy$ (Abb. 6.14b). Die Verdrängungsdicke einer Grenzschicht ist dann so definiert, daß der Verdrängungseffekt einer reibungsfreien Strömung über einer *dicken* Platte mit der Dicke $\delta_1(x)$ gleich ist mit dem Verdrängungseffekt in einer Grenzschicht über einer *unendlich dünne* Platte (Abb. 6.14). Für die so definierte Verdrängungsdicke gilt dann (konstante Dichte)

$$\delta_1 U_\infty = \int_0^\infty (U_\infty - u) \mathrm{d}y, \qquad (6.70)$$

also

$$\delta_1 := \int_0^\infty \left(1 - \frac{u}{U_\infty} \right) \mathrm{d}y. \tag{6.71}$$

Mit $u/U_{\infty} = f'(\eta)$ und $dy = (\nu x/U_{\infty})^{1/2} d\eta$ ergibt sich

$$\delta_1 = \sqrt{\frac{\nu x}{U_{\infty}}} \int_0^\infty (1 - f') \mathrm{d}\eta = \sqrt{\frac{\nu x}{U_{\infty}}} [\eta - f]_{\eta \to \infty}.$$
 (6.72)

Durch Differentiation nach x ergibt sich

$$\frac{\mathrm{d}\delta_1}{\mathrm{d}x} = \frac{1}{2}\sqrt{\frac{\nu}{U_{\infty}x}}[\eta f' - f]_{\eta \to \infty},\tag{6.73}$$

und durch Vergleich mit (6.68) findet man

$$U_{\infty} \frac{\mathrm{d}\delta_1}{\mathrm{d}x} = v_{\infty}(x). \tag{6.74}$$

Diese Beziehung gilt ganz allgemein und zeigt die physikalische Bedeutung von δ_1 . Für den Fall der ebenen Platte erhält man

$$\delta_1(x) = 1.72 \sqrt{\frac{\nu x}{U_{\infty}}} \approx 0.344 \times \delta_{99}(x). \tag{6.75}$$

Zur Bestimmung des Reibungswiderstand der angeströmten Platte ist schließlich die Wandschubspannung von großer Bedeutung. Für sie gilt

$$\tau_w^{\text{Wand}} = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0} = \mu U_\infty \underbrace{\frac{\partial \eta}{\partial y}}_{\sqrt{U_\infty/\nu x}} f''(0) = \mu U_\infty \sqrt{\frac{U_\infty}{\nu x}} f''(0), \qquad (6.76)$$

Daraus ergibt sich für den lokalen Reibungsbeiwert $c_f^\prime:$

$$c'_f(x) := \frac{\tau_w}{\rho U_\infty^2/2} = 2f''(0)\sqrt{\frac{\nu}{U_\infty x}} \approx 0.664\sqrt{\frac{\nu}{U_\infty x}}.$$
(6.77)

ζ. C. Kuhlmann, A. Kluwid
 Strömungsmechanik 2

6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

Es ist zweckmäßig, die lokalen Reynoldszahl

$$\operatorname{Re}_{x} = \frac{U_{\infty}x}{\nu} \tag{6.78}$$

einzuführen. Damit können die wichtigsten Ergebnisse zusammengefaßt werden

$$c'_f = \frac{0.664}{\sqrt{\text{Re}_x}},$$
 (6.79a)

$$\frac{v_{\infty}}{x} = \frac{0.8604}{\sqrt{\text{Re}_x}},\tag{6.79b}$$

$$\frac{\delta_1}{x} = \frac{1.7208}{\sqrt{\operatorname{Re}_x}}.$$
(6.79c)

Der Reibungswiderstand für *eine* Plattenseite und einen Streifen mit Länge L von der Vorderkante in x-Richtung und Breite b in z-Richtung lautet

$$D = b \int_0^L \tau_w(x) \mathrm{d}x. \tag{6.80}$$

Führt man den Widerstandsbeiwert c_D ein

$$c_D = \frac{2D}{(\rho U_{\infty}^2/2) \, bL},\tag{6.81}$$

so erhält man für den Widerstandsbeiwert der ebenen Platte der Länge L

$$c_D = \frac{1.328}{\sqrt{\text{Re}_L}},\tag{6.82}$$

wobei Re_L die mit der Plattenlänge gebildete Reynoldszahl ist.

6.3.1. Einfluß des Druckgradienten auf das Grenzschichtprofil: Ablösung der Strömung

Wir haben bisher nur den Sonderfall behandelt, daß der in die Grenzschichtgleichungen eingehende Druck konstant ist (Plattengrenzschicht). Meist ändert sich auch der Druck mit der Lauflänge x, im allgemeinen müssen dann die Grenzschichtgleichungen numerisch gelöst werden. Ähnlichkeitslösungen lassen sich aber finden (ohne Beweis), wenn die aus der reibungsfreien Theorie bestimmten Wandgeschwindigkeit die Form

$$\frac{U(x)}{U_1} = K^{1+m} \left[\frac{2}{(1+m)} \frac{x}{L} \right]^m$$
(6.83)

hat, wobe
iK>0und $U_1>0$ beliebige Konstanten darstellen und
 mein kleiner Exponent ist. Mit

$$\frac{u}{U(x)} = f'(\eta), \tag{6.84a}$$

$$\eta = y \sqrt{\frac{(m+1)}{2} \frac{U(x)}{\nu x}},$$
 (6.84b)

3. C. Luhimann, A. Lluwid Strömungsmechanik 2

Abbildung 6.15.: Geschwindigkeitsprofil und Schubspannung für die Falkner-Skan-Gleichung (6.85) nach Gersten & Herwig (1992).

