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Chapter 1

Introduction

1.1 Objective of the Thesis

The objective of the presented thesis is to investigate the three-dimensional flow of
gas inside the working chambers of multi-valve reciprocating compressors and the
fluid-structure interaction (FSI) with the self-acting suction and discharge valves,
that control the mass and energy flow to the suction and discharge chambers, having
pressure ps and pd, respectively. In the original goal of the thesis, the heat transfer
from the gas to the walls based on a three-dimensional flow simulation was thought
to be included. However, if the heat flow is part of interest, for large compressors
this may be computed in a post-processing procedure. The flow occouring in a
reciprocating compressor is highly unsteady, and the flow patterns in the working
chambers are expected to be extremly influenced by geometrical design parameters
and operating conditions. Therefore, a self-developed CFD-solver using the unsteady
Euler equations for an arbitrary moving domain (ALE formulation) is presented,
that offers the ability to easily modify the number of valves incorporated, and to
locate them at any arbitrary angular position along the circumferential surface of
the cylinder, without the need for creating a completely new geometry or mesh. In
Figure 1.1, important parameters used within this work are sketched for a barrel
design reciprocating compressor in horizontal arrangement.

ϕzP (ϕ)

L r

d
P

d
R

ps

pd

Figure 1.1: Main parameters of a barrel design horizontal reciprocating compressor
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1.2 Compressor Working Principle

The task of a reciprocating compressor is to compress gas stored in the suction
chamber with pressure ps to a higher pressure pd > ps in the discharge chamber.
The motion of the driven crank shaft, rotating with constant angular speed ϕ̇,
changes the position of the piston zP (ϕ) with diameter dP , and the volume inside
the working chamber V (ϕ), according to Equations (1.1) and (1.2).

zP (ϕ) = r − r cosϕ+ L−
√
L2 − r2 sin2 ϕ . (1.1)

V (ϕ) = Vmin +
π

4
(d2
P − d2

R)zP (ϕ) . (1.2)

The working chamber volume has its minimum value Vmin at ϕ = 0, and its max-
imum value at ϕ = π. If the gas inside the working chamber does not enclose
a piston rod, the piston rod diameter dR has to be set equal to zero in Equation
(1.2), to ensure the correct computation of the volume V (ϕ). Since the crank angle
ϕ = ϕ̇ t is a function of time t, the actual piston velocity vP (t) = ϕ̇ d

dϕ
zP (ϕ) is the

time-derivative of the piston position. On the other hand, with the time 2π/ϕ̇ the
crank shaft needs to complete a full rotation of angle 2 π, and with the distance 4 r
the piston travels in that time, the average piston velocity

v̄P =
2

π
r ϕ̇ (1.3)

can be defined. The time-dependend change of the working chamber volume causes
the gas to change density ρ and pressure p. As a consequence, the self-acting suction
and discharge valves sketched in grey color in Figure 1.1, open and close according to
the pressure difference of working chamber pressure p, and the pressure in the suction
and discharge chambers, respectively. A detailed description of the pressure-volume
diagram important for the thermodynamic description of a compressor is shown in
Bloch & Hoefner [12] or Küttner [47].

1.3 Historical Development

A good overview of the historical development of reciprocating compressor design
and operating conditions with a special focus on the fitfth edition of the API Stan-
dard 618 “Reciprocating Compressors for Petroleum, Chemical and Gas Industry
Services”. is given by Kopscick [46]. The article discusses what is the “allowable
speed” of a reciprocating compressor, yet in API 618 these terms are not defined
sharp. The reason behind is, that the standard originally applied only to low-speed
reciprocating compressors for refinery service. Kopscick [46] categorizes low-speed
according to the rotating speeds shown in Table 1.1.

Low-Speed Moderate-Speed

Rotating speed (rpm) 200-600 600-1200

Table 1.1: Low and moderate compressor rotating-speeds
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In that terminology, high-speed compressors run at rotation speeds larger than 1200
rpm. Compressors installed in the early 1900s where operated at approximately 100
rpm, while during the 1950s and 1960s most reciprocating compressors installed in
refineries where either integral engine/compressors, electic motor, or steam turbine
driven. Averaged piston speed needed to be limited to about 3.8m/s, or maximal
3.6m/s for unlubricated compressors, in order to achieve the desired three years of
uninterrupted operation between maintenance. These compressors usually run at
300 rpm, while those operating over 300 rpm did not provide the desired uninter-
rupted service life.

In contrary to the integral unit low-speed compressors, moderate-speed compres-
sors are driven by gas engines operating at 1000 rpm or higher. Originally they
where used in oil and gas production, where the required time of uninterrupted ser-
vice is not that critical as for a refinery application. Based on the improvements
of high-speed compressors, commonly running at 1400 rpm without changing the
wear parts during 18 month of uninterupted operation, moderate-speed compres-
sors suitable for critical service application were developed, using new designs and
materials. For example, Kopscick [46] mentions a 4.5 inch (114.3mm) stroke high
speed compressor designed for 1500 rpm (5.72 m/s), that can be used in an API
618 application when operated at either 900 rpm (3.4m/s) or 720 rpm (2.7m/s).
Today, when nonmetallic materials and new compressor valve designs are used, pis-
ton speeds of 4.2m/s to 4.4m/s are quite common. Nonlubricated compressors are
typically limited to 3.8m/s averaged piston speed.

1.4 Application of CFD

With increasing rotational speed and modern design of process gas compressors,
usually having a bore to stroke ratio larger than 1, the flow inside the working
chambers and trough the valve ports gains more and more interest.

Cyklis [20] used a commercial software package for the simulation of the flow through
the self-acting suction valve of a compressor with a rather simple geometry. Birari
et al. [11] show an example of a refrigerator compressor using a combination of
structured and unstructured meshes to consider the complexity of the geometry,
while keeping computational expenses, numerical diffusion and setup time in mind.
Nowadays, commerical CFD software is frequently used to investigate the influence
of internal compressor flow on the valves and pressure losses. An example for ap-
plying CFD during the design stage of a large bore process gas compressor with
a piston diameter up to 1.2m is given by Koop [45]. The presented CFD-results
suggest a modification of the conventional valve location to a configuration where
the valve ports are moved outside the running zone of the piston.

Althought a CFD simulation with a moving piston is possible, Pratelli et al. [64]
perform a steady state RANS calculation with a k-ω turbulence model locating the
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piston in an intermediate position, where it does not mask the gas passages between
cylinder chamber and valves, denominated as valve pockets. Furthermore, the valve
geometry was substitued by an equivalent porous media model for the evaluation
of pressure losses due to suction and discharge valve flow. The authors mention,
that this approach allows for using an unstructured tetrahedral mesh without the
need of re-constructing and re-meshing the geometries. In their presentation, the
complexity of the flow patterns along the suction and discharge flow paths can be
clearly seen. Since cylinder chamber, valve pockets, valve cages and valve unloaders
are included in their simulation, the number of elements is quite large (15 million
elements).

For compressors having only two valves, one suction valve and one discharge valve
respectively, many designs do not need a detailed three-dimensional flow calcula-
tion to describe the interaction of the pressure waves inside the working chamber
with the valve dynamics, as long as unsteady flow effects are considered. Including
unsteady effects during valve opening was proposed by Böswirth [13]. However,
the modified Bernoulli equation used by Böswirth [13] does not seem to represent
the correct physical situation. Simulations for a reciprocating compressor using the
one-dimensional (1d) unsteady Euler equations with a variable cross section area for
the cylinder domain description have been performed by Machu [53], showing good
agreement with measurements. An import argument for the 1d-simulation is, that
in daily business, the exact geometry of the machine is not available, and that the
computation time is very short compared with a full three-dimensional model. With
this simple model, it is possible to describe the in-cylinder pressure wave running
back and forth across the piston. Hence, this phenomena explains the increased
power requirement during discharge as an unsteady effect. In order to avoid the
pulsations, Machu [52] recommends to use a tapered piston. However, such a con-
figuration can not easily be considered in a 1d-model.

Aigner et al. [3],[4] simulated compressors with two valves based on a self-coded
CFD-solver for the 1d-Euler equations, and compared the results with measure-
ments. For cases where more than two valves are involved, Aigner [6] extended the
flow computation, applying the 2d-unsteady-Euler equations in the cylinder plane
using a variable height in axial direction, while applying the 1d-model for the flow
inside the valve pockets. Thus, this method may be classified as a 2d/1d-hybrid for
cylinder flow and valve pocket flow, respectively. Figure 1.2 illustrates a categoriza-
tion of different models for the CFD-calculation of reciprocating compressors, used
by different authors from the fluid mechanics institute at TU-Vienna, in terms of
spatial dimensions, number of valves, and consideration of viscous effects.

Rovaris & Deschamps [75] developed a combined method of integral and differ-
ential formulations using large eddy simulation (LES) for the flow through the dis-
charge valves. Important flow features, like pressure overshoots and recirculating
flow have been observed. A further simplified numerical method for the in-cylinder
flow at the top dead center was presented by Ribas & Deschamps [68]. The authors
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mention, that gas inertia plays an important role for compressors with large bore
and small clearance between the piston and the cylinder head, and that the mass
flow through the closing discharge valve may be larger than the predicted one by
steady state theory. The whole operating cylce of a small refrigeration reciprocating
compressor based on a two-dimensional model was simulated by Matos et al.[58],
including the flow inside the cylinder and through the suction and discharge valves.
Kerpici & Oguz [43] used a transient modeling for the flow through the suction
port and valve leaves of a hermetic reciprocating compressor for fixed valve lifts.
Three-dimensional (3d) simulations for a process gas compressor with two valves
using the 3d-unsteady Navier–Stokes equations with a Reynolds-averaged turbu-
lence model have been performed by Meyer [59], relying on a commercial software
package. Meyer [59] implemented the model for the valve flow and the valve dy-
namics in that software applying a user defined function. A 3d-flow computation
for a reciprocating compressor requires to solve the equations on a moving zone,
while the masking of the piston causes severe challenges, e.g. at the conjunction
of cylinder and valve pocket domains. Furthermore, the detailed representation of
the complex valve pocket geometries automatically requires the use of unstructured
meshes, especially for modern multi-valve compressor designs, that try to minimize
the size of the working chamber volume near the pistons top dead center.

R. Aigner

Viscosity

2

Dimensions

>2

Valves

3d

1d

2d/1d Navier−Stokes

Euler

G. Meyer

T. Müllner

Figure 1.2: Reciprocating compressor CFD-models used by authors at TU-Vienna

Although additonal difficulties in three dimensions have to be considered, a self-
coded CFD-solver for a moving grid in combination with a so-called conservative
non-conformal sliding mesh interface was developed by the present author. Such
an interface, today frequently used for moving meshes in geometrically complex
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industrial applications, allows extreme flexibility in geometrical valve pocket design
and mesh generation, namely an unstructured tetrahedral mesh, while keeping the
advantages of a structured hexahedral grid for re-meshing and solution interpolation
on the cylinder domain.

1.5 Valve Simulation and Valve Life

The motion of valve sealing elements is an important topic for the layout of a
reciprocating compressor. The sealing element shows interaction with the flow inside
the working chamber and the flow in the valve cages, respectively. Furthermore, the
impact velocity of the valve sealing elements on the valve seat or the valve guard is a
measure for valve life. One of the first approaches for the modeling of the dynamcis
of spring loaded valves was the mass-spring model of Costagliola [18]. Modifications
and extensions of this simple model are still in use, e.g. see the comparative analysis
of Pereira et al. [62]. Flade [29] computed the effect of the unsteady flow through the
valve ports on the valve elements. For the dynamics of reed valves, a simulation tool
was developed by Machu et al. [55]. Machu [54] recognized, that the pulsations inside
the working chambers are a potential reason for the damage of valves. The effects of
valve plate dynamics on valve life and compressor performance are discussed in Brun
et al. [14]. Manfrone & Raggi [57] use measurements and a dynamic CFD simulation
to investigate how the lift of a valve plate depends on the position relative to the
cylinder. They also include a non-zero impact angle of the valve sealing element in
their consideration, usually refered as valve plate tumbling. An automatic meshing
tool for CFD is used to investigate the valve flow and pressure loss, coupling two
straight ducts during valve design stage, with the goal of gaining more insight in the
flow and valve dynamic interaction.

1.6 Heat Transfer

For large compressors, the heat flow from the gas inside the working chamber to
the compressor walls, or vice versa, is in general relatively small compared with
the cycle-averaged in- or outstreaming enthalpy flows. Therefore, assuming the
surrounding walls as adiabatic, works very well for many situations. However, if
a compressor is small and operated with a very high pressure ratio pd/ps, leading
to a high gas temperature at the end of compression, the heat flow may not be
negligible. Since the heat flux is the product of the temperature difference of gas
and wall, and the convective heat transfer coefficient, it is necessary to compute
both of them accurately. Usually, the temperature of the walls is assumed to be
a prescribed function in space, e.g. a constant, that is not changing with respect
to time. The change of gas temperature is mainly caused by gas compression and
expansion inside the compressors working chamber, while the occuring wall heat
flow has only a little effect on the gas temperature. Anyway, the computation of the
convective heat transfer coefficient is a difficult task, because it highly depends on
local flow patterns inside the working chamber. Therefore, it is necessary to trust
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on an unsteady 3d-simulation for accurate flow and heat transfer prediction. For
the compressor of a truck braking system with a piston diameter dP = 0.1m and
a pressure ratio pd/ps = 13.5, Müllner & Bielmeier [60] investigated the convective
heat transfer for different valve configuration in detail, using a commercial software
package with an unsteady RANS turbulence model (k-ε). The CFD-results for the
instantaneous heat flow through the walls Q̇(t), may then be used together with the
pistons instantaneous driving power P (t) and the in- and outstreaming enthalpy
flows ṁin(t)hs and ṁout(t)hd, sketched in Figure 1.3 for a motor driven compressor,

P (t)

Q̇(t)
Q̇cooler

ps, Ts pd, Td
ṁ·hsṁ·hs ṁ hd

ṁin(t)hs ṁout(t)hd

Figure 1.3: Energy flows of a motor driven reciprocating compressor

to apply the first law of thermodynamics

d

dt
H(t) = P (t)− Q̇(t) + ṁin(t)hs − ṁout(t)hd . (1.4)

Hence, according to Baehr [9] and Baehr & Stephan [10], the time-derivative of the
enthalpy inside the working chamber H(t) simply equals the right side of Equation
(1.4). In case of a time-periodic solution, the time average of Equation (1.4) over

one period gives 0 = P̄ − ¯̇Q − ṁ (hd − hs), where ṁ is the time-independend mass
flow before and after the pulsation dampers at suction and discharge side, respec-
tively. For the braking system compressor mentioned above, it turns out, that the

ratio of cycle averaged heat flow and average driving power | ¯̇Q|/P̄ is between 7.8%
and 9.2%, depending on the specific location of the suction and discharge valves in
the cylinder head. Although these results are obtained under the assumptions of a
constant wall temperature, both values indicate, that the heat loss is quite small
compared to the increase of enthalpy flow ṁ (hd − hs). However, for piston com-
pressors even smaller then dP = 0.1m, e.g. used in refrigerators, the net heat flow
may be of the same order as the time-averaged piston driving power. It can be ex-
pected for even smaller fast-running compressors, that the heat transfer has a major
influence on the thermodynamic cycle. Hermetic compressors that are completely
encapsulated, are investigated by Abidin et al. [1] and Burgstaller [15]. For a very
simple compressor geometry with a single rigid reed valve at suction and discharge
side, the heat transfer was computed based on a k-ε model and the logarithmic wall
function by Pereira et al. [63]. The results illustrate, that the raise of heat flux
during suction is caused by the incoming flow, leading to a higher convective heat
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transfer coefficient on valve plate, piston and cylinder wall respectively.

For combustion engines simpler correlations for the heat transfer exist, that are
based on mixed theoretical models and experimental data. The most prominent are
that of Woschni [87] and Annand [7]. It may be a goal to find simpler correlations
for the heat flow also for reciprocating compressors. One of the first attempts to
find a formula for the Nußelt number depending on Reynolds number and Prandtl
number was given by Adair et al. [2], based on experimental investigation. Recently,
Disconzi et al. [22] used CFD-results for a very simple compressor geometry to find
correlations for the Nußelt number. From CFD-results obtained by the present au-
thor, it can be observed, that there is a strong correlation of the heat flow with the
flow of enthalpy passing the suction valves and discharge valves. The ratio of heat
flow to enthalpy flow is a Stanton number, that is usually dependend on the fric-
tion cooefficient, e.g. in turbulent pipe flows. As shown by Aigner & Steinrück [5],
the agreement of CFD-obtained heat flows and estimated heat flows using Stanton
numbers multiplied with enthalpy flows is excellent during suction and discharge.
A major drawback of this description, is that these Stanton numbers are obtained
by fitting the CFD-results, and are not derived from first principles. A minor draw-
back of this method for the application in reciprocating compressors, is the unknow
characteristic flow speed, when all valves are closed. The time-independend average
piston speed does not seem to be a very meaningful reference velocity for the flow
during this phase. As a consequence, no adequate measures for the mass and en-
thalpy flows during the time of closed valves are known as well. However, the heat
flow estimates may be improved significantly, if temporal and spatial velocities near
the walls are known from 3d-CFD calculations obtained in acceptable computational
time.

1.7 Outline

After the short introduction into the topic of reciprocating compressors, the struc-
ture of the thesis includes the specific compressor model setup in terms of dimensions
and operation conditions, followed by the physical descriptions of the compressor
models in different forms. Some important mathematical properties of the models
convenient for the numerical solution-finding are discussed. A brief overview of nu-
merical methods other than that used for the compressor solver, is also included in
the thesis. The effects of numerical methods are then demonstrated for the solution
of simple linear 1d test-equations. This also gives an impression of possible improve-
ments of the methodology used at the moment. What follows, is a special focus on
the Euler-solver and its Roe approximate Riemann solver in ALE-formulation, used
for the reciprocating compressor with its permanetly moving geometries and meshes.
The mesh strategy is presented, and the implementation of numerical boundary con-
ditions for the valves are described in detail.
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After this, results are presented and discussed in the last chapter, to demonstrate
the conservation property, the functionality, and the flexibility of the solver for any
number and location of suction and discharge valve pockets. A proof of solver ro-
bustness is the supersonic flow appearing for a short time in a compressor running
with overspeed. In order to allow the reader to focus on the main topic, a detailed
derivation of the Roe solver in 3d, and a comparison of results derived with a 1d
and 3d version of the Euler-solver for the famous shock tube test are deferred to the
appendix.
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Chapter 2

Compressor Model Setup

This chapter provides a short introduction in the design details of a reciprocating
compressor, and shows the setup of the working chamber model, that is used for
the numerical computations within the presented work. The dimensions and the
operating conditions of the cases calculated with the model are collected in tables,
and the parameters of the suction und discharge valves, that build the boundary
conditions of the model, are derived from basic considerations.

2.1 Working Chamber

The working chamber of a reciprocating compressor consists of the space inside
the liner, a cylindrical domain that guides the motion of the back and forth going
piston, and ports that connect the cylinder with the valves, usually referred to
as valve pockets. Figure 2.1, download from http://woodgroupfs.com/compressor-
pump-repair.html, offers a look inside the working chamber of a typical process gas
reciprocating compressor with 8 poppet valves, when the cylinder head is removed.

Figure 2.1: Working chamber with removed cylinder head
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The location of the valves is usually along the circumferential surface of the cylinder
for large bore compressors. Smaller compressors can be found, that have their valves
located in the cylinder head, or a combination of both situations. Many designs exist,
where the geometry of the suction valve pockets and the discharge valve pockets are
geometry the same. Therefore, in the present work the connecting channels of the
valves to the cylinder are represented by a single geometry. However, the parameter
settings of suction valves and discharge valves may be completely different. The
angular positions of the valve pockets along the circumferential surface are not
regular distributed for all designs. The chosen description herein basically allows to
locate a pre-designed valve pocket geometry at any angular location. Placing the
valve pockets completely on the cylinder head surface is thinkable for the actual
working chamber model, but requires to create the geometry and the mesh for the
valve pockets of such an arrangement. However, in order to allow better fluid flow
and do not have any restrictions in terms of cross-section, at least a fraction of the
orignial cylinder head surface should be used to connect the cylindrical part of the
working chamber with the valve pockets.

2.1.1 Dimensions

The dimensions of the working chamber model used for the computed cases are
sketched in Figure 2.2, showing the cartesian coordinate system (x, y, z) as well.

x

x

y

z

z m
in

dP

d
V

∆V

αV

αScallop

Figure 2.2: Dimensions of the working chamber model
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Only one half of the geometry used for the simulations is shown. The presented
model uses the complete cylinder and does not allow to split the geometries of
the valve pockets in the middle. The geometry representation is quite simple, but
includes the basic features of a reciprocating compressors working chamber. The
piston is flat, having a piston diameter dP , and its minimal distance to the cylinder
head surface is zmin. In order to allow the fluid inside the cylinder to easily flow into
the valve pocket domain, a cone-shaped scallop builds the connection of the valve
pocket with the cylinder head surface at z = 0. The distance of the valves to the
piston is ∆V . A cylindrical part of the valve pocket with diameter dV connects the
valve with the circumferential surface swept partially by the piston. It is possible,
to set the angular location αV of the valve pockets along the cylinder circumference
for every single suction and discharge valve. Table 2.1 lists the dimensions for
four different cases, presented in this work. Figure 7.1 in section 7 gives an good
impression of the compressor dimensions, illustrating the huge difference in size of
the cases 1,2,3 and 4. Since for these cases, the working chambers do not enclose
the rod, the piston rod diameter dR listed in Table 2.1 is irrelevant.

Case 1 2 3 4

r (m) 0.075 0.075 0.075 0.075
L (m) 0.300 0.300 0.300 0.300
dP (m) 0.680 0.340 0.170 0.085
dR (m) 0.050 0.050 0.050 0.050
dV (m) 0.200 0.125 0.080 0.054
zmin (m) 0.0015 0.0015 0.0015 0.0015
∆V (m) 0.004 0.004 0.004 0.004
αScallop (◦) 22 24 23 10
αV,Suc,1 (◦) 108 112.5 120 135
αV,Suc,2 (◦) 144 157.5 180 225
αV,Suc,3 (◦) 180 202.5 240
αV,Suc,4 (◦) 216 247.5
αV,Suc,5 (◦) 252
αV,Dis,1 (◦) 288 292.5 300 315
αV,Dis,2 (◦) 324 337.5 0 45
αV,Dis,3 (◦) 0 22.5 60
αV,Dis,4 (◦) 36 67.5
αV,Dis,5 (◦) 72

Table 2.1: Dimensions and angular valve location for different cases

With the given geometrical parameters, the ratio ε = Vmin/[
π
4
(d2
P − d2

R) 2 r] built
with Vmin in Equation (1.2) and the volume swept by the piston π

4
(d2
P − d2

R) 2 r
is ε = 0.126 for cases 1, 2, 3 and 4, respectively. The ratio of crank-radius to
connecting rod length λ = r/L becomes λ = 0.25 for all cases. Both ratios, ε and λ,
are important dimensionless reciprocating compressor quantities, see also Equation
(3.39) for more details.
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2.1.2 Operating Conditions

As can be seen in Table 2.1, all cases have a crank radius of r = 0.075m. If a barrel
design as shown in Figure 1.1 is used for each of this cases, a boxer compressor
consisting of four barrels driven by a single crank shaft can be built. Setting the
angular crank speed to 800 rpm or ϕ̇ = π

30
800 rad/s leads to an averaged piston

speed of 4m/s, common for an API 618 application. The cases 1, 2, 3 and 4 can
be thought as the stages of a gas compression process, where the gas is compressed
in barrel 1 and cooled down to the suction temperature after compression, before it
flows into the suction chamber of barrel 2, and so forth. Since, for an ideal gas the
density ρ is proportional to pressure divided by temperature, an increase of suction
pressure ps leads to increased suction density ρs as well, if the suction temperature
Ts is thought to be the same. Table 2.2 collects the operating conditions for the
presented cases.

Case 1 2 3 4

ϕ̇ (rad s−1) π
30

800 π
30

800 π
30

800 π
30

800
ρs (kg m−3) 1.0 4.0 16.0 64.0
ps (Pa) 1 · 105 4 · 105 16 · 105 64 · 105

pd (Pa) 4 · 105 16 · 105 64 · 105 256 · 105

Table 2.2: Operating conditions for different cases

The piston diameter of a stage is chosen half the value of the previous stage. Thus,
based on simple geometrical and thermodynamical considerations, a pressure ratio
pd/ps = 4 allows to fill the gas of a stage in the barrel of the next stage, because the
cycle-averaged mass flow can be expected to be the same for all stages.

2.2 Valves

The propper design of valves is a significant issue for the layout of a reciprocating
compressor. Therefore, the flow properties of a valve depending on the geometrical
and mechanical parameters are briefly discussed in this section. Although the cases
shown within the present work are just examples, it may be desired to be quite
realistic. For reciprocating compressors valves with different valve elements are
used. A plate valve, as shown in Figure 2.3, has a single moving part, the valve
plate, located between the valve plate seat and the guard. In combination with the
valve springs, shown in Figure 2.3 in red color, the plate forms a mass-spring system.
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Figure 2.3: Plate valve

Valves consisting of more than one moving part are ring valves or poppet valves.
Although these valves allow better conditions for the flow through the valves than
plate valves, the motion of the moving elements is not that easy to control as for
a single plate. Therefore, as a first attempt, only plate valves are further discussed
herein.

2.2.1 Geometric Parameters

The dimensions of a plate valve, important for the flow through the valves, are
sketched in Figure 2.4. The plate is shown in fully open position with maximal
valve plate lift xV,max. Valves can be used either as suction valves or discharge
valves, depending on the main flow direction. In Figure 2.4 the valve seat ports are
located at the lower side, while the valve guard ports are on the upper side of the
sketch.

For a discharge valve, the flow coming from the compressor working chamber enters
the ports on the valve seat side. The gas then streams through the cuts of the valve
plate and finally reaches the discharge chamber after passing the guard ports. This
situation is also illustrated by the red arrow lines in Figure 2.5.

On the other hand, using the valve as a suction valve, the flow coming from the
suction chamber enters the ports on the guard side, and then flows into the com-
pressors working chamber passing the valve plate and the seat ports.
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Figure 2.4: Dimensions of a plate valve

With the outer diameters d1, d3, . . . , dn−1 of the valve seat ports and the inner diam-
eters d2, d4, . . . , dn of the ports, the geometrical passage area fe(xV ) between valve
plate and valve plate seat depends on the actual valve plate lift xV , and on the
geometrical passage area per valve lift fe1mm.

fe(xV ) = fe1mm xV , (2.1)

fe1mm = (d1 + d2 + d3 + d4 + · · ·+ dn−1 + dn) π . (2.2)

In Table 2.3, the seat port diameters used to calculate fe1mm within the present
work are listed for the valves applied to the cases 1, 2, 3 and 4. The corresponding
valve diameters dV are given in Table 2.1.

It is worth to mention, that within the present work, the data in Table 2.3 is only
used to compute an estimate for fe1mm and the valve cross sections based on a given
valve size. It is definitely not meant to describe the geometrical valve features in
every detail. For a detailed layout of valves, a lot of know-how and experience from
valve producing and delivering companies is required. However, the choice of the
presented diameters are expected to be at least plausible in combination with the
other compressor dimensions and operation parameters.
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Case 1 2 3 4

d1(m) 0.190 0.116 0.072 0.047
d2(m) 0.180 0.107 0.064 0.040
d3(m) 0.170 0.098 0.056 0.033
d4(m) 0.160 0.089 0.048 0.026
d5(m) 0.150 0.080 0.040 0.019
d6(m) 0.140 0.071 0.032 0.012
d7(m) 0.130 0.062 0.024 −
d8(m) 0.120 0.053 0.016 −
d9(m) 0.110 0.044 − −
d10(m) 0.100 0.035 − −
d11(m) 0.090 0.026 − −
d12(m) 0.080 0.017 − −
d13(m) 0.070 − − −
d14(m) 0.060 − − −
d15(m) 0.050 − − −
d16(m) 0.040 − − −
d17(m) 0.030 − − −
d18(m) 0.020 − − −

Table 2.3: Valve seat port diameters used to calculate fe1mm

Based on the diameters in Table 2.3, the cross sectional area of the valve seat ports
fports can be calculated using the sum of ring sectional areas

fports =
π

4

[
(d2

1 − d2
2) + (d2

3 − d2
4) + · · ·+ (d2

n−1 − d2
n)
]

= π

[
d1 + d2

2

d1 − d2

2
+
d3 + d4

2

d3 − d4

2
+ · · ·+ dn−1 + dn

2

dn−1 − dn
2

]
. (2.3)

If all ports have the same radial width ∆ports = d1−d2
2

= d3−d4
2

= · · · = dn−1−dn
2

, the
area of the ports simplifies to

fports =
∆ports

2
(d1 + d2 + d3 + d4 + · · ·+ dn−1 + dn) π =

∆ports

2
fe1mm . (2.4)

For the flow through the valves, it is not favourable to feel large changes in the size
of the cross sectional area, while passing the ports and the passage between valve
plate and seat. Therefore, the maximal valve plate lift xV,max may be chosen in such
a way, that the maximal geometrical passage area fe(xV,max) = fe1mm xV,max is of
the same size as the area of the ports. Setting fe(xV,max) ≈ fports gives

xV,max ≈
fports
fe1mm

=
∆ports

2
. (2.5)
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2.2.2 Flow Parameters

For the flow to occour between valve plate and seat it can not be expected to be
able to fully use the geometrically available area. Therefore, the contraction of
the nozzle-like flow must be considered in some sense. In order to describe the
effective passage area φ(xV ) for the flow, the geometrical passage area fe(xV ) must
be modified by a correction function ζ(xV ) depending on the valve plate lift xV and
on the coefficients α and β, usually determined by measurements.