genügt f dann der gewöhnlichen Differentialgleichung

$$f''' + ff'' + \beta(1 - f'^2) = 0, \qquad (6.85)$$

die als *Falkner-Skan-Gleichung* bezeichnet wird und wobei $\beta = 2m/(m+1)$. Mit diesen Gleichungen läßt sich der Effekt einer beschleunigten $(m, \beta > 0, p'(x) < 0)$ und verzögerten Strömung $(m, \beta < 0, p'(x) > 0)$ beschreiben. Die Randbedingungen lauten wie früher

$$f(0) = f'(0) = 0, (6.86a)$$

$$f'(\infty) = 1.$$
 (6.86b)

Einige numerische Ergebnisse sind in Abb. 6.15 dargestellt. Man kann zeigen, daß im Falle eines Druckanstiegs für $-0.199 < \beta < 0$ neben Lösungen, in denen die Geschwindigkeit u stets positiv ist, weitere Lösungen existieren (nichtlineare Gleichung), für welche das Geschwindigkeitsprofil Rückströmgebiete aufweist.

In unmittelbarer Wandnähe sind u und v sehr klein. Dann kann man in der Impulsgleichung in x-Richtung (6.54b) die nichtlinearen Terme vernachlässigen, da sie quadratisch klein sind. Damit gilt in Wandnähe ganz allgemein (unabhängig von einer Ähnlichkeitslösung)

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \left. \frac{\partial^2 u}{\partial y^2} \right|_{y=0}.$$
(6.87)

Für die Plattengrenzschicht mit p' = 0 gilt an der Wand $\partial^2 u/\partial y^2 = 0$. Das Geschwindigkeitsprofil weist an der Wand einen Wendepunkt auf. Für p'(x) < 0 (Beschleunigung) ist die Krümmung des Geschwindigkeitsprofils überall negativ und es existiert kein Wendepunkt. Im Fall p'(x) > 0 (Verlangsamung) weist das Profil einen Wendepunkt auf (Abb. 6.16).

Bei einem weiterem Druckanstieg in Stromrichtung wird die Strömung in Wandnähe weiter verlangsamt bis sie an einem Punkt A zum Stillstand kommt. Weiter stromab kommt es dann zu einem Rückströmgebiet (Abb. 6.17). Dieser Vorgang 6.3. Laminare Grenzschicht an einer ebenen Wand in einer inkompressiblen Strömung

Abbildung 6.16.: Geschwindigkeitsprofile für beschleunigte (gestrichelt) und verzögerte Grenzschichten (lang gestrichelt). Im Falle einer Verzögerung tritt ein Wendepunkt (WP) auf.

Abbildung 6.17.: Schematische Darstellung der Strömung in der Nähe des Ablösepunktes. Die Stromlinien sind blau, die Profile der Horizontalgeschwindigkeit hellblau, die separierende Stromlinie gestrichelt und die Linie verschwindender Horizontalgeschwindigkeit gepunktet. Beachte, daß die *y*-Achse stark gestreckt ist.

wird *Ablösung* genannt. Die Lösung der klassischen Grenzschichttheorie endet im Ablösepunkt A. In diesem Punkt verschwindet die Wandschubspannung τ_w , denn dann ist $\partial u/\partial y|_{y=0} = 0$. Das Rückströmgebiet kann man mit der klassischen Grenzschichttheorie nicht mehr behandeln. Da der Ablösepunkt in einem Gebiet liegen muß, in dem $\partial^2 u/\partial y^2 > 0$ ist, muß die Ablösestelle im Gebiet eines Druckanstiegs (p'(x) > 0) liegen.

In vielen Fällen möchte man die Ablösung der Strömung vermeiden, weil damit ein beträchtlicher Anstieg des Widerstands verbunden ist (Tragflügel) oder weil sich die Topologie der Strömung in ungünstiger Weise ändert (z. B. bei einer Diffusorströmung). Wenn die Strömung vom Tragflügel abreißt, wird ein weiterer Druckanstieg der äußeren Strömung hinter dem Ablösepunkt verhindert. Damit re-

Abbildung 6.18.: Zylinderumströmung bei Re = $U_{\infty}d/\nu$ = 9.6 (a), 13.1 (b), 26 (c), 41 (d) und 2000 (e). Die Aufnahmen (a)–(d) stammen von S. Taneda (siehe auch Taneda 1955, 1956) und (e) stammt von H. Werlé (ONERA) (Werlé & Gallon 1972, Van Dyke 1982). Für Re \gtrsim 47 wird die Strömung zeitabhängig und es entsteht im Nachlauf die Kármánsche Wirbelstraße.

duziert sich aber die Druckkraft in Vorwärtsrichtung, was netto zu einem höheren Widerstand führt. Dies ist der *Druck-* oder *Formwiderstand* im Unterschied zum *Reibungswiderstand*. Um die Ablösung zu verhindern, darf sich der Tragflügel nur sehr langsam verjüngen.

Wie hinter umströmten Körpern verlangsamt sich auch beim Diffusor die äußere Strömung. Der damit verbundene Druckanstieg kann auch hier zur Ablösung führen. Die Verlangsamung der Strömung wird zum Teil durch den Verdrängungseffekt der Grenzschicht wettgemacht, so daß eine hinreichend langsame Erweiterung nicht zur Ablösung führen muß.

Die Entwicklung der abgelösten Strömung hinter einem quer angeströmten Zylinder bei Erhöhung der Reynolds-Zahl ist in Abb. 6.18 gezeigt. Abgelöste Strömungen sind meist zeitabhängig. Sie treten insbesondere an scharfen Kanten auf.

6.4. Impulssatz für inkompressible Grenzschichten

Wir gehen von der Kontinuitätsgleichung und der Bewegungsgleichung in *x*-Richtung für inkompressible Grenzschichten aus.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{6.88a}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\mathrm{d}p}{\mathrm{d}x} + \nu\frac{\partial^2 u}{\partial y^2},\tag{6.88b}$$

$$-\frac{1}{\rho}\frac{\mathrm{d}p}{\mathrm{d}x} = U\frac{\mathrm{d}U}{\mathrm{d}x}.$$
(6.88c)

Unter Berücksichtigung der Kontinuitätsgleichung kann die Bewegungsgleichung auch in der Form

$$\frac{\partial}{\partial x}(u^2) + \frac{\partial}{\partial y}(uv) = U\frac{\mathrm{d}U}{\mathrm{d}x} + \nu\frac{\partial^2 u}{\partial y^2}.$$
(6.89)

geschrieben werden. Multiplikation der Kontinuitätsgleichung mit U(x) liefert

$$\frac{\partial}{\partial x}(Uu) + \frac{\partial}{\partial y}(Uv) = u\frac{\mathrm{d}U}{\mathrm{d}x}.$$
(6.90)

Subtraktion dieser beiden Beziehungen ergibt

$$\frac{\partial}{\partial x}[u(U-u)] + \frac{\partial}{\partial y}[v(U-u)] + (U-u)\frac{\mathrm{d}U}{\mathrm{d}x} = -\nu\frac{\partial^2 u}{\partial y^2}.$$
(6.91)

Formale Integration über y in den Grenzen $[0, \infty)$ (Integration über die Grenzschicht) liefert (der zweite Term verschwindet wegen v(y = 0) = 0 und $u(y = \infty) = U$)

$$\underbrace{\int_{0}^{\infty} \frac{\partial}{\partial x} [u(U-u)] dy}_{\frac{d}{dx} \int_{0}^{\infty} u(U-u) dy} + \underbrace{v(U-u)|_{0}^{\infty}}_{\rightarrow 0} + \frac{dU}{dx} \int_{0}^{\infty} (U-u) dy = \underbrace{-\nu \frac{\partial u}{\partial y}\Big|_{0}^{\infty}}_{\tau_{w}/\rho}, \quad (6.92)$$

mit

$$\tau_w = \nu \rho \left. \frac{\partial u}{\partial y} \right|_{y=0}. \tag{6.93}$$

Es gilt für die Verdrängungsdicke

$$U\delta_1 = \int_0^\infty (U-u) \mathrm{d}y. \tag{6.94}$$

Weiter definieren wir die *Impulsverlustdicke* $\delta_2(x)$ durch

$$U^2 \delta_2 = \int_0^\infty u(U-u) \mathrm{d}y.$$
 (6.95)

Damit folgt

$$\frac{\mathrm{d}}{\mathrm{d}x}(U^2\delta_2) + U\frac{\mathrm{d}U}{\mathrm{d}x}\delta_1 = \frac{\tau_w}{\rho} \tag{6.96}$$

und schließlich

$$\frac{\mathrm{d}\delta_2}{\mathrm{d}x} + \frac{1}{U}\frac{\mathrm{d}U}{\mathrm{d}x}(2\delta_2 + \delta_1) = \frac{\tau_w}{\rho U^2}.$$
(6.97)

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Abbildung 6.19.: Übergang von einer laminaren zu einer turbulenten Grenzschichtströmung.

Dies ist der *Impulssatz für Grenzschichten* nach von Kàrmàn (1921) von Kármán (1921). Nach Einführung des sogenannten *Formparameters*

$$H := \frac{\delta_1}{\delta_2} \tag{6.98}$$

läßt er sich auch in der Form

$$\frac{d\delta_2}{dx} + \frac{1}{U}\frac{dU}{dx}\delta_2(2+H) = \frac{c'_f}{2} \tag{6.99}$$

schreiben. Diese Form des Impulssatzes gilt nicht nur für laminare Grenzschichten, sondern auch für turbulente Grenzschichten! Die Geschwindigkeit u ist im turbulenten Fall jedoch durch den zeitliche Mittelwert \bar{u} zu ersetzen.

Mit Hilfe dieser integralen Formulierung des Impulssatzes für Grenzschichten kann man wichtige Kenngrößen erhalten, ohne die ursprünglichen Grenzschichtgleichungen numerisch lösen zu müssen. Insbesondere läßt (6.99) Genauigkeitsabschätzungen von Näherungen zu, bei denen z.B. das Geschwindigkeitsprofil in der Grenzschicht durch eine einfache Funktion (Potenzfunktion oder Winkelfunktion) approximiert wird.

6.5. Turbulente Grenzschicht an einer ebenen Wand für inkompressible Strömungen

Experimente und Theorie zeigen, daß die laminare Grenzschicht bei hinreichend großen Werten von Re_x nicht mehr stabil gegenüber kleinen Störungen ist. Für $\text{Re}_x > \text{Re}_{x\text{krit}}$ mit

$$\operatorname{Re}_{x\mathrm{krit}} \approx 5 \times 10^5 \tag{6.100}$$

ist die Grenzschichtströmung turbulent (Abb. 6.19).