φ(xV ) =
fe1mm xV√
ζ(xV )

. (2.6)

ζ(xV ) = α + β x2
V . (2.7)

Although herein α and β are not known, and in general are specific for a particular
valve design, an estimate can be made. In the limit of small and large valve plate
lifts

lim
xV→0

φ(xV ) =
fe1mm xV√

α
, lim

xV→∞
φ(xV ) =

fe1mm√
β
, (2.8)

it shows that α plays a role for small xV , while β dominates the φ(xV )–behaviour
for large xV . Since φ(xV ) has to be definitely smaller than the geometrical passage
area fe1mm xV for small xV , and smaller then fe1mm xV,max for large xV , it can easily
be seen, that the conditions

α > 1, β >
1

x2
V,max

, (2.9)

are necessary. With this knowledge in mind, the parameters chosen for the valves
used in the compressor flow simulations are set to xV,max = ∆ports/2, α = 2, β =
1.125/x2

V,max. Using equation (2.2) and the port diameters given in Table 2.3 gives
the values shown in Table 2.4.

Case 1 2 3 4

xV,max (m) 2.5 · 10−3 2.25 · 10−3 2.0 · 10−3 1.75 · 10−3

fe1mm (m) 5.938 2.507 1.106 0.556
α (1) 2.0 2.0 2.0 2.0
β (m−2) 1.800 · 105 2.222 · 105 2.813 · 105 3.673 · 105

Table 2.4: Valve design parameters used for the flow simulations

2.2.3 Mechanical Parameters

The mechanical parameters are responsible for the valve plate dynamics. A sketch
of the valve plate opening procedure is shown in Figure 2.5.
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Figure 2.5: Mass-spring model for the valve plate

The gas pressure p acts on the so-called force area Af on both sides of the valve
plate with mass mV , and causes a pressure force ∆pAf due to the pressure difference
∆p = pseat− pguard of seat side and guard side pressure. Using a mass-spring model

mV
d2xV
dt2

= ∆pAf − kV (xV + LV ) (2.10)

the lift of the valve plate xV = xV (t) depends on the spring constant kV , and the
initial deflection of the springs LV . If the plate sits on the seat (xV = 0) and is
not accelerated (dx2

V /dt
2 = 0), the valve is still closed at the pressure difference

∆pclosed = kVLV /Af , and opens after ∆pclosed is exceeded. If the plate is caught by
the guard (xV = xV,max) and not accelerated (dx2

V /dt
2 = 0), the valve is fully open

at the pressure difference ∆popen = kV (xV,max + LV )/Af , and starts to close if the
pressure difference falls below ∆popen. Hence, the spring constant and the spring
initial deflection can be written as

kV =
(∆popen −∆pclosed)Af

xV,max
, (2.11)

LV =
∆pclosed

∆popen −∆pclosed
xV,max. (2.12)

The force area Af = 1.2 fports is estimated to be 20% larger then the area of the ports
given in equation (2.3). The valve plate mass is calculated using mV = ρsteelAf δ,
where ρsteel = 7850 kg m−3 is the density of the plate material, and δ = 1.5 · 10−3m
is the thickness of the plate. The plate area is assumed to be equal with the force
area Af . The choice ∆pclosed/(∆popen − ∆pclosed) = 0.3 gives LV = 0.3xV,max, and
∆pclosed = 0.01 ps gives kV = 0.01 psAf/LV . Table 2.5 showes the values used for
the simulations.

Case 1 2 3 4

Af (m2) 1.781 · 10−2 6.769 · 10−3 2.654 · 10−3 1.168 · 10−3

mV (kg) 210 · 10−3 79.7 · 10−3 31.3 · 10−3 13.8 · 10−3

kV (N m−1) 23750 40112 70774 142352
LV (m) 7.5 · 10−4 6.75 · 10−4 6.0 · 10−4 5.25 · 10−4

Table 2.5: Mechanical valve parameters used for the simulations
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Chapter 3

Physical Description

3.1 Models for a Reciprocating Compressors

The goal of this section is to present the physical models, that describe the motion
of the fluid inside the working chamber of a reciprocating compressor, and to give
some important information of the required boundary conditions, e.g. the average
piston velocity. The mathematical description starts with the differential form of the
Navier-Stokes equations, and simplifiations based on dimensionless numbers, that
lead to the integral form of the Euler-equations on an arbitrary moving domain,
suitable for the description of the flow inside a reciprocating compressor. This so-
called ALE-formulation of the Euler-equations is the basis for the numerical solver
presented in section 6. In order to close the system of equations, the material equa-
tion for ideal gas is given as a function of the state variables, suitable for the finite
volume discretization method described in section 6.

The physical boundary conditions of moving and non-moving walls are presented,
and the boundary conditions of valves are described based on the assumption of
isentropic flow through the valves. The concept of isentropic flow is also used for
the idealized compressor process, assuming zero valve losses and an adiabatic com-
pression and expansion of an inviscid fluid. In section 7.3, the idealized compres-
sor process is used for comparison with the massflows obtained from CFD-results.
Furthermore, the Rankine-Hugoniot jump conditions are presented for the Euler-
equations. In section 6.6 the Rankine-Hugoniot conditions are used in the sense of
a Godunov-method as a numerical boundary condition for suction and discharge
valves.

3.2 Equations for Fluid Flow

3.2.1 Navier-Stokes Equations

In continuous fluid mechanics the motion of a single-phase fluid can be described
by the Navier-Stokes equations, see e.g. Laney [48]. The transport-equations for
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mass per volume ρ, momentum per volume ρu and total inner energy per volume
ρ e+ ρ||u||2/2 in differential form read

∂

∂t
ρ+∇ · (ρu) = 0 , (3.1)

∂

∂t
(ρu) +∇ · (ρuu− σ) = ρg , (3.2)

∂

∂t

(
ρ e+ ρ

||u||2
2

)
+∇ ·

[
ρu

(
e+
||u||2

2

)
− σ · u + q

]
= ρg · u , (3.3)

where σ is the stress tensor, and q is the heat flux density vector. Forces per
volume are considered by the term ρg in Equation (3.1). The Navier-Stokes equa-
tions have a first time derivative ∂/∂t of the state variables, and space derivatives
∇ = [∂/∂x, ∂/∂y, ∂/∂z]> that appear on the left side of the Equations (3.1), (3.2),
(3.3) as a divergence of fluxes. Integration over a control volume allows to find the
integral form of the Navier-Stokes equations. The divergence property of the fluxes
easily allows to transform the volume integrals over the divergence of the fluxes into
flux integrals over the surface of the control volume, by simply applying the diver-
gence theorem. This so-called conservation property of the Equations (3.1), (3.2),
(3.3) is an important argument for the use of finite volume methods, when searching
for approximate solutions of the Navier-Stokes equations.

For the computation of the flow inside a reciprocating compressor, some simpli-
fications of the field equations are considered. Introducing reference quantities ρref ,
uref , Lref , for density, length and velocity, the relevance of the terms, e.g. in Equa-
tion (3.2) can be discussed based on dimensionless numbers. For a reciprocating
compressor, the suction density ρs, the average piston velocity v̄P from Equation
(1.3), and four times the crank radius 4 r seem to be a natural choice for these ref-
erence quantities. The reference time tref = Lref/uref automatically turns out to be
the time 2 π/ϕ̇ needed for a full crank rotation. Applying the reference values ρref ,
uref , Lref to a scaling of kinematic and kinetic quantities

t̃=
t

Lref/uref

, ρ̃=
ρ

ρref

, x̃=
x

Lref

, ũ=
u

uref

, σ̃=
σ

ρref u2
ref

, g̃=
g

u2
ref/Lref

(3.4)

gives for Equation (3.2) multiplied with Lref/(ρref u
2
ref), the dimensionless equation

∂(ρ̃ ũ)/∂t̃ + ∇̃ · (ρ̃ ũũ − σ̃) = ρ̃ g̃, where ∇̃ = [∂/∂x̃, ∂/∂ỹ, ∂/∂z̃]> is the non-
dimensional Nabla operator. The term ρg on the right side of Equation (3.2) repre-
sents a body force per volume. A prominant example is a gravitational force, where
g is the gravity vector. The Froude number

Fr =
u2

ref

g Lref

(3.5)

is a measure for the ratio of inertia to gravity force, where g = ||g|| is the modulus
of the gravitation vector. For compressors running at high speed uref , the Froude
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number is usually large. Therefore, the term ρ̃ g̃ can be neglected compared to the
order one term ∂(ρ̃ ũ)/∂t̃ + ∇̃ · (ρ̃ ũũ − σ̃) = O(1). Hence, the expressions ρg in
Equation (3.2) and ρg·u in Equation (3.3) are not considered. The magnitude of the
viscous forces for a Newtonian fluid can be estimated with ν ρref uref/Lref , where ν is
the molecular viscosity and uref/Lref is a measure for the strain rate. An expression
that measures the interia of fluids is twice the stagnation pressure ρref u

2
ref . Dividing

this pressure by the estimate for the viscous stresses gives the Reynolds number

Re =
uref Lref

ν
. (3.6)

In flows with large Reynolds numbers, e.g. large reciprocating compressors running
on high average piston speed, forces due to molecular viscosity can be neglected
compared to the inertia forces almost everywhere in the fluid domain. However,
in a thin zone close to the walls, the boundary layers, the size of the viscous forces
becomes comparable with the interia terms. For a viscous fluid, the no-slip boundary
condition u = ẋ has to be applied at the wall, where ẋ = [ẋ, ẏ, ż]> is the velocity
of the moving wall. However, if the boundary layers are neglected, the boundary
condition for an impermeable wall (u− ẋ) ·n = 0, where n is the unit normal vector
of the wall, has to be used instead of the no-slip condition. Since for Re → ∞ the
molecular viscosity ν of the fluid does not appear in the equations anymore, the
fluid is sometimes said to be “inviscid”. Scaling the pressure p = ρref u

2
ref p̃, where

p̃ = O(1), shows that for Re → ∞ the viscous terms T = O(ν ρref uref/Lref) in the
stress tensor σ = −p I +T are negligible compared to the pressure component p I =
O(ρref u

2
ref). Hence, the stress tensor reads σ = −p I for inviscid fluids, where I is a

3×3 identity matrix. Furthermore, as already discussed in the introduction in section
1.6, for large compressors the heat flow is rather small compared with the time-
averaged power driving the piston, or compared with the flow of enthalpy passing the
valves. A local and time-dependend dimensionless quantity is the Stanton number

St =
(q · n)Aref

href ṁref

, (3.7)

where q · n is the heat flux component normal to a wall with reference area Aref ,
and href ṁref = (eref + pref/ρref) ṁref is a reference enthalpy flow, e.g. built with
the massflow ṁref passing the suction or discharge valves. The Stanton number as
defined in Equation (3.7) is not really a characteristic number, because it depends on
results, and not on predefined scales derived from boundary conditions. However,
the Stanton number can be expected to be small. Therefore, the heat flux q in
Equation (3.3) is neglected. If the heat transfer at the walls is of interest, the flow
can first be computed assuming zero heat flux. With the flow solution given, the
relatively small heat flux can then be calculated afterwards.

3.2.2 Euler Equations

If the effects of viscosity and heat flux are neglected in the transport equations
for mass, momentum and inner energy, the Navier-Stokes equations become the
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Euler-equations. For that set of equations, discontinuous solutions for the density
and the inner energy become possible, see e.g. the shock-solutions in section 3.2.7.
For the finding of discontinuous solutions on moving domains, it is convenient to
use the Arbitrary Lagragian Eulerian (ALE) framework of the Euler equations, see
Marie et al.[56]. This so-called integral form of the Euler equation can be obtained
by integrating the transport equations in differential form over a time-depending
domain V (t)

d

dt

∫

V (t)




ρ
M
E




︸ ︷︷ ︸
states

dV +

∮

S(t)




ρ (u− ẋ)·n
M (u− ẋ)·n + pn
E (u− ẋ)·n + pu·n




︸ ︷︷ ︸
fluxes

dS = 0 , (3.8)

where S(t) is the surface of the domain moving with velocity ẋ, and n is the out-
pointing unit normal vector related to every surface element dS. The domain surface
appears because the divergence theorem for the transformation of volume and surface
integrals has been applied. The state vector U = [ρ,M>, E]> consists of the density
ρ, the momentum per volume M = ρu, and the total inner energy per volume
E = ρ e+ρ |u|2/2. The additional terms in the fluxes depending on ẋ are caused by
the motion of the domain surface. In contrast to the partial time derivative ∂/∂t in
the differential form of the equations, the total time derivative d/dt of the volume
integrals appears in the integral formulation. A domain moving with the velocity
of the fluid ẋ = u is referred to as Lagrange formulation, while the non-moving
domain ẋ = 0 is referred as Euler formulation. Therefore, the transport equations
written on an arbitrary moving domain are called ALE-formulation. In compact
form, Equation (3.8) can be written as

d

dt
U(t) + F(t) = 0 , (3.9)

where U(t) contains the volume integrals of the state variables, and F(t) contains
the integrals of fluxes over the surface S(t). In physical terms F(t) is the flow of the
state quantities. The integral form of the transport equations for mass, momentum
and inner energy, are more general than the differential form. Although only the
Euler equations are presented in integral form, the Navier-Stokes equations can be
written in the same fashion as Equation (3.9) as well. Source terms, e.g. volume
forces, are not considered here. It is worth to mention, that for smooth solutions,
the total derivative of any scalar quantity a can be written as

d

dt

∫

V (t)

a dV =

∫

V (t)

∂a

∂t
dV +

∮

S(t)

a ẋ·n dS . (3.10)

Hence, in contrast to the ALE-formulation, the velocity of the domain boundary ẋ
does not show up in the differential form of the Euler equations

∂

∂t
U + (∇ · f̂(U))> = 0 , (3.11)
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where the 3× 5 flux matrix f̂(U) = [M,MM/ρ + p I, (E + p) M/ρ] depends solely
on the state variables, when the pressure p = p(U) is prescribed using the material
equation. In the notation of Equation (3.11), ∇ is a 1 × 3 object, the dot-product
with f̂(U) gives a 1× 5 object, while its transpose gives a 5× 1 vector comparable
with the state vector U. Note that MM is a dyadic product of two 3 × 1 objects
forming a 3× 3 matrix.