Ähnlich wie die turbulente Rohrströmung (siehe *Grundlagen der Strömungslehre*) ist auch die turbulente Grenzschichtströmung einer strengen Behandlung zur Zeit

Abbildung 6.20.: Profil der mittleren Strömung (qualitativ) in einer turbulenten Grenzschicht.

noch nicht zugänglich. Wir beginnen daher auch hier zunächst mit einer Dimensionsanalyse. Da sich die Grenzschichtdicke mit der Lauflänge x nur langsam ändert, gehen wir näherungsweise von der Vorstellung einer turbulenten Scherströmung an einer ebenen Wand aus (Abb. 6.20).

Für die zeitlich gemittelten Werte der Strömungsgeschwindigkeiten ist dann

$$\bar{u} = \bar{u}(y), \quad \bar{v} = 0.$$
 (6.101)

Wegen des verschwindenden Druckgradienten $p'(x) \equiv 0$ ergibt sich darüber hinaus

$$\tau = \text{const.} = \tau_w. \tag{6.102}$$

Da wir sehr große Reynoldszahlen voraussetzen, wird der Einfluß der inneren Reibung vernachlässigt. Die Schubspannung τ wird dann allein durch den turbulenten Impulstransport hervorgerufen. Maßgebend dafür ist der Geschwindigkeitsgradient $d\bar{u}/dy$ der zeitlich gemittelten Strömung.

Jetzt lautet die Frage: Wie muß $d\bar{u}/dy$ von y abhängen, damit durch den turbulenten Impulstransport in der Scherströmung eine konstante Schubspannung erzeugt wird? Dazu setzen wir voraus, daß $d\bar{u}/dy$ eindeutig durch die Vorgabe der Größen τ_w , ρ und y festliegt,

$$\frac{\mathrm{d}\bar{u}}{\mathrm{d}y} = f(\tau_w, \rho, y). \tag{6.103}$$

Aus den Größen τ_w und ρ kann eine Größe mit der Dimension einer Geschwindigkeit gebildet werden, die sogenannte *Schubspannungsgeschwindigkeit* u_{τ} ,

$$u_{\tau} := \sqrt{\frac{\tau_w}{\rho}}.\tag{6.104}$$

Durch Dimensionsanalyse (siehe Skriptum *Grundlagen der Strömungslehre*) findet man

$$\frac{\mathrm{d}\bar{u}}{\mathrm{d}y} = C_1 \frac{u_\tau}{y},\tag{6.105}$$

5. C. Luhimann, A. Lluwid Strömungsmechanik 2

Abbildung 6.21.: Profil der mittleren Strömung (qualitativ) in einer turbulenten Grenzschicht.

Integration dieser Beziehung ergibt

$$\frac{\bar{u}}{u_{\tau}} = C_1 \ln \frac{y}{y_0} \tag{6.106}$$

mit den beiden Konstanten C_1 und y_0 . Aus (6.106) folgt $\bar{u}(y \to 0) \to -\infty$, d.h. die obige Dimensionsanalyse liefert in unmittelbarer Wandnähe ein unphysikalisches Ergebnis. Dieser Widerspruch wird aufgelöst, wenn man beachtet, daß an der Wand y = 0 die turbulenten Schwankungen verschwinden müssen $(u' \to 0, v' \to 0)$, weil in Wandnähe die innere Reibung von Bedeutung ist. Die Schicht in der Nähe der Wand, in der der Einfluß der Zähigkeit dominant wird, nennt man *Wandschicht*.

In der laminaren Unterschicht gilt näherungsweise

$$\tau = \tau_w \sim \rho \nu \frac{\mathrm{d}\bar{u}}{\mathrm{d}y}.\tag{6.107}$$

Wegen $\tau_w/\rho = u_\tau^2$ gilt somit

$$\frac{\mathrm{d}\bar{u}}{\mathrm{d}y} \sim \frac{u_{\tau}^{2}}{\nu}.\tag{6.108}$$

In der turbulenten Scherschicht gilt hingegen

$$\frac{\mathrm{d}\bar{u}}{\mathrm{d}y} \sim \frac{u_{\tau}}{y}.\tag{6.109}$$

Die für die Beschreibung der Strömung in der Wandschicht wesentlichen Größen sind τ_w , ρ und ν . Daraus läßt sich eine einzige Größe mit der Dimension einer Länge bilden:

$$\nu \sqrt{\frac{\rho}{\tau_w}} = \frac{\nu}{u_\tau}.\tag{6.110}$$

Somit ist

$$y_0 = C \frac{\nu}{u_\tau},\tag{6.111}$$

3. C. Luhlmann, A. Lluwid Strömungsmechanik 2

Abbildung 6.22.: Wandrauhigkeit.

Abbildung 6.23.: Struktur der mitleren turbulenten Strömung in Wandnähe.

wobei C eine weitere positive Konstante bedeutet. Einsetzen in (6.106) ergibt

$$\frac{\bar{u}}{u_{\tau}} = C_1 \ln \frac{y u_{\tau}}{C \nu} = C_1 \ln \frac{y u_{\tau}}{\nu} + C_1 \ln \frac{1}{C}, \qquad (6.112)$$

oder kurz

$$\frac{\bar{u}}{u_{\tau}} = C_1 \ln \frac{y u_{\tau}}{\nu} + C_2.$$
(6.113)

Diese Beziehung wird als *logarithmisches Wandgesetz* bezeichnet. Für glatte Wände (Abb. 6.22)

$$k \ll y_0 \sim \frac{\nu}{u_\tau} \tag{6.114}$$

erhält man aus Experimenten

$$C_1 = \frac{1}{\varkappa} = 2.5, \quad C_2 \approx 5.5.$$
 (6.115)

Wir wenden uns nun wieder der Berechnung der turbulenten Grenzschichtströmung zu. Dazu gehen wir von der Annahme aus, daß (6.113) an jeder Stelle xzur näherungsweisen Berechnung des Geschwindigkeitsprofils herangezogen werden kann, da sich die Feldgrößen in der Grenzschicht nur langsam mit der Lauflänge x ändern. Dann gilt (6.113). Allerdings hängt die Schubspannungsgeschwindigkeit nun von der Lauflänge x ab

$$u_{\tau} = u_{\tau}(x). \tag{6.116}$$

3. C. Luhlmann, A. Kluwid Strömungsmechanik 2

6. Dünne Reibungsschichten

Für den Grenzschichtrand $y = \delta$ gilt näherungsweise $\bar{u} \approx U_{\infty}$, so daß

$$\frac{U_{\infty}}{u_{\tau}} = C_1 \ln \frac{\delta u_{\tau}}{\nu} + C_2. \tag{6.117}$$

Um die gesuchte Abhängigkeit $u_{\tau} = u_{\tau}(x)$ zu erhalten, benötigt man den Zusammenhang zwischen δ und x. Dieser Zusammenhang kann mit Hilfe des Impulssatzes abgeschätzt werden. Aus (6.117) und (6.113) folgt zunächst

$$\frac{U_{\infty} - \bar{u}}{u_{\tau}} = C_1 \ln \frac{\delta}{y}.$$
(6.118)

Dies bedeutet

$$U_{\infty} - \bar{u} \sim u_{\tau}, \qquad \text{für} \quad y \sim \delta.$$
 (6.119)

Somit gilt näherungsweise

$$\delta_2 \approx \int_0^\delta \frac{\bar{u}}{U_\infty} \left(1 - \frac{\bar{u}}{U_\infty} \right) dy \sim \int_0^\delta \left(1 - \frac{\bar{u}}{U_\infty} \right) dy \approx \delta_1.$$
 (6.120)

Weiter ist

$$\delta_{1} \sim \int_{0}^{\delta} \frac{U_{\infty} - \bar{u}}{U_{\infty}} dy \sim -C_{1} \frac{u_{\tau}}{U_{\infty}} \int_{0}^{\delta} \ln \frac{y}{\delta} dy$$
$$\sim -C_{1} \frac{u_{\tau}\delta}{U_{\infty}} \int_{0}^{1} \ln \frac{y}{\delta} d\left(\frac{y}{\delta}\right) \sim -C_{1} \frac{u_{\tau}\delta}{U_{\infty}} \frac{y}{\delta} \left(\ln \frac{y}{\delta} - 1\right) \Big|_{0}^{\delta}, \tag{6.121}$$

und somit

$$\delta_2 \sim \delta_1 \sim C_1 \frac{u_\tau \delta}{U_\infty}.\tag{6.122}$$

Der Impulssatz (6.99) lautet

$$\frac{\mathrm{d}\delta_2}{\mathrm{d}x} = \frac{c_f'}{2} = \frac{u_\tau^2}{U_\infty^2}.$$
(6.123)

Da sich u_{τ} nur langsam mit x ändert, kann die Integration sofort näherungsweise ausgeführt werden,

$$\delta_2 \sim \frac{u_\tau^2}{U_\infty^2} x. \tag{6.124}$$

 δ , δ_1 und δ_2 wachsen also nahezu *linear* mit x an!

Wir sind nun in der Lage, den gesuchten Zusammenhang zwischen c_f' (bzw. $u_\tau)$ und xanzugeben. Mit (6.122) gilt

$$\delta \sim \frac{U_{\infty}\delta_1}{C_1 u_{\tau}} \sim \frac{u_{\tau} x}{C_1 U_{\infty}}.$$
(6.125)

3. C. Kuhlmann, A. Kluwiđ Strömungsmechanik 2

6.5. Turbulente Grenzschicht an einer ebenen Wand für inkompressible Strömungen

Abbildung 6.24.: Widerstandsdiagramm für eine längsangeströmte ebene Platte (eine Seite, Breite b, Länge x). (a) glatte Platte. (b) rauhe Platte. Hierbei bedeuten (1) laminare Strömung, (2) turbulent mit laminarem Anlauf, (3) turbulent (glatt), (4) turbulent (rauh), (5) turbulent (vollausgebildete Rauhigkeitsströmung) (nach Schlichting & Gersten 1997).

Damit folgt aus (6.117) unmittelbar

$$\sqrt{\frac{2}{c'_f}} \sim C_1 \ln \frac{u_\tau^2 x}{\nu U_\infty C_1} + C_2 \sim C_1 \ln \frac{c'_f U_\infty x}{2C_1 \nu} + C_2$$
$$\sim C_1 \ln(c'_f \operatorname{Re}_x) + C_2 - C_1 \ln(2C_1)$$
(6.126)

oder

$$\frac{1}{\sqrt{c'_f}} \sim \frac{C_1}{\sqrt{2}} \ln(c'_f \operatorname{Re}_x) + C.$$
 (6.127)

Unter der Verwendung der für glatte Wände gültigen Werte von C_1 und C_2 (siehe Grundlagen der Strömungslehre), erhält man den experimentell gut bestätigten Zusammenhang

$$\frac{1}{\sqrt{c'_f}} = 1.7 \ln \left(c'_f \operatorname{Re}_x \right) + 3.0.$$
 (6.128)

Der Widerstandsbeiwert ist dann (siehe Abb. 6.24)

$$c_D = \frac{2D}{\rho U_{\infty}^2 bx} = \frac{1}{x} \int_0^x c'_f(x') \mathrm{d}x'.$$
 (6.129)

So wie bei den in der Vorlesung *Grundlagen der Strömungslehre* untersuchten turbulenten Rohrströmungen kann in ähnlicher Weise auch die turbulente Strömung über rauhe Wände behandelt werden. Bezüglich der Ergebnisse sei auf die einschlägige Literatur verwiesen, z.B. Gersten & Herwig (1992) oder Schlichting & Gersten (1997).