3.2.3 Material Equation

The equation for the material p = p(U) is necessary to close the description for
fluid motion. For ideal gas with constant specific heat capacities cv and cp, the
temperature T = e/cv only is a function on the specific inner energy. Using R/M =
cp − cv, where R is the universal gas constant and M is the molar mass, and the
ratio of heat capacities γ = cp/cv, the pressure equation p = ρ T R/M for ideal gas
can be written in terms of state variables

p = (γ − 1)[E − ρ−1M2/2] . (3.12)

In general, the temperature T = T (ρ, e) can be inserted in any equation of state
p = p(ρ, T ) to find p = p(U). Hence, solving Equation (3.8) for any fluid is possible.
However, finding the function T = T (ρ, e) from e = e(ρ, T ) can be complicated.
Furthermore, the material equation may has severe influence on the properties of
the solution U(x, t). Therefore, only Equation (3.12) for ideal gas is considered.

3.2.4 Entropy Equation

The second law of thermodynamics can be used to select which solutions of the
Equations (3.1), (3.2), (3.3) are physically possible. Basically it states, that the
entropy s, defined by Gibbs funtamental thermodynamic equation

ds =
1

T

(
de− p

ρ2
dρ

)
(3.13)

can not decrease in an isolated system, where isolated means that no mass flow and
no energy flow passes the system boundaries. An expression similar to the right side
of Equation (3.13) can also be obtained from Equations (3.1), (3.2), (3.3), assuming
that all quantities are continuous and differentiable functions. Using the substantial
derivative D/Dt = ∂/∂t + u · ∇ and splitting the stress tensor σ = −p I + T in a
pressure term and a viscous stress tensor T, the equations for mechanical energy
and thermal energy

ρ
D

Dt

||u||2
2

= −∇p · u + (∇ · T) · u + ρg · u , (3.14)

ρ
De

Dt
=
p

ρ

Dρ

Dt
+ T : ∇u−∇ · q , (3.15)

can be obtained by multiplying Equation (3.2) with the dot-product of u, and sub-
tracting Equation (3.14) from Equation (3.3). In Equation (3.15)∇·u = −ρ−1Dρ/Dt
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was inserted from Equation (3.1) and T : ∇u = ∇ · (T ·u)− (∇ ·T) ·u was used for
the dissipation. Hence, comparing Equation (3.15) with the right side of Equation
(3.13) gives

ρ T
Ds

Dt
= T : ∇u−∇ · q . (3.16)

This shows, that the substantial derivative of the entropy is zero, if the fluid is
inviscid (T = 0) and the heat flux is zero. Flows, where s = const are said to be
isentropic.

3.2.5 Isentropic Relations

For isentropic flow the pressure p = (γ − 1) ρ e for ideal gas from Equation (3.12)
can be inserted in Equation (3.13) to find 1

e
de = (γ − 1)1

ρ
dρ. Since for a calorically

ideal gas the temperature T = e/cv is directly connected to the specific inner energy
via the constant cv, the solution for temperature and pressure

T/Tref = (ρ/ρref )
γ−1 , (3.17)

p/pref = (ρ/ρref )
γ , (3.18)

are quite simple. Usually, the values in the stagnation point are taken for ρref ,
pref and Tref . However, the choice of reference values is completely free. Equations
(3.17) and (3.18) are used for the boundary conditions of the valves, while solving
the mass, momentum and energy equation inside the working chamber for invis-
cid fluid without heat flux automatically results in the isentropic relation for the
thermodynamic variables, as long as the solution is continuous.

3.2.6 Sound Speed and Mach Number

For the flow inside a reciprocating compressor and the interaction with the valves
it is extremly important how information is transported in the gas. Small pressure
disturbances in materials propagate with the speed of sound

c =

√(
∂p

∂ρ

)

s

, (3.19)

where the index s indicates, that this happens at constant entropy. If the distur-
bances are moderate, the propagation speed is slightly different to c, while it can
differ enormously if the pressure disturbances are large. Hence, the speed c is a
measure for the size of the domain effected by a weak disturbance in a point, in a
certain time. As a consequence, the activity of a point in space and time effects the
solution in other points in the so-called range of influence. On the other hand, the
result of a single point is determined by the so-called domain of dependence. For
an ideal gas, used for the reciprocating compressor model, the isentropic relations
from Equations (3.17) and (3.18) can be used to find

c =

√
γ
p

ρ
, (3.20)
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where p/ρ = T R/M from the ideal gas equation emphasizes the dependence on
the temperature T . Relating the modulus of the local flow velocity vector u to the
speed of sound, gives the dimensionless Mach number

Ma =
||u||
c

. (3.21)

The flow behavior is radically different for Ma < 1 than for Ma > 1. Therefore,
Ma = 1 is called the critical Mach number.

3.2.7 Rankine-Hugoniot Conditions

In contrast to the continuous solutions, discontinuous solution can also be found for
the Navier-Stokes and the Euler equations. The possibility, that some field quanti-
ties in a fluid may be discontinuous, was first remarked by Stokes [78], working on
Challis’s paradox [17]. Stokes expected an abrupt change of density and velocity,
when passing across a surface of discontinuity. Stokes [78] proofed, that the existence
of such a surface is possible, applying the jump conditions for mass and momentum
for an inviscid compressible fluid. However, Stokes [78] did not consider a change
of sound speed across the surface of discontinuity. According to Wilson [85],[86],
Lord Rayleigh and also Sir W. Thomson pointed out in an correspondance with
Stokes in the year 1848, that the conservation of energy would lead to a different
result, if the flow is assumed to be reversible. Wilson [86] mentions in a historical re-
view, that there was still an ongoing discussion about that question in the year 1880.

Riemann [69] published a paper on the propagation of sound waves of finite ampli-
tude in the year 1860, deriving the jumps in mass and momentum for an isentropic
(reversible) flow. Riemann [69] discussed the wave patterns for various initial con-
ditions with jumps in density and velocity, nowadays referred to as the solutions of
the Riemann problem. However, Riemanns assumption of isentropic behavior across
a shock is not correct from the view of thermodynamics. The first correct consider-
ation of thermodynamics and the relations to the wave-like propagations of a finite
longitudinal disturbance was presented by Rankine [66] in the year 1870. Rankine
[66] was the first to explain, that during the shock transition the particles “exchange
heat” with each other, but that no heat is received from the outside. A theory on
the propagation of motion in bodies based on characteristic curves for partial dif-
ferential equations was published in 1887 by Hugoniot [34]. Note, that this paper
discusses the motion of gases in the absence of discontinuites. The famous equation
know as the Hugoniot-condition for the jump of energy appears in the second paper
of Hugoniot [35], published in 1889.

The work of Hugoniot [34],[35] was the basis for the lecture propagation of waves,
given by Hadamard [33] in the year 1903. Hadamards lemma uses the concept of
a singular surface. The exact definition of a singular surface is described e.g. in
Truesdell and Toupin [84]. However, for convenience we give a stripped-down expla-
nation: Consider an arbitrary chosen volume V and let x be the position of point
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inside V . The regular surface S divides the volume into two regions V + and V −. Let
Φ(x) be a function which is continuous and differentiable in both regions, though
not at the surface S. From the regions V + and V − the function Φ(x) approaches the
two different limiting values Φ+ and Φ− at the surface S. Following the notation of
Christoffel [19], the jump in Φ while crossing the surface S at the point x is denoted
by the symbol [[Φ]] = Φ+ − Φ−. Since the function Φ(x) at the surface S is not
continous, the surface S is considered to be a singular surface with respect to Φ.
The quantity [[Φ]], the so-called jump function, is a function of its position x on S.
A generalization of the jump conditions for a singular surface moving with velocity
ẋ has been derived by Kotchine [44]. Integrating Equations (3.1), (3.2), (3.3) over
a moving domain and applying the integrals to each of the both sub-domains V +

and V −, gives after some mathematical manipulation according to Kotchine [44] for
every point on the singular surface moving with velocity ẋ

[[ρ (u− ẋ)·n]] = 0 , (3.22)

[[ρu (u− ẋ)·n]] = [[σ · n]] , (3.23)

[[ρ (e+ 1
2
||u||2) (u− ẋ)·n]] = [[(σ · u− q) · n]] , (3.24)

where [[ ]] denotes the jump of the quantities inside the brackets, and n is the unit
normal vector of the singular surface. The jump conditions found by Rankine [66]
and Hugoniot [34] are derived for a one-dimensional flow in direction of the singular
surface normal. Using the state vector U and the flux vector f for an inviscid fluid
without heat flux

U =




ρ
ρ u

ρ e+ ρ u2/2


 , f =




ρ u
ρ u2 + p

u (ρ e+ ρ u2/2 + p)


 , (3.25)

the Rankine-Hugoniot conditions can be written in compact form

[[f ]] = σ [[U]] , (3.26)

where [[U]] = U2 −U1 and [[f ]] = f2 − f1 are the jumps of the state vector and the
flux vector built with values on side 1 and side 2 of the discontinuity, and σ = ẋ · n
is the surface normal speed. With the pressure p = (γ − 1) ρ e for ideal gas, the
Rankine-Hugoniot conditions form the system

ρ2u2 − ρ1u1 = σ (ρ2 − ρ1), (3.27)

ρ2u
2
2 − ρ1u

2
1 + p2 − p1 = σ (ρ2u2 − ρ1u1), (3.28)

1

2
(ρ2u

3
2 − ρ1u

3
1) +

γ

γ − 1
(u2p2 − u1p1) = σ

[
1

2
(ρ2u

2
2 − ρ1u

2
1) +

1

γ − 1
(p2 − p1)

]
.(3.29)

Assuming ρ1, u1, p1 are given, the conditions determine how u2, ρ2, σ depend on p2.
In section 6.6.2 this form of the Rankine-Hugoniot conditions is used to determine
numerical boundary conditions for discharge valves. Two different types of discon-
tinuities can be observed, contact discontinuities and shocks.
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3.2.7.1 Contact Discontinuity

The contact discontiunuity is obtained, when the singular surface moves with the
speed of the fluid in normal direction σ = u1. Then, Equation (3.27) showes u2 = u1

and Equation (3.28) gives p2 = p1. However, Equation (3.29) is fulfilled automati-
cally, and does not determine ρ2. Any choice ρ2 6= ρ1 or ρ2 = ρ1 is a solution to the
system of equations. Therefore, the solution for a contact discontinuity,

σ = u1, u2 = u1, p2 = p1, (3.30)

shows, that the jump of the normal velocity [[u]] and the jump of the pressure [[p]] are
zero across a discontinuity surface being part of domains V1 and V2. Hence, in the
sense of Hadamard [33], for ρ2 6= ρ1 the discontinuity surface normal to the motion
of the fluid is said to be singular with respect to the density ρ.

3.2.7.2 Shock Discontinuity

In contrast to the contact discontinuity, the shock discontinuity is found for σ 6= u1.
The speed of the discontinuity σ = (ρ2u2 − ρ1u1)/(ρ2 − ρ1) derived from Equation
(3.27) can be inserted in Equation (3.28) to find for the density behind the shock

ρ2 =
1

1− ρ1(u2−u1)2

p2−p1

ρ1 , (3.31)

where u2 is still unknown. However, plugging σ and ρ2 in Equation (3.29) gives the
equation 2 (p2 − p1)2 − ρ1[(γ − 1) p1 + (γ + 1) p2](u2 − u1)2 = 0 with shock solutions

u2 = u1 ∓ (p2 − p1)

√
2

ρ1[(γ − 1) p1 + (γ + 1) p2]
, (3.32)

and the solution of the constact discontinuity u2 = u1, that was discussed already.
With Equation (3.20) the speed of sound c1 =

√
γ p1/ρ1 for ideal gas can be used

to substitude the density ρ1 in Equation (3.32)

u2 = u1 ∓ c1
p2/p1 − 1√

γ
2
(γ − 1) + γ

2
(γ + 1) p2/p1

. (3.33)

This form will be used in Equation (6.13) to determine the numerical boundary
conditions of suction valves.

3.3 Boundary Conditions for Fluid Flow

For the reciprocating compressor working chamber model the following two distinct
boundary conditions are used on the surface of the domain:

• Walls,

• Valves
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The walls can be either moving, e.g. the piston, or non-moving. The boundary type
wall is also used for the valve boundary condition, when the valve plate lift xV is
zero. For zero lift, the plate blocks the passage for the flow, and no exchange of
mass or energy can occour from the working chambers to the valve retainers outside
the modeled domain. Hence, this is in fact the same boundary conditions as a non-
moving wall. On the other hand, for xV > 0 mass and energy can pass the slots of
the valves, and a sophisticated model has to be applied to find physically correct
mass, momentum and energy flow boundary conditions.

3.3.1 Walls

As already discussed, the Euler equations require to allow a velocity slip in tagential
direction along the walls. However, in order to guarantee that no mass and energy
flows through the wall, the impermeable wall condition

(u− ẋ) · n = 0 (3.34)

has to be applied, where u is the fluid velocity at the wall, and ẋ is the velocity
vector of the wall motion. The dot-product with the unit normal vector of the wall
n leads to a vanishing component of the relative velocity in wall normal direction.
The only moving boundary zone in the model is the piston, with a motion ẋ =
[0, 0, ϕ̇ d

dϕ
zP (ϕ)]> only in z-direction. For non-moving walls ẋ = 0, Equation (3.34)

automatically fulfills the simpler condition u · n = 0.