3. C. Kuhlmann, A. Kluwid Strömungsmechanik 2

6. Dünne Reibungsschichten

A. Diagramme und Tabellen

Abbildung A.1.: Stoßpolarendiagramm für Luft ($\varkappa = 1.4$) (aus Oswatitsch 1976).

ਤ. C. Kuhlmann, U. Kluwiđ Strömungsmechanik 2

Abbildung A.2.: Stoßwinkel in Abhängigkeit von Strömungsumlenkwinkel und Anströmmachzahl für Luft ($\varkappa = 1.4$) (aus Liepmann & Roshko 1957).

Abbildung A.3.: Charakteristikendi
agramm für Luft ($\varkappa = 1.4)$ (aus Oswatitsch 1976).

								a 147
Ch	ð	М	M*	α	<u>p</u> po	<u>e</u> eo	$\frac{T}{T_0}$	e*c*
			<u> </u>					
1000	0	1,000	1,000	90°	0,5283	0,6339	0,8333	1,0000
999	1	1,082	1,067	67°33′	0,4789	0,5910	0,8103	0,994.7
998	2	1,133	1,107	61°58′	0,4496	0,5649	0,7957	0,9864
997	3	1,177	1,141	58°10'	0,4249	0,5426	0,7830	0,9765
996	4	1,218	1,171	55°11′	0,4028	0,5223	0,7712	0,9054
995	5	1,256	1,200	52°46′	0,3830	0,5038	0,7602	0,9534
994	6	1,293	1,227	50° 40 ′	0,3644	0,4862	0,7494	0,9404
993	7	1,330	1,252	48°45′	0,3464	0,4690	0,7389	0,9263
992	8	1,365	1,276	47° 6'	0,3300	0,4530	0,7285	0,9120
991	9	1,400	1,300	45°35′	0,3142	0,4374	0,7184	0,8970
990	10	1,435	1,323	44°11′	0,2990	0,4222	0,7083	0,8811
989	11	1,469	1,345	42°54′	0,2847	0,4077	0,6986	0,8651
988	12	1,502	1,366	41°45′	0,2711	0,3937	0,6888	0,8487
987	13	1,537	1,387	40°35′	0,2580	0,3800	0,6792	0,8318
986	14	1,570	1,409	39°34′	0,2456	0,3669	0,6696	0,8148
985	15	1,604	1,429	38°34′	0,2337	0,354 i	0,6601	0,7975
984	16	1,638	1,448	37°37′	0,2221	0,3415	0,6506	0,7797
983	17	1,673	1,467	36°42′	0,2111	0,3294	0,6412	0,7621
982	18	1,707	1,486	35°52′	0,2006	0,3175	0,6319	0,7441
981	19	1,741	1,505	35° 3'	0,1905	0,3060	0,6226	0,7262
980	20	1,775	1,523	34°17′	0,1808	0,2948	0,6134	0,7081
979	21	1,809	1,541	33°34′	0,1715	0,2839	0,6043	0,6899
978	22	1,844	1,559	32°50′	0,1627	0,2733	0,5951	0,6718
977	23	1,879	1,576	32° 9′	0,1540	0,2629	0,5860	0,6536
976	24	1,915	1,593	31°29′	0,1459	0,2529	0,5769	0,6355
975	25	1,950	1,610	30°51′	0,1380	0,2430	0,5679	0,6174
974	26	1,986	1,627	30°14′	0,1306	0,2335	0,5590	0,5995
97:3	27	2,023	1,643	29°37′	0,1234	0,2243	0,5499	0,5815
972	28	2.060	1,659	29° 2'	0,1166	0,2153	0,5411	0,5637
971	29	2,096	1,675	28°30′	0,1099	0,2066	0,5322	0,5461
970	30	2,134	1,691	27°57′	0,1037	0,1982	0,5233	0,5286
969	31	2,172	1,706	27°25′	0,09770	0,1899	0,5146	0,5113
968	32	2,211	1,722	26°53′	0,09200	0,1819	0,5058	0,4942
967	33	2,249	1,738	26°24′	0,08656	0,1741	0,4971	0,4773
966	34	2,289	1,753	25°54′	0,08137	0,1666	0,4884	0,4607
965	35	2,329	1,767	25°26′	0,07644	0,1593	0,4798	0,4442
964	36	2,369	1,782	24°58′	0,07174	0,1522	0,4711	0,4280
963	37	2.411	1,796	24°30'	0.06726	0.1454	0.4626	0,4121
962	38	2,453	1.810	24° 4'	0.06301	0.1389	0.4540	0.3964
961	39	2,495	1,824	23°38′	0,05898	0,1325	0,4455	0,3811
960	40	2,538	1,838	23°12′	0,05517	0,1263	0,4370	0,3660
959	41	2,581	1,852	22°47′	0,05153	0,1203	0,4286	0,3513
958	42	2,626	1,865	22°23′	0,04811	0,1145	0,4203	0,3368
957	43	2,671	1,878	21°59'	0,04488	0,1089	0,4121	0,3228
956	44	2,718	1,891	21°35′	0,04181	0,1035	0,4038	0,3090
955	4.5	2,764	1,904	21°13′	0,03890	0,09835	0,3955	0,2955
954	46	2,812	1,917	20°50'	0,03616	0,09336	0,3873	0,2824
953	47	2,861	1,931	20°27′	0,03357	0,08853	0,3792	0,2695
952	48	2,911	1,943	20°5'	0,03114	0,08391	0,3712	0,2571
951	49	2,961	1,955	19°44′	0,02886	0,07946	0,3632	0,245 t
950	50	3,013	1,967	19°23′	0,02670	0,07518	0,3552	0,2333
949	51	3,066	1,979	19° 2'	0,024.67	0,07106	0,3472	0,2128
948	52	3,119	1,991	18°42′	0,02277	0,06711	0,3394	0,2108
947	53	3,174	2,003	18°22′	0,02101	0,06334	0,3317	0,2001
946	54	3,230	2,014	18°2'	0,01935	0,05973	0,3240	0,1898
945	55	3,287	2,025	17°43′	0,01781	0,05628	0,3163	0,1798
940	60	3,594	2,080	16°9′	0,01148	0,04114	0,2790	0,1349
935	65	3,941	2,131	14°42'	0,007131	0,02926	0,2435	0,09835
930	70	4,339	2,177	13°20'	0,004233	0,02017	0,2098	0,06929
925	75	4,802	2,221	12°1′	0,002391	0,01341	0,1782	0,04697
920	80	5,348	2,260	10°47′	0,001 271	0,008541	0,1488	0,03045
915	85	6,007	2,296	9°35′	0,0006291	0,005169	0,1217	0,01863
910	90	6,820	2,328	8°26′	0,0002849	0,002935	0,09706	0,01078
905	95	7,852	2,356	7°19′	0,0001156	0,001 54 1	0,07505	0,005732
900	100	9,210	2,380	6°14′	0,00004069	0,0007310	0,05566	0,002745
895	105	11,095	2,401	5°10′	0,00001175	0,0003010	0,03903	0,001 140
890	110	13,87	2,4183	4° 8′	0,000002587	0,0001021	0,02533	0,000 389 6
885	115	18,435	2.4317	3° 6'	0,0000003670	0,00002531	0,01450	0,000 097 10
880	120	27,35	2,4413	2°6′	0.0000002385	0.000003593	0,006640	0,00001384
875	125	52,48	2,4473	1° 6′	0.0000000002746	0.0000001481	0,001812	0,0000005397
869.55	130.45	00	2,4495	0°	()	0	0	0
						-		

Abbildung A.4.: Tabelle zum Charakteristikendiagramm für Luft ($\varkappa = 1.4$) (aus Oswatitsch 1976).

子. C. Luhlmann, U. Lluwid Strömungsmechanik 2

Literaturverzeichnis

- Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press.
- Blasius, P. R. H. (1908), 'Boundary layers in fluids with little friction', Z. Math. Phys. 56, 1–37.
- Cameron, A. (1976), *Basic lubrication theory*, J. Wiley, Chichester, New York.
- Gersten, K. & Herwig, H. (1992), Strömungsmechanik, Vieweg, Braunschweig.
- Helmholtz, H. (1858), 'Über Integrale der hydrodynamischenGleichungen, welche den Wirbelbewegungen entsprechen', Crelles J. 55, 25–55.
- Klein, F. (1910), 'Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten', Z. Math. Phys. 59, 259–262.
- Landau, L. D. & Lifschitz, E. M. (1991), *Hydrodynamik*, Vol. VI of *Lehrbuch der Theoretischen Physik*, Akademie Verlag.
- Liepmann, H. & Roshko, A. (1957), *Elements of gasdynamics*, Galcit Aeronautical Series, J. Wiley, New York.
- Oswatitsch, K. (1976), Grundlagen der Gasdynamik, Springer, Wien, New York.
- Saffman, P. G. (1992), Vortex Dynamics, Cambridge University Press.
- Schlichting, H. & Gersten, K. (1997), Grenzschicht-Theorie, Springer, Berlin, Heidelberg.
- Schlichting, H. & Truckenbrodt, E. (1967), Aerodynamik des Flugzeugs, Springer, Berlin, Heidelberg.
- Schneider, W. (1978), Mathematische Methoden der Strömungsmechanik, Vieweg Verlag, Braunschweig.
- Taneda, S. (1955), Rep. Res. Inst. Appl. Mech. Kyushu Univ. 4, 29–40.
- Taneda, S. (1956), J. Phys. Soc. Jpn. 11, 302–307.
- Van Dyke, M. (1982), An Album of Fluid Motion, Parabolic Press, Stanford, California.

- von Kármán, T. (1921), 'Über laminare und turbulente Reibung', Z. Angew. Math. Mech. 1, 233–252.
- Werlé, H. & Gallon, M. (1972), 'Controle d'écoulements par jet transversal', Aéronaut. Astronaut. **34**, 21–33.

Wieghardt, K. (1974), Theoretische Strömungslehre, Teubner, Stuttgart.