3.3.2 Valves

The flow through the valves is not resolved in all its three-dimensional details, as this
is done, e.g. by Flade [29]. However, for the flow computation of the reciprocating
compressor, it is important to know how much massflow and energy-flow passes the
valves, when the valve plate opens a passage for the flow. Equation (2.6) provides
the empirical formula for the passage area φ(xV ), depending on the valve plate lift
xV . As shown in Figure 3.1 for a suction valve and a discharge valve, the valves are
modeled using locally the flow trough a nozzle hole with effective cross section φ2,
computed with the valve-lift dependend function φ(xV ).
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Figure 3.1: Flow model for suction valve (left) and discharge valve (right)

Isentropic flow from point 1 into the nozzle (point 2) is assumed. For an ideal gas
with constant specific heat capacities cp, cv and isentropic coefficient γ = cp/cv, the
stagnation (or total) pressure pt,1 is obtained using the (steady) energy equation for
the stagnation (or total) temperature Tt,1 = T1 + 1

2
u2

1/cp

pt,1
p1

=

(
Tt,1
T1

) γ
γ−1

=

(
1 +

1

2

u2
1

cp T1

) γ
γ−1

=

(
1 +

γ − 1

2
Ma2

1

) γ
γ−1

, (3.35)

where ρ1, u1, p1, Ma1 = u1/
√
γ p1/ρ1 are density, flow velocity, pressure and Mach

number in point 1, respectively. With the density ρ2 and the flow velocity u2

ρ2 = ρ1

(
p2

p1

)1/γ

, |u2| =
√
u2

1 +
2 γ

γ − 1

(
p1

ρ1

− p2

ρ2

)
, (3.36)

the mass flow through the valve

|ṁ2| = φ2 ρ2 |u2| = φ2 ρ1

(
p2

p1

)1/γ

√√√√u2
1 +

2 γ

γ − 1

p1

ρ1

[
1−

(
p2

p1

)1−1/γ
]

(3.37)

depends on ρ1, u1 p1 and the pressure p2 behind the valve. If the suction valve
retainer is not modeled and the flow comes from a very large suction chamber with
negligible flow velocity, the given suction values ρ1 = ρs, u1 = 0, p1 = ps are used. If
the discharge valve retainer is not modelled the pressure is taken from the discharge
chamber p2 = pd.
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3.4 The Idealized Compressor Process

3.4.1 Pressure over Volume and Crank Angle

In order to make the 3d-simulation results comparable, the idealized compressor
process can be used. Due to the motion of the piston zP (ϕ) given in Equation (1.1),
the volume in the working chamber V (ϕ) changes between Vmin and Vmax, where

Vmax = Vmin +
π

4
(d2
P − d2

R) 2 r (3.38)

is equal to V (π) from Equation (1.2). Figure 3.2 shows the pressure-volume dia-
gram for the idealized compressor cycle operating between suction pressure ps and
discharge pressure pd. The process runs counter-clockwise following the points 1,
2, 3, 4 and consists of the four phases suction, compression, discharge and expansion.

The term idealized is used, because during suction and discharge, where the suction
and the discharge valves are open, there is no pressure difference to the suction
pressure ps and the discharge pressure pd, and the compression and expansion lines
follow isentropic curves. Hence, the idealized compressor process neglects valve
losses and assumes adiabatic walls surrounding an inviscid gas. The idealized com-
pressor process can be used as a reference process for the comparison with the 3d
CFD-simulation results.

Compression
Discharge
Expansion

Suction

VVmin Vmax

p

ps

pd

1 2

34

Figure 3.2: p–V diagram of the idealized compressor cylce

In order to show how the pressure p of the idealized compressor process depends on
the crank-angle ϕ, it is favourable to express all terms in dimensionless quantities.
Using the ratios

λ =
r

L
, ε =

Vmin
Vmax − Vmin

, ψ =
pd
ps
, γ =

cp
cv
, (3.39)
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it is possible to completely describe the pressure of the idealized process as a function
of the crank angle ϕ

p

ps
=





ψ
(

ε
ε+0.5 zP (ϕ)/r

)γ
: 0 ≤ ϕ < ϕs

1 : ϕs ≤ ϕ < π(
ε+1

ε+0.5 zP (ϕ)/r

)γ
: π ≤ ϕ < ϕd

ψ : ϕd ≤ ϕ < 2π

, (3.40)

zP (ϕ)/r = 1− cosϕ+ λ−1 −
√
λ−2 − sin2 ϕ , (3.41)

ϕs = arccos

[
1

2

(1 + λ−1 − 2 ε (ψ1/γ − 1))2 + 1− λ−2

1 + λ−1 − 2 ε (ψ1/γ − 1)

]
, (3.42)

ϕd = 2π − arccos

[
1

2

(1 + λ−1 − 2 (ε+ 1)ψ−1/γ + 2 ε)2 + 1− λ−2

1 + λ−1 − 2 (ε+ 1)ψ−1/γ + 2 ε

]
, (3.43)

where zP (ϕ)/r can be derived for Equation (1.1), the crank angle positions ϕs and ϕd
indicate the beginning of suction and discharge, respectively. Figure 3.3 shows the
pressure over the crank angle for the example λ = 0.3, ε = 0.1, ψ = 5, γ = 1.4. The
curves for density and temperature can then be obtained easily using the isentropic
relations.
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p
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Figure 3.3: Relative pressure curve over crank angle

3.4.2 Instantaneous Mass Flow and Driving Power

With ρ(ϕ) = ρs (p(ϕ)/ps)
1/γ the density curve over crank angle ϕ can be computed

using Equation (3.40). For the idealized compressor process, the density and the
pressure are assumed to be constant during suction and discharge. Assuming, that
the Mach number in the whole working chamber is small, the flow can be considered
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to be almost incompressible. However, this assumptions may be heavily violated
by a practical application, but for the idealized process, it allows to compute the
massflow passing the valves, using the massflow generated by the motion of the
piston

ṁ(ϕ) =
π

4
(d2
P − d2

R) ρ(ϕ) ϕ̇
d

dϕ
zP (ϕ) . (3.44)

During compression and expansion ṁ(ϕ) = 0, because the idealized model assumes
closed valves. The instantaneous driving power Ẇ of the compressor is the prod-
uct of piston force and piston velocity. Assuming the pressure inside the working
chamber is only a function of crank angle, this reads

Ẇ (ϕ) =
π

4
(d2
P − d2

R) p(ϕ) ϕ̇
d

dϕ
zP (ϕ) . (3.45)

Equation (3.45) is valid for all values of the crank angle ϕ.

3.4.3 Average Mass Flow and Driving Power

The difference between the mass inside the cylinder during compression mc =
(M ps Vmax)/(RTs) and expansion me = (M pd Vmin)/(RTd) is transported through
the valves, while the crank shaft makes one rotation. So the average mass flux ṁ
over a compressor cycle can be defined as

ṁ =
mc −me

2π/ϕ̇
=

ϕ̇

2π

M ps
RTs︸ ︷︷ ︸
ρs

(Vmax − Vmin)
[
1− ε

(
ψ

1
γ − 1

)]
. (3.46)

The compressor changes the state of the gas from (ps, Ts) to (pd, Td). If no heat
flows over the walls the specific work

w = hd − hs = cp (Td − Ts) = cp Ts

(
ψ
γ−1
γ − 1

)
(3.47)

needed, is equal to the difference in the specific enthalpies at suction and discharge, if
the kinetic energy can be neglected. The time-averaged driving power then becomes

Ẇ = ṁw =
ϕ̇

2π

γ

γ − 1
ps (Vmax − Vmin)

(
ψ
γ−1
γ − 1

) [
1− ε

(
ψ

1
γ − 1

)]
. (3.48)

3.5 Estimates for Solid Body Motion

Although the focus of this thesis is on the description of the fluid motion in the
working chamber and the thermodynamics of a reciprocating compressor, a detailed
understanding of the solid body motion and of the forces acting on compressor parts
is usully of more importance for the layout and design of such machines.
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One aspect is the permanent acceleration and deceleration of the piston due to
the back and forth going linear motion. Some estimates show, that the averaged
piston velocity v̄P from Equation (1.3) is an important measure for the solid parts,
as well as it is for the motion of the gas inside the working chamber of the com-
pressor. Geometrically similar machines with a characteristic length scale r, that
run with the same mean piston speed v̄P are said to be mechanically similar, if the
gas pressure p acting on the piston is the same, and the parts are made of materials
having the same density ρsolid. The mechanical stresses σsolid, say in the piston of
a reciprocating machine, are caused by the gas pressure p on the one hand, and by
forces due to the acceleration (∼ v̄2

P/r) of the piston mass (∼ ρsolid r
3) divided by

cross section area (∼ r2) on the other hand. The ratio of the estimate for the stresses
caused by mass acceleration (ρsolid r

3) · (v̄2
P/r) · (1/r2) and the stresses caused by the

gas pressure (∼ pmax) is a Cauchy number

Ca =
ρsolid v̄

2
P

pmax
, (3.49)

where pmax is used instead of a Young’s modulus E in the usual Cauchy number
definition for solid bodies. The pressure pmax and the mean piston speed v̄P appear as
an operating condition for a built machine with density ρsolid. Hence, reciprocating
compressors with the same Cauchy number are mechanically equivalent, independent
of r or any other measure for the compressor size. For the fluid the piston velocity
appears as a moving boundary condition.
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Chapter 4

Properties of Partial Differential
Equations

4.1 Introduction to PDEs

In this chapter some relevant mathematical properites of the partial differential
equations (PDEs) describing the physics of the flow inside a reciprocating compres-
sor are discussed. In the present work a numerical method is used to solve the
Euler equations approximately, that uses properties of the exact equations. For
the three-dimensional Roe solver presented in section 6, the rotational invariance
and the hyperbolicy of the linearized Euler equations are crutial properties. For
hyperbolic PDEs a diagonalization of the system is possible, allowing a decom-
position in decoupled waves. These properties build the basis for the first order
accurate upwind approximation of the Roe method for locally linearized system of
PDEs. However, the first order accuracy of the Roe scheme leads to a phenomenon
called numerical diffusion. The numerical diffusion appearing in the approximate
solutions of advection problems solved with first order upwind methods, shows a
behavior similar to real physical diffusion processes. In order to demonstrate this
effect, the wave solution of the linear advection-diffusion equation is presented, and
the consequences on the change of the so-called total variation (TV) is shown. The
results plotted in Figure 5.2 for a one-dimensional situation indicate, that numerical
methods that consider the property of non-increasing TV of the underlying PDE
(so called TVD-schemes) can dramatically improve the results for continuous and
discontinuous solutions compared to the first order upwind method. Since the non-
increasing TV of PDEs in the three-dimensional case is much more complex, these
aspects will not be discussed in detail.

4.2 System of Non-Linear PDEs

A system of n non-linear partial differential equations (PDEs) including a first time-
derivative ∂/∂t and all the first space derivatives ∂/∂x, ∂/∂y, ∂/∂z may be written
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in the following vector notation form

∂U

∂t
+
∂f (x)

∂x
+
∂f (y)

∂y
+
∂f (z)

∂z
= 0 , (4.1)

where U = [U1, . . . , Un]> is the vector of n state variables U1, . . . , Un depending
on time t and space x = [x, y, z]>. The space components x, y, z usually form a
cartesian coordinate system. The flux functions in the directions of the coordinate
system are f (x) = [f

(x)
1 , . . . , f

(x)
n ]>, f (y) = [f

(y)
1 , . . . , f

(y)
n ]> and f (z) = [f

(z)
1 , . . . , f

(z)
n ]>.

Combining the flux functions in a single matrix f̂ = [f (x), f (y), f (z)] allows to write
the system of PDEs in so-called divergence form

∂U

∂t
+∇ · f̂ = 0, (4.2)

where the vector notation ∇ = [∂/∂x, ∂/∂y, ∂/∂z]> is used for the divergence op-
erator. If the PDE represents a pyhsical model that describes the advection of the
state vector quantities without the presence of diffusion, the combined matrix of
flux functions f̂ = f̂(U) only depends on the components of the state vector U. If
the physical model describes a process of advection and diffusion of the state vector
quantities, the flux function matrix f̂ = f̂(U,∇U) depends on the state vector U and
it gradient ∇U. As a consequence of diffusion, the divergence of the flux function
matrix ∇· f̂ leads to second derivatives in space for advection-diffusion models, while
only first derivatives in space appear in ∇ · f̂ for a pure advection model equation.
This has severe consequences on the properties of the PDE-solutions and on the
required boundary conditions. The presence of diffusion leads to an instant spread
of information from a point in space over the whole domain, while in the absence of
diffusion, the advection determines the propagation speed of information.

4.2.1 Rotational Invariance

If Equation (4.2) is integrated over a non-moving control volume

d

dt

∫

V

U dV +

∮

S

f̂ · n dS = 0 , (4.3)

the integrand in the surface integral can be written as

f̂ · n = n(x)f (x) + n(y)f (y) + n(z)f (z) , (4.4)

where n(x), n(y), n(z) are the components of the outward unit vector n normal to
the surface. The local properties of the product f̂ · n on the surface element dS of
the domain are important for some classifications of the partial differential equa-
tion. As shown in Toro [81], the Euler equations are rotational invariant. Using a
spherical coordinate system for the surface normal vector n, and a rotation matrix
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T applicable to vectors f (x), f (y), f (z) with five rows

n =



n(x)

n(y)

n(z)


 =




cos θ(y) cos θ(z)

cos θ(y) sin θ(z)

sin θ(z)


 , (4.5)

T =




1 0 0 0 0
0 cos θ(y) cos θ(z) cos θ(y) sin θ(z) sin θ(y) 0
0 − sin θ(z) cos θ(z) 0 0
0 − sin θ(y) cos θ(z) − sin θ(y) sin θ(z) cos θ(y) 0
0 0 0 0 1



, (4.6)

the identity

cos θ(y) cos θ(z)f (x)(U) + cos θ(y) sin θ(z)f (y)(U) + sin θ(z)f (x)(U) = T−1f (x)(TU) (4.7)

proofes the rotational invariance of the PDE system. Hence, if Equation (4.7) is
fulfilled, only the component f (x) is required to compute the flux in the direction of
the surface normal.

4.2.2 Local Linearization

In general, the advective flux functions f (x)(U), f (y)(U), f (z)(U) depend non-linearly
on the state vector U. However, linear equations are locally good approximations
to the non-linear equations, and help to understand how the solution evolves with
respect to time in the very near future. Based on the Jacobi matrices of the flux
functions

A(x)(U) =
∂

∂U
f (x)(U) , (4.8)

A(y)(U) =
∂

∂U
f (y)(U) , (4.9)

A(z)(U) =
∂

∂U
f (z)(U) , (4.10)

see e.g. Hirsch [38] and [39], Equation (4.1) can be written as

∂U

∂t
+ A(x)(U)

∂U

∂x
+ A(y)(U)

∂U

∂y
+ A(z)(U)

∂U

∂z
= 0 . (4.11)

This is still a non-linear set of equations, because the Jacobi matrices also depend
on the state vector U. However, if the Jacobi matrices are frozen by a constant
state vector Ū, the equation

∂U

∂t
+ A(x)(Ū)

∂U

∂x
+ A(y)(Ū)

∂U

∂y
+ A(z)(Ū)

∂U

∂z
= 0 (4.12)

becomes linear. Finding the solutions of linear systems of partial differential equa-
tions can be accomplished applying a wave ansatz to the equations. An important
requirement to solve the equations with this ansatz, is the hyperbolicity of the equa-
tion system. In the hyperbolic case, the time evolution of the intial function can be
predicted by the decomposition into single waves.
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4.2.3 Hyperbolicity

According to Leveque [51] and Toro [81], a system of PDEs shown in Equation (4.1)
is hyperbolic in time, if the matrix

A(U,n) = n(x)A(x)(U) + n(y)A(y)(U) + n(z)A(z)(U) (4.13)

is diagonalizable for all choices of the unit normal vector n = [n(x), n(y), n(z)]>.
The vector n shows the direction of a plane wave solution to the Equation (4.1).
A diagonalizable matrix A(U,n) has only real eigenvalues. If all real eigenvalues
of A(U,n) are distinct, the system given by Equation (4.1) is said to be strictly
hyperbolic. However, for the three-dimensional Euler equations, this is not the case,
while the one-dimensional Euler equations Ut + fx = 0 using the state and flux
vector of Equation (3.25) are strictly hyperbolic.