Index

 δ -Funktion Diracsche, 43 Ahnlichkeitsansatz, 137 Ähnlichkeitsgesetz schallnahes, 84 Ahnlichkeitsparameter schallnaher, 82 Ähnlichkeitsvariablen, 137 Aquipotentiallinie, 10 Ablösepunkt, 143 Ablösung, 143 Ackeretsche Formel, 90 Anfahrwirbel, 67 Anstellwinkel, 37, 51 effektiver, 69 geometrischer, 69 induzierter, 69 Anströmmachzahl untere kritische, 84 Auftriebsbeiwert, 3, 37, 51 Auftriebsbeiwert, örtlicher, 69 Barotropie, 15 Belegungsfunktion, 41 Bewegungsgleichungen, 5 Biot-Savart-Gesetz, 65 Blasius-Gleichung, 138 Blasius-Profil, 138 D'Alembertsches Paradoxon, 34 Differentialgleichungen Cauchy-Riemannsche, 17, 19 Dipol, 31 Dipolmoment, 32

Divergenzform, 5 Drehung, 8 Drehungsfreiheit, 8 Druckbeiwert, 3, 77 Druckpunkt, 52 Druckpunktwanderung, 92 Druckstörung, 3 Druckwiderstand, 144 Ecke Umströmung einer, 22 Einflußgebiet, 85 Energie

spezifische innere, 2

differentielle, 6

Entropiedefinition, 6

stationäre, 5

Energiebilanz

Energiesatz, 125

Eulergleichung

Expansionsfächer, 106 Falkner-Skan-Gleichung, 142 Flügelpolare, 73 Flügelstreckung, 68, 73 Flügeltiefe, 68, 71 Fluidelement substantielles, 5 Formparameter, 146 Formwiderstand, 144 Funktion analytische, 18 holomorphe, 19

gasdynamische Gleichung in Zylinderkoordinaten, 107

Dipolströmung, 32

Index

linearisierte, 77 Geschwindigkeitsdefizit, 139 Geschwindigkeitspotential, 8, 9 komplexes, 19 Gleichung gasdynamische, 75 Grenzschicht, 133 Grenzschichtdicke, 134–138 Grenzschichtdicke, 134–138 Grenzschichten Impulssatz für, 146 Grenzschichtgleichungen, 135 Grenzschichtströmung, 138

Haltekraft, 2 Hauptwert Cauchyscher, 44 Helmholtzscher Wirbelsatz erster, 63 zweiter, 64 Herzkurvendiagramm, 102 Hodographenebene, 99, 100, 112 homentrop, 6

Impulsbilanz, 1 Impulsverlustdicke, 145 induzierte Widerstand, 61 Integralgleichung Betzsche, 48 isentrop, 6 Isentropentabelle, 103 Isentropiebeziehung, 75

Kontinuitätsgleichung, 4 Kontrollvolumen, 1 Kutta-Joukowski Satz von, 37, 52 Kutta-Joukowski-Bedingung, 49, 58

Laplace-Gleichung, 27

Machlinie, 86 Machlinien, 108 Machreflexion, 105 Machwinkel, 86 Machzahl, 77 Massenbilanz, 1 Mittelpunktsregel, 58 Momentenbeiwert, 52 Nasensog, 53 Newtonsches Fluid, 124 Normalform einer hyperbolischen Gleichung, 88 Panel-Methode, 58 Paradoxon D'Alembertsches, 37, 52 Pfriemsche Regel, 119 Platte angestellte, 23 Potentialwirbel, 25 Prandtl-Faktor, 78 Prandtl-Glauert-Singularität, 81 Prandtl-Glauert-Transformation, 79 Prandtl-Meyer-Fächer, 106 Prandtl-Meyer-Funktion, 111 Prandtl-Relation, 97 Prandtlsche Integralgleichung, 71 Punktwirbel, 26

Quelldichte, 64 Quellenströmung, 24 Quellpunkt, 24 Quellstärke, 25

Rankine-Körper, 30 Reaktionskraft, 2 Reibungsbeiwert, lokaler, 140 Reibungswiderstand, 144 Reynoldsgleichung, 128 Reynoldszahl, 133 lokale, 141 reduzierte, 127 Richtungsbedingung, 116

Satz Gaußscher, 3 Stokesscher, 13 Thomsonscher, 15 Schallgeschwindigkeit, 75 Schallkreis, 100 Schubspannungsgeschwindigkeit, 147 Senkenströmung, 24 Separationslinie, 21 Sommerfeldzahl, 131 spezifische Enthalpie, 2Störpotential, 37 Staupunkt, 21 Stoß Bug-, ii Stoßpolare, 98 Stoßwinkel, 96 Strömung homenergetische, 11 isoenergetische, 11 schleichende, 127 Stromfunktion, 7, 137 Stromlinie, 7 Summenkonvention Einsteinsche, 4 Superpositionsprinzip, 27 Tragflügeltheorie Hauptaufgaben der, 71 Tragflügelverwindung, 71 Transformation affine, 79 Trennstromlinie, 21 Vektorpotential, 64 Verdrängung, 144 Verdrängungsdicke, 139, 140 Verträglichkeitsbedingung, 115 Verzweigungspunkt, 29 Viskosität dynamische, 124 kinematische, 133 Volumenstrom, 25 Vortizität, 9, 62 Wärmeleitung Fouriersche, 125 Wandgesetz

logarithmisches, 149 Wandschicht, 148

Wandschubspannung, 140 Wellengleichung D'Alembertsche Lösung der, 88 Widerstand induzierter, 70 Widerstandsbeiwert, 3, 35, 141 Wirbel gebundener, 67Wirbeldichte, 64 Wirbelfaden, 62 Wirbellinie, 62 Wirbelröhre, 62 Wirbelsatz von Crocco, 11 Wirbelschicht, 61, 67 Wirbelstärke, 26 Zeitableitung

Zeitableitung substantielle, 5
Zirkulation, 13
Zirkulationstheorem von Kelvin, 15
Zirkulationsverteilung elliptische, 71