4.3 System of Linear PDEs

In order to demonstrate the advantages of linear partial differential equation systems,
the properties of a hyperbolic problem

Ut + A(Ū)Ux = 0 (4.14)

are briefly discussed. Similar examples are found in Leveque [50] and Hirsch [38],
[39]. For simplicity, only a state vector U = [U1, U2]> containing two components
U1 and U2 is used, giving a (2 × 2) matrix A(Ū) with four constant entities A11,
A12, A21, A22 determined by the choice of Ū = [Ū1, Ū2]>.

4.3.1 Eigenvalues and Eigenvectors

The eigenvalues λ(1), λ(2) and eigenvectors r(1), r(2) of a (2 × 2) matrix A can be
found using A · r(1) = λ(1)r(1) and A · r(2) = λ(2)r(2)

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
A

·
[
r

(1)
1

r
(1)
2

]

︸ ︷︷ ︸
r(1)

=λ(1)

[
r

(1)
1

r
(1)
2

]

︸ ︷︷ ︸
r(1)

,

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
A

·
[
r

(2)
1

r
(2)
2

]

︸ ︷︷ ︸
r(2)

=λ(2)

[
r

(2)
1

r
(2)
2

]

︸ ︷︷ ︸
r(2)

. (4.15)

Collecting the eigenvalues in the diagonal matrix Λ = diag[λ(1), λ(2)] and the eigen-
vectors in the matrix R = [r(1), r(2)], one matrix equation can be formed

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
A

·
[
r

(1)
1 r

(2)
1

r
(1)
2 r

(2)
2

]

︸ ︷︷ ︸
R

=

[
r

(1)
1 r

(2)
1

r
(1)
2 r

(2)
2

]

︸ ︷︷ ︸
R

·
[
λ(1) 0
0 λ(2)

]

︸ ︷︷ ︸
Λ

, (4.16)

where the matrix A = R Λ R−1 is said to be written in diagonal form.
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4.3.2 Diagonalization and Wave Decomposition

The diagonalization of A can be used to decouple the system of linear hyperbolic
equations into equations for the vector of characteristic variables v = [v1, v2]>

Ut + AUx = 0 , (4.17)

R−1Ut︸ ︷︷ ︸
vt

+R−1R Λ R−1Ux︸ ︷︷ ︸
vx

= 0 , (4.18)

[
v1

v2

]

t

+

[
λ(1) 0
0 λ(2)

]
·
[
v1

v2

]

x

=

[
0
0

]
, (4.19)

with the solutions v1(x, t) = v1(x−λ(1)t), v2(x, t) = v2(x−λ(2)t). Taking ξ = x−λ(1)t
the proof is simple v1,t +λ(1)v1,x = v1,ξ ξt +λ(1)v1,ξ ξx = −v1,ξ λ

(1) +λ(1)v1,ξ = 0. The
final solution

U(x, t)=Rv=

[
r

(1)
1 r

(2)
1

r
(1)
2 r

(2)
2

]
·
[
v1

v2

]
=

[
v1 r

(1)
1 +v2 r

(2)
1

v1 r
(1)
2 +v2 r

(2)
2

]
=v1(x−λ(1)t) r(1)+v2(x−λ(2)t) r(2)

(4.20)
has to be fitted to the initial conditions, determining v1(x, 0) and v2(x, 0).

4.4 Linear Scalar Advection-Diffusion Equation

4.4.1 Wave Solutions

A simple model equation for transport phenomena in one space dimension is the
linear advection-diffusion equation for the evolution of a space and time-dependend
scalar u = u(x, t)

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = d

∂2

∂x2
u(x, t) , (4.21)

where a characterizes the strength of advection, and d is a diffusion coefficient. The
advection coefficient a can be equal to zero, or any positve or negative real value,
while due to physical reasons the sign of d is always positive. In the diffusion-free
limit d = 0 the advection-diffusion equation reduces to the linear advection equation
∂u/∂t+a ∂u/∂x = 0. A solution of the linear advection-diffusion equation for given
initial data u0(x) = u(x, 0) on an unbounded spatial domain −∞ < x < ∞ can
be found using the coordinate transformation to a reference frame moving with
advection speed a

x(x̃, t̃) = x̃+ a t̃ , (4.22)

t(t̃) = t̃ . (4.23)
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Applying the chain rule to the expression u(x(x̃, t̃), t(t̃)) gives the derivatives

∂u

∂x̃
=
∂u

∂x

∂x

∂x̃
=
∂u

∂x
, (4.24)

∂2u

∂x̃2
=

∂

∂x

(
∂u

∂x

∂x

∂x̃

)
=
∂2u

∂x2
, (4.25)

∂u

∂t̃
=
∂u

∂x

∂x

∂t̃
+
∂u

∂t

∂t

∂t̃
= a

∂u

∂x
+
∂u

∂t
. (4.26)

The advection-diffusion equation in coordinates x̃ and t̃ transforms to the so-called
heat equation

∂

∂t̃
u(x̃, t̃) = d

∂2

∂x̃2
u(x̃, t̃) . (4.27)

The initial condition in new variables is u0 = u(x̃, 0). With the Fourier transform
û(ω) of a function u(x̃) and its inverse Fourier transform

û{u(x̃)}(ω) =
1√
2 π

+∞∫

−∞

u(x̃) exp(i ω x̃) dx̃ , (4.28)

u{û(ω)}(x̃) =
1√
2 π

+∞∫

−∞

û(ω) exp(−i x̃ ω) dω , (4.29)

the solution can be found. Applying the Fourier transform to the heat equation
gives ∂û(ω; t)/∂t̃ = −dω2 û(ω; t̃) with solution

û(ω; t̃) = exp(−dω2t̃) û(ω; 0) , (4.30)

where û(ω; 0) is the Fourier transform of the inital data u(x̃, 0). Inserting û(ω; t̃) in
the inverse Fourier transform u(x̃) of û(ω) the solution reads after some simplification

u(x̃, t̃) =
1

2
√
π d t̃

+∞∫

−∞

u(x̃∗, 0) exp

(
−(x̃− x̃∗)2

4 d t̃

)
dx̃∗ . (4.31)

Hence, shifting back to the coordiantes x and t, the general solution of the linear
advection-diffusion equation depending on the initial condition u(x, 0) becomes

u(x, t) =
1

2
√
π d t

+∞∫

−∞

u(x̃∗, 0) exp

(
−(x− a t− x̃∗)2

4 d t

)
dx̃∗ . (4.32)

Common examples are the solutions for a single unit jump in the initial function

ujump(x, 0) =

{
0 : x < 0
1 : x ≥ 0

, (4.33)

ujump(x, t) =
1

2

[
1 + erf

(
x− a t
2
√
d t

)]
, (4.34)
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and the solution for an initial function having the shape of a Gaussian distribution

uhump(x, 0) = exp

(
−1

2

x2

σ2

)
, (4.35)

uhump(x, t) =
1√

1 + 2 d t/σ2
exp

(
− (x− a t)2

2σ2 + 4 d t

)
, (4.36)

where the standard deviation σ is a measure for the width of the curve uhump(x, 0).
The solution ujump(x, t) is monotonic, while uhump(x, t) is a non-monotonic example.
In general it can be concluded, that the solutions u(x, t) of the linear advection-
diffusion equation will stay monotonic for all t > 0, if the initial function u(x, 0) is
monotonic.

A local approximation for the jump solution at the point x = a t, with the value
and the slope of the solution u(x, t), reads

ujump(a t, t) ≈ 1

2
+

x− a t√
4π d t

, (4.37)

where δ =
√

4π d t can be seen as the thickness of the boundary layer separating
the constant solution parts u(−∞, t) = 0 and u(∞, t) = 1. As can be observed
in Figure 4.1, the diffusion d more and more smears out the discontinuous initial
function with increasing time t. In case of the hump-solution, the diffusion leads to
a decreasing maximum max(uhump(x, t)) = uhump(a t, t) = 1/

√
1 + 2 d t/σ2 as time t

grows.

It can be concluded, that the linear advection-diffusion equation cannot produce
discontinuous solutions from continuous intital conditions. If the initial function
includes a discontinuity, e.g. the function ujump(x, 0), it will immediately disappear
due to the presence of diffusion. However, in the case of vanishing diffusion d = 0,
the discontinuity will remain for t > 0.
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Figure 4.1: Jump (top) and hump (bottom) solution of the linear advection-diffusion
equation ut + a ux = d uxx with a = 1, d = 0.001 at time t = 0 and t = 1

4.4.2 Total Variation

An important measure for the behavior of solutions is the total variation of a function

TV (t) =

+∞∫

−∞

∣∣∣∣
∂u(x, t)

∂x

∣∣∣∣ dx , (4.38)

If the solution u(x, t) is monotonic, e.g. ∂u/∂x ≥ 0 or ∂u/∂x ≤ 0 for all −∞ < x <
∞ and all t > 0, the absolute value |∂u/∂x| can be substituted by the derivative
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∂u/∂x or by −∂u/∂x, respectively. In the first case, the total variation becomes
TV = u(∞, t) − u(−∞, t), while the second case gives TV = u(−∞, t) − u(∞, t).
However, if the solution is monotonic, the total variation equals its initial value
TV (t) = TV (0). Evaluating the total variation for the jump and the hump examples
gives

TVjump(t) = 1 , (4.39)

TVhump(t) =
2√

1 + 2 d t/σ2
. (4.40)

The initial value for the hump function gives TVhump(0) = 2. Hence, in this non-
monotonic situation it is obvious to see that TV (t) ≤ TV (0) for t ≥ 0. In the
diffusion-free limit d = 0 the total variation becomes TV (t) = TV (0) for t ≥ 0.
Based on the results of these simple examples, it can be concluded, that on un-
bounded domains in space the total variation keeps its initial value TV (0) if no
diffusion is present (propagation of a solitary wave), or if in case d > 0 the initial
condition is a monotonic function.

The discrete version of the total variation definition can be used for the design
of numerical methods. If a numerical scheme finds solutions of the linear advection
equation ∂u/∂t+ a ∂u/∂x = 0 where TV (t) > TV (0), the method in physically in-
correct. If, in contrast, the numerical solution of the linear advection equation gives
TV (t) < TV (0), this scheme produces numerical diffusion that mimics a physical
correct diffusion coefficient d > 0. Hence, the goal is to find a numerical method
that is total variation non-incresing (TVNI).

4.5 Non-Linear Scalar Advection Equation

The non-linear scalar advection equation

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 , (4.41)

where the flux-function f(u(x, t)) depends non-linear on u, is a prototype equation to
discuss the non-linear effects on the solution, in contrast to the solutions of linear flux
functions. The most simple example of a linear flux function is f(u(x, t) = a u(x, t),
where the constant a represents the propagation speed of advective waves. The most
prominent example of a non-linear flux functions f(u) = u2/2 leads to the inviscid
Burgers equation

∂

∂t
u+

∂

∂x

(
u2

2

)
= 0 . (4.42)

Even if the initial function u(x, 0) and its space-derivative ∂
∂x
u(x, 0) are continuous,

the solution of the Burgers equation can produce discontinuities at t > 0. The
reason for this phenomenon is the solution-dependend speed of the propagating
waves. Hence, the Burgers equation is frequently used to test methods developed
for equations including non-linearities, that lead to steepening of solutions or to
discontinuities, e.g. the Euler equations.
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Chapter 5

Numerical Methods

5.1 Introduction in Numerics

In this chapter the most common methods to solve the flow of fluids are briefly dis-
cussed. Although only the method presented in Chapter 6 is used for the self-coded
solver of reciprocating compressor flow, the overview of other methods provides the
arguments for the choice of the selected method. Furthermore, the discussion allows
to demonstrates the state-of-the-art and possible further development. The basic
concepts of approximation methods are presented, an the common expressions are
explained. Since finding an approximate solution usually requires to store numbers
in the memory of a computer, this field is also called numerics. Approximation
methods are necessary for situations, where an analytical result to a mathematical
problem is not known, or it is to cumbersome to find. Finding solution can be dif-
ficult due to initial or boundary conditions, e.g. on complex geometries, or due to
non-linearity of the field equations that models the physics. For almost all of the
non-linear equations, the superposition of elementary solutions does not seem to be
easy, although examples exist, e.g. the Burgers equation, where a transformation
to a linear equation makes superposition possible. However, sometimes the super-
position principle is not used, even if the field equation allows its application. One
example is the linear heat equation solved with the finite element method (FEM)
instead of a boundary element method (BEM), that just needs to combine a large
number of elementary field solutions to approximately fulfill certain boundary con-
ditions.

5.2 Approximation Methods

A lot of different approximation methods exist for different types of mathematical
and physical models. The most common methods for ordinary differential equations
(ODEs) and partial differential equations (PDEs) are

• Finite Difference Methods (FDM),

• Finite Volume Methods (FVM),

• Finite Element Methods (FEM),
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where the methods FVM and FEM can be seen as weighted residual methods
(WRM). The weighted residual method consists of approximation functions to the
differental equation operator, and test functions that can be different in general. The
product of approximated differential equation and test function is then integrated
over the domain or sub-domains. The unknown coefficients of the approximation
function, the weights, are chosen to minimize the residual of the volume integral.
Therefore, the methods are called WRM.

If the test function related to each sub-domain has the constant value 1 inside
the sub-domain and 0 outside, this is a finite volume method. Hence, a FVM is the
integral of an approximated differential equation over the volume of a sub-domain,
usually called a cell. For test functions that differ from a constant, the most common
choice for a test function used for the FEM is the approximation function. Apply-
ing the same function set to test functions and approximation functions is called
a Galerkin method. The residual is then the integral of squared deviations to the
exact solution.

If the solution is expected to be discontinuous, a FDM can not be used, because
the method directly approximates derivatives, that do not exist then. Finite volume
methods, and some finite element methods, e.g the discontinuous Galerkin method
(DGM), are capable to handle discontinuities. While the reconstruction process of
FVM usually assumes a discontinuity at every boundary of a cell, the discontinuous
Galerkin version of FEM assumes the discontinuity only at boundaries of every ele-
ment, and continuous functions inside the element. Elements are also sub-domains,
but they consist of more nodes inside the element, that store the unknowns and
build the approximation to the solution. Placing the nodes on certain positions
helps to find interpolation functions from the values stored in the nodes. A cell
used in FVM has execatly one unknown for every variable, which is usually the cell
average. The cell average is the unknown integrated over the cell domain, divided
by the cell volume.

The reconstruction of discontinuites at cell boundaries or element boundaries, re-
quires a special routine of solving the jumps in the solutions, which are called Rie-
mann problems. If the so-called Riemann flux, related to each sub-domain boundary,
is used to find the unknows inside the cell or element, the method is called to be
conservative. This means, that if the flow of a variable is zero on all boundaries of
a sub-domain, the variable value related to the sub-domain will remain unchanged,
or in other words, is conserved. While the FVM is conservative by construction, the
residual minimization of DGM leads to non-conservative methods.

A special finite element method is the so-called spectral element method (SEM).
The whole domain is then approximated by a single element, that uses a very ac-
curate approximation function inside this spectral element. If a FEM uses just a
view elements for the domain decompositon, but with highly accurate approximation
functions inside the element, this method is said to have quasi-spectral properties.
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During the last decade, conservative methods have been developed, that are some-
how in-between the classical methods. The spectral volume method (SVM) uses
elements, that are again sub-divided in smaller sub-domains, the cells. Every cell
stores a single value of the unknown variable, while the number of unknowns stored
in an element correlates with the number of cells the element contains. A continuous
approximation to a solution inside the element can then be found using the volume
averages of all the cells related to that element. The solution of the unknown cell
averages is found using continuous fluxes derived from the in-element reconstruc-
tions, and with discontinuous fluxes at element boundaries computed with Riemann
solvers. Since a flux is computed for every cell boundary, the SVM is conservative.
This technique can again become cumbersome, if to many cells are used for recon-
struction. However, this is the quasi-spectral idea behind the SVM.

Recently, another method has gained popularity, with the goal of reducing the com-
plexity of SVM. The so-called spectral difference method (SDM) uses nodes inside
the elements instead of cells. Hence, the method is highly related to the DGM,
because the in-element node interpolation is continuous, while a discontinuous (nu-
merical) flux is computed at element boundaries. With numerical fluxes computed
with a Riemann solver at element boundary nodes and the flux values at nodes
inside the SD-element, an accurate continuous recontruction of a space-dependend
flux function related to every element can be found. The space derivatives of these
flux functions evaluated at element nodes can then directly be used to evolve the
unknowns in time based on the original partial differential equation (PDE), instead
of integrating the PDE over a volume and minimizing a residual. If the flux re-
construction procedure does only depend on numerical fluxes computed at element
boundaries, SDM becomes a conservative finite difference method. Although some
SDM-implementations in academic software exist, the stability of these methods is
still part of investigation. Especially the way how the flux is reconstructed or inter-
polated inside the element seems to be crucial for the behavior in terms of stability
and the appearance of oscilating solutions.

5.2.1 Point Values and Mean Values

The result of numerical approximation methods has to be stored as numerical values.
This can be done by storing the solution data at specific points in space, or the mean
values of intervals. In Figure 5.1, a function u(x) is shown in a one-dimensional
domain x. Let’s assume u(x) is a given function, e.g. the initial conditon u(x, 0) of
a time-space-dependend solution u(x, t), where t is the time. As sketched in Figure
5.1, the x-axis is sub-divided into intervals, shown in blue color, using the list of
coordinates

. . . , xi−5/2, xi−3/2, xi−1/2, xi+1/2, xi+3/2, . . . (5.1)

where the index i can be any integer number, that allows to shift to another position
in the list.
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cell mid−point values
cell average values

x

u(x)

xi−2 xi−1 xi xi+1xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2

Figure 5.1: Function u(x) and space x, subdivided in intervals (cells)

The intervals

. . .

xi−5/2 < x < xi−3/2 ,

xi−3/2 < x < xi−1/2 ,

xi−1/2 < x < xi−1/2 ,

xi+1/2 < x < xi+3/2 ,

. . .

are called the cells . . . , Ci−2, Ci−1, Ci, Ci+1, . . . , where each cell boundary in Equa-
tion (5.1) has exactly two cell neighbors. The cell Ci has a length ∆xi = xi+1/2 −
xi−1/2 and a mid-point position xi = (xi+1/2 − xi−1/2)/2, where shifting the index
i defines the length of the other cells ∆xi−5/2, ∆xi−3/2, ∆xi−1/2, ∆xi+1/2 and their
mid-point positions xi−2, xi−1, xi, xi+1. The values of the function u(x) evaluated at
the cell mid-point positions . . . , u(xi−2), u(xi−1), u(xi), u(xi+1), . . . built the list of
cell mid-point values . . . , ui−2, ui−1, ui, ui+1, . . . . If a point-wise numerical proce-
dure is used, the positions xi and the values ui are stored for 0 ≤ i ≤ imax−1, where
imax is the number of points. Depending on the information required for the numer-
ical method, this can be done with or without storing the cell boundary coordinates.

Another possibility is to store the cell average values Ui, these are the mean value
of every cell

Ui =
1

∆xi

xi+1/2∫

xi−1/2

u(x) dx . (5.2)
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As can be seen in Figure 5.1, the cell average values Ui, shown in blue color for
every cell, deviate a little bit from the the cell mid-point values ui, shown in green.
Applying a Taylor series expension for the function u(x) around the cell mid-point
position

Ui =
1

∆xi

xi+1/2∫

xi−1/2

[
ui + u′(xi) · (x− xi) +

1

2
u′′(xi) · (x− xi)2 + . . .

]
dx , (5.3)

Ui =
1

∆xi

∆xi/2∫

−∆xi/2

[
ui + u′(xi) · x̃+

1

2
u′′(xi) · x̃2 + . . .

]
dx̃ , (5.4)

Ui = ui +
1

24
u′′(xi) ·∆x2

i + . . . , (5.5)

shows, that the size of the deviation (Ui − ui) becomes smaller as the cell size ∆xi
decreases. However, a numerical method produces an approximation error of maybe
comparable size. Therefore, it is important to make a difference between ui and Ui.

5.2.2 Interpolation and Reconstruction

5.2.2.1 Local Interpolation Trough Points

The simplest way how to find interpolation functions is to use so-called shape func-
tions. These are special functions, with the property of having a value of one in
a certain point with index i, and a value of zero in all the other points j used
for the shape function interpolation. For a local polynomial interpolation function
u(x) using (n + 1) points, this can be done with the Lagrange polynomials basis
polynomials

Xi(x) =
n∏

j=0, j 6=i

x− xj
xi − xj

, (5.6)

u(x) =
n∑

i=0

uiXi(x) , (5.7)

where ui are the function values in points xi. The condition j 6= i avoids the division
by zero. A simple example is used here to demonstrate the procedure. Using four
points xi−2, xi−1, xi, xi+1 with four function values ui−2, ui−1, ui, ui+1, as shown in
Figure 5.1, a cubic polynomial is obtained, that is a local approximation to the
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function u(x)

Xi−2(x) =
x− xi−1

xi−2 − xi−1

x− xi
xi−2 − xi

x− xi+1

xi−2 − xi+1

, (5.8)

Xi−1(x) =
x− xi−2

xi−1 − xi−2

x− xi
xi−1 − xi

x− xi+1

xi−1 − xi+1

, (5.9)

Xi(x) =
x− xi−2

xi − xi−2

x− xi−1

xi − xi−1

x− xi+1

xi − xi+1

, (5.10)

Xi+1(x) =
x− xi−2

xi+1 − xi−2

x− xi−1

xi+1 − xi−1

x− xi
xi+1 − xi

, (5.11)

u(x) = ui−2Xi−2(x) + ui−1Xi−1(x) + uiXi(x) + ui+1Xi+1(x) . (5.12)

In two or three dimensions, it is much more complicated to find the Lagrange polyno-
mials. Usually complete polynomials are required to achive the same approximation
accuracy as in the one-dimensional case. For the 2d case a complete linear, quadratic
or cubic polynomial requires 3, 6 or 10 points, respectively. In 3d, the required point
number raises to 4, 10 and 20 for a complete linear, quadratic and cubic polynomial.
It may happen, that the location of the points in 2d and 3d space is in such a way,
that the determination of the polynomial coefficients fails. This cannot happen in
the 1d case, as long as all points have a different location. However, even if a com-
plete polynomial interpolation exists in 2d or 3d, it is usually very hard to find for
general point positions.

5.2.2.2 Local Reconstruction Of Mean Values

A local reconstruction function ui(x) is a function designed in such a way, that given
cell average values . . . , Ui−1, Ui, Ui+1, . . . of selected cells are obtained, when building
the mean of this function for the selected cells . . . , Ci−1, Ci, Ci+1, . . . , according to
Equation (5.2). The most simple local reconstruction is a constant value inside of
each cell shown in Figure 5.1. With the piecewise constant reconstruction for every
cell

ui(x) = Ui , (5.13)

the given cell average values of the cells are automatically obtained, when building
the mean. In general, the piecewise constant reconstruction function is discontinuous
at the cell boundaries. A reconstruction function u(x) that gives the cell average Ui
and that of the neighbor cell Ui+1 when building the mean, is the linear function

ui(x) = Ui + (Ui+1 − Ui)
x− xi
xi+1 − xi

, (5.14)

where xi = (xi+1/2−xi−1/2)/2 and xi+1 = (xi+3/2−xi+1/2)/2 are the cell mid-point po-
sitions. The linear function also has the properties ui(xi) = Ui and ui(xi+1) = Ui+1.
Hence, the value of the linear reconstruction function in the cell-mid point is the
cell average value of the local cell. A piecewise quadratic reconstruction ui(x) that
has the same mean values as the given cell averages Ui−1, Ui, Ui+1 is more diffi-
cult to find. One systematic way is to use shape functions for the integral function
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U(x) :=
∫
u(x) dx of u(x), and to find u(x) afterwards, building the derivative. For

the quadratic reconstruction, three shape functions Xi−1/2(x), Xi+1/2(x), Xi+3/2(x)
are used to build U(x)

Xi−1/2(x) =
x− xi−3/2

xi−1/2 − xi−3/2

x− xi+1/2

xi−1/2 − xi+1/2

x− xi+3/2

xi−1/2 − xi+3/2

, (5.15)

Xi+1/2(x) =
x− xi−3/2

xi+1/2 − xi−3/2

x− xi−1/2

xi+1/2 − xi−1/2

x− xi+3/2

xi+1/2 − xi+3/2

, (5.16)

Xi+3/2(x) =
x− xi−3/2

xi+3/2 − xi−3/2

x− xi−1/2

xi+3/2 − xi−1/2

x− xi+1/2

xi+3/2 − xi+1/2

, (5.17)

U(x) = Ui−1Xi−1/2(x) + UiXi+1/2(x) + Ui+1 Xi+3/2(x) . (5.18)

All shape functions have a value of one at their related cell boundary Xi−1/2(xi−1/2)=
Xi+1/2(xi+1/2)=Xi+3/2(xi+3/2) = 1, but a value of zero at all other cell boundaries.
Hence, the function U(x) has the value of the given cell averages at cell boundaries
xi−1/2, xi+1/2, xi+3/2, but a zero value U(xi−3/2) = 0 in the most left cell boundary.
The derivative u(x) = dU/dx gives the piecewise quadratic reconstruction

u(x) = Ui−1
d

dx
Xi−1/2(x) + Ui

d

dx
Xi+1/2(x) + Ui+1

d

dx
Xi+3/2(x) . (5.19)

The mean values of the function u(x) for the cells Ci−1, Ci, Ci+1 are the given cell
averages Ui−1, Ui, Ui+1. If all cells have the same size ∆x = (xi+3/2 − xi+1/2) =
(xi+1/2 − xi−1/2) = (xi−1/2 − xi−3/2), the quadratic reconstruction function becomes
more simple

u(x) =
1

6
(2Ui+1 + 5Ui − Ui−1) + (Ui+1 − Ui)

(
x− xi+1/2

∆x

)
+

1

2
(Ui+1 − 2Ui + Ui−1)

(
x− xi+1/2

∆x

)2

. (5.20)

5.2.3 Approximation Accuracy

The accuracy of an approximation is found, comparing the deviation of a function
to its approximation function in the limit ∆x → 0 for spatial discretizations, or
∆t → 0 for temporal discretization. If polynomial approximations are used, the
Taylor series expansion is a convenient tool for deriving the accuracy depending on
the order of the deviation error O(∆xp), where p is some integer number. If the
function is not continuous, the Taylor series expansion is not helpful to measure the
accuracy. Integral conditions have to be applied to measure the error close to the
discontinuities.
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5.3 Linear Scalar Advection Equation

The time and space dependend linear scalar advection equation ∂u/∂t+a ∂u/∂x = 0
with constant wave propagation speed a, is a simple model equation for a scalar
u(x, t), to discuss numerical methods for hyperbolic problems. Using the indices ()t
and ()x for the time and space derivates, the equation reads

ut + a ux = 0 . (5.21)

5.3.1 Cauchy Kowalewski Procedure

If the solution u(x, tn) of Equation (5.21) is known at time tn, it may be interesting
to have a simple procedure to find an approximate solution to Equation (5.21) at
time tn+1 = tn + ∆t, where ∆t is a small time step. The Cauchy Kowalewski
procedure uses a Taylor series in time, and substitutes all the time derivates by
space derivatives, based on the original differential Equation (5.21).

u(x, tn+1)=u(x, tn)+∆t ut(x, tn)+
1

2
∆t2utt(x, tn)+

1

6
∆t3uttt(x, tn)+. . . (5.22)

u(x, tn+1)=u(x, tn)−∆t a ux(x, tn)+
1

2
∆t2a2uxx(x, tn)− 1

6
∆t3a3uxxx(x, tn)+. . .(5.23)

Hence, depending on where the Taylor series is truncated, the method produces a
certain time discretization error (∆t)p+1, where p is the order of the scheme with
respect to time. If the data is stored in space points . . . , xi−1, xi, xi+1, . . . , the value
u(xi, tn+1) at point xi can be computed, if approximations to ux(xi, tn), uxx(xi, tn), . . .
are available. Accurate approximations to the space-derivatives can be found, us-
ing a Taylor series in space. This leads to a finite difference method having a
certain order of accuracy with respect to time and space, depending on the space-
discretization.

5.3.2 Finite Difference Methods

5.3.2.1 First Order Upwind Scheme

The analytical solution u(x, t) = u(x−a t) of the linear advection equation indicates,
that the result at time tn+1 = tn + ∆t should only dependend on values that will
propagate through the space point xi, when time evolves from tn to tn+1. Hence, for
a wave speed a > 0, only values in upwind-directed points xi, xi−1, xi−2, . . . shall be
used to approximate the space derivatives at point xi. For the first order upwind
scheme, the Taylor series

u(xi−1, tn) = u(xi, tn)−∆xux(xi, tn) +
1

2
∆x2uxx(xi, tn) + . . . , (5.24)

ux(xi, tn) =
u(xi, tn)− u(xi−1, tn)

∆x
+

1

2
∆xuxx(xi, tn) + . . . , (5.25)
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gives the approximation for ux(xi, tn), where ∆x = xi − xi−1 is the grid spacing.
Evaluating Equation (5.23) at xi and substituting the first space derivative gives

un+1
i =uni −∆t a

[
uni −uni−1

∆x
+

1

2
∆xuxx(xi, tn)+. . .

]
+

1

2
∆t2a2uxx(xi, tn)+. . . , (5.26)

where un+1
i = u(xi, tn+1), uni = u(xi, tn), uni−1 = u(xi−1, tn) was used. Hence, the

first order upwind method for the linear advection equation reads

un+1
i = uni −

a∆t

∆x

[
uni − uni−1

]
, (5.27)

with leading order error estimates O(∆x∆t) and O(∆t2) for the solution expression
un+1
i . Both error terms appearing in Equation (5.26), −1

2

(
a∆t
∆x

)
∆x2uxx(xi, tn) and

1
2

(
a∆t
∆x

)2
∆x2uxx(xi, tn), are of comparable size O(∆x2), if the Courant number

C =
a∆t

∆x
(5.28)

is an order one term C = O(1). The von Neumann stability analysis in Section
5.3.5 will demonstrate, that the maximum allowable value of the Courant number
for stability of the first order upwind scheme is Cmax = 1. For a < 0 the upwinding
gives un+1

i = uni − C
[
uni+1 − uni

]
. Hence, the direction of spatial discretization

changes with the sign of the wave speed a.

5.3.2.2 Second Order Central Scheme

The second order central scheme presented here, is the Lax-Wendroff [49] finite
difference scheme. Central means, that the values at points xi−1, xi, xi+1 are used
to find the approximation of the space derivatives ux, uxx in point xi. Hence, this
discretization is not following the philosophy of pure upwinding, because it also
uses the point xi+1 on the downwind side of wave propagation, if a is assumed
to be positive. With ∆xR = xi+1 − xi, ∆xL = xi − xi−1 and ux = ux(xi, tn),
uxx = uxx(xi, tn), uxxx = uxxx(xi, tn), the Taylor series expansions

uni+1 = uni + ∆xR ux +
1

2
∆x2

Ruxx +
1

6
∆x3

Ruxxx + . . . , (5.29)

uni−1 = uni −∆xL ux +
1

2
∆x2

Luxx −
1

6
∆x3

Luxxx + . . . , (5.30)

gives approximations for the space derivatives

ux =
∆x2

Lu
n
i+1 + (∆x2

R −∆x2
L)uni −∆x2

Ru
n
i−1

∆xR∆xL(∆xR + ∆xL)
− 1

6
∆xR∆xL uxxx + . . . , (5.31)

uxx=2
∆xLu

n
i+1−(∆xR + ∆xL)uni +∆xRu

n
i−1

∆xR∆xL(∆xR+∆xL)
− 1

3
(∆xR−∆xL)uxxx+. . . . (5.32)
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Introducing the grid-size ratio χ = ∆xR/∆xL and the average grid-spacing ∆x =
1
2
(∆xR + ∆xL) the derivatives simplify to

ux =
uni+1 + (χ2 − 1)uni − χ2uni−1

2χ∆x
− 2

3

χ

(1 + χ)2
∆x2uxxx + . . . , (5.33)

uxx =
(1 + χ)(uni+1 − (1 + χ)uni + χuni−1)

2χ∆x2
+

2

3

1− χ
1 + χ

∆xuxxx + . . . . (5.34)

Hence, if χ = O(1), the approximation error of ux is O(∆x2), while the error of
uxx is O(∆x). Using the Courant number C = a∆t/∆x built with the average
grid-spacing ∆x = 1

2
(∆xR + ∆xL) in Equation (5.23), and substituted the spatial

derivatives ux and uxx

un+1
i = uni − C ux∆x+

1

2
C2uxx∆x

2 − 1

6
C3uxxx∆x

3 + . . . , (5.35)

un+1
i ≈uni −C

uni+1+(χ2−1)uni −χ2uni−1

2χ
+

1

2
C2u

n
i+1−(1 + χ)uni +χuni−1

2χ/(1+χ)
, (5.36)

shows that the error of un+1
i in Equation (5.36) isO(∆x3), because ux∆x and uxx∆x

2

appear in the numerical scheme. If in general, schemes with approximation error
(∆x)p+1 are said to have order p, this is a scheme of order 2, or in other words a
second order scheme. The stability limit of the scheme is expected to depend on C
and χ. However, the stability analysis in Section 5.3.5 will only be applied to an
equi-sized grid, where ∆x = ∆xR = ∆xL. Hence, for χ = ∆xR/∆xL = 1, the finite
difference Lax-Wendroff scheme simplifies to

un+1
i = uni −

1

2
C (uni+1 − uni−1) +

1

2
C2(uni+1 − 2uni + uni−1) . (5.37)

This is the classical method presented by Lax and Wendroff [49]. Since a Taylor
series is equivalent to a polynomial up to a certain degree, the spatial derivates for
the second order scheme can also be obtained using a local quadratic interpolation
function at time tn

Xi−1(x) =
x− xi
xi−1 − xi

x− xi+1

xi−1 − xi+1

, (5.38)

Xi(x) =
x− xi−1

xi − xi−1

x− xi+1

xi − xi+1

, (5.39)

Xi+1(x) =
x− xi−1

xi+1 − xi−1

x− xi
xi+1 − xi

, (5.40)

u(x, tn) = uni−1Xi−1(x) + uni Xi(x) + uni+1 Xi+1(x) , (5.41)

where the first derivative ux(xi, tn) = uni−1
∂
∂x
Xi−1(xi)+uni

∂
∂x
Xi(xi)+uni+1

∂
∂x
Xi+1(xi)

and the second derivative uxx(xi, tn)=uni−1
∂2

∂x2
Xi−1(xi)+u

n
i
∂2

∂x2
Xi(xi)+u

n
i+1

∂2

∂x2
Xi+1(xi)

can be obtained from the function u(x, tn), evaluated at position xi. This method
gives the same result and accuracy for the approximations of ux and uxx used within
the Cauch Kowalewski procedure, but it is maybe more convenient for higher order
approximations, then the Taylor series expansion.
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5.3.2.3 Third Order Upwind-Biased Scheme

The local cubic polynomial interpolation of Equations (5.8), (5.9), (5.10), (5.11),
(5.12), using four points, can be used to derive a third order upwind-biased scheme.
The scheme computes the value un+1

i = u(xi, tn+1) based on data uni−2, uni−1, uni ,
uni+1. Assuming a positive wave speed a, the points xi−1 and xi−2 are upwind and
far-upwind of the point xi, while xi+1 is a downwind point. The stencil is said to be
upwind-biased, because two points in upwind-direction are used, and only one point
in downwind-direction. For simplicity, only the case with equi-sized point distances
∆x = (xi+1 − xi) = (xi − xi−1) = (xi−1 − xi−2) is discussed. The spatial derivatives

ux =
2uni+1 + 3uni − 6uni−1 + uni−2

6 ∆x
− 1

12
uxxxx ∆x3 + . . . , (5.42)

uxx =
uni+1 − 2uni + uni−1

∆x2
− 1

12
uxxxx ∆x2 + . . . , (5.43)

uxxx =
uni+1 − 3uni + 3uni−1 − uni−2

∆x3
+

1

2
uxxxx ∆x+ . . . , (5.44)

inserted in the Cauchy Kowalewski procedure of Equation (5.23) gives the third
order upwind-biased finite difference scheme for the linear advection equation with
positive wave speed a

un+1
i =

1

6
(−2C + 3C2 − C3)uni+1 +

1

6
(6− 3C − 6C2 + 3C3)uni +

1

6
(6C + 3C2 − 3C3)uni−1 +

1

6
(−C + C3)uni−2 . (5.45)

The leading order approximation error of un+1
i is O(∆x4).

5.3.3 Finite Volume Methods

In contrast to finite difference methods, finite volume methods usually store cell av-
erage values according to Equation (5.2), instead of values in points. The basic idea
behind the finite volume method (FVM) is to find approximate solution U(x, t) in an
integral sense to a system of partial differential equation, e.g. the one-dimensional
equation

∂

∂t
U(x, t) +

∂

∂x
f(U(x, t)) = 0 . (5.46)

Therefore, the equations are integrated in space over the volume of a cell, and
integrated in time over the actual size of the time step ∆t = tn+1 − tn. Assume
that a cell Ci shown in Figure 5.1 is a three-dimensional object with length ∆x =
xi+1/2 − xi−1/2, constant height ∆y and constant width ∆z. Then, integration over
the cell volume ∆x∆y∆z of Equation (5.46) yields

∆y∆z
d

dt

xi+1/2∫

xi−1/2

U(x, t) dx = ∆y∆z
[
f(U(xi−1/2, t))− f(U(xi+1/2, t))

]
, (5.47)
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where dividing Equation (5.47) by the constants ∆y and ∆z and integration from
time tn to tn+1 yields

xi+1/2∫

x
i− 1

2

U(x, tn+1) dx

︸ ︷︷ ︸
Un+1
i ∆x

=

xi+1/2∫

x
i− 1

2

U(x, tn) dx

︸ ︷︷ ︸
Un
i ∆x

+

tn+1∫

tn

f(U(xi−1/2, t)) dt

︸ ︷︷ ︸
Fn
i−1/2

∆t

−
tn+1∫

tn

f(U(xi+1/2, t)) dt

︸ ︷︷ ︸
Fn
i+1/2

∆t

.

(5.48)
With the average cell values Un+1

i , Un
i and the time-averaged flux integrals Fn

i+1/2,
Fn
i−1/2, the short form of the conservation law reads

Un+1
i = Un

i −
∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
. (5.49)

The time-averaged fluxes Fn
i+1/2, Fn

i−1/2 appearing in Equation (5.49) are sometimes
called numerical fluxes. However, since no approximation had been made in the
derivation, Equation (5.49) is an exact solution of Equation (5.46). The reason why
Fn
i+1/2 and Fn

i−1/2 become numerical fluxes, is that the integrands f(U(xi−1/2, t)) and

f(U(xi+1/2, t)) are not known exactly for any time t, if only the cell average values
Un
i−1, Un

i , Un
i+1 at time tn are stored. Hence, the approximation of the integrand

with respect to time lets Fn
i+1/2 become a numerical flux

Fn
i+1/2 =

1

∆t

tn+1∫

tn

[
f(U(xi+1/2, tn)) + ft(U(xi+1/2, tn)) · (t− tn) + . . .

]
dt , (5.50)

where f(U(xi+1/2, tn)) and ft(U(xi+1/2, tn)) = −fU(U(xi+1/2, tn)) fx(U(xi+1/2, tn))
are derived using the differential equation Ut = −fx and a spatial approxima-
tion based on the cell average values at time tn, that determines U(xi+1/2, tn).
Hence, only the spatio-temporal approximation of the flux integrads f(U(xi+1/2, t)),
f(U(xi−1/2, t)) determines the behavior and results of Equation (5.49).

For the linear advection equation ut + a ux = 0, given in Equation (5.21), the flux
function f(u(x, t)) = a u(x, t) can be used together with the differential equation
to find the time derivatives ft = a ut = −a2ux, ftt = a utt = a3 uxx, . . . for the
approximation of the scalar numerical flux

F n
i+1/2 = a u(xi+1/2, tn)− 1

2
a2∆t ux(xi+1/2, tn) +

1

2
a3∆t2uxx(xi+1/2, tn) + . . . . (5.51)

5.3.3.1 First Order Upwind Scheme

The finite volume version of the first order upwind scheme uses only the first term
of Equation (5.51) and applies the piecewise constant reconstruction in Equation
(5.13) to substitute u(xi+1/2, tn) with the cell average value Un

i in upwind direction

F n
i+1/2 = aUn

i , (5.52)
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where a was assumed to be positive. For a < 0 the numerical first order upwind
flux at the cell boundary xi+1/2 becomes F n

i+1/2 = aUn
i+1. Hence, the direction of

spatial discretization depends on the local value of the wave speed a at the cell
boundary. Assuming a > 0 at xi−1/2 gives for the numerical flux F n

i−1/2 = aUn
i−1.

Inserting F n
i+1/2 and F n

i−1/2 in the conservation law Un+1
i = Un

i − ∆t
∆x

(F n
i+1/2−F n

i−1/2)

of Equation (5.49) and using the Courant number C of Equation (5.28) gives

Un+1
i = Un

i − C (Un
i − Un

i−1) . (5.53)

Hence, the finite volume first order upwind scheme becomes similar to the finite
difference first order upwind scheme of Equation (5.27) if a is positive at xi+1/2 and
xi−1/2. However, the cell average values Un

i , Un
i−1 are used instead of the points

values uni , uni−1.

5.3.3.2 Second Order Central Scheme

For the second order central scheme, the first and the second term of Equation
(5.51) are used. The linear reconstruction of Equation (5.14) can be used to find
u(xi+1/2, tn) = Un

i + (Un
i+1 − Un

i )(xi+1/2 − xi)/(xi+1 − xi) for the value at the cell
boundary xi+1/2, and ux(xi+1/2, tn) = (Un

i+1−Un
i )/(xi+1−xi) for the space derivative.

Similar approximations u(xi−1/2, tn) and ux(xi−1/2, tn) can be used to find for the
central numerical fluxes

F n
i+1/2 = a

(
Un
i + (Un

i+1 − Un
i )
xi+1/2 − xi
xi+1 − xi

)
− 1

2
a2∆t

Un
i+1 − Un

i

xi+1 − xi
, (5.54)

F n
i−1/2 = a

(
Un
i−1 + (Un

i − Un
i−1)

xi−1/2 − xi−1

xi − xi−1

)
− 1

2
a2∆t

Un
i − Un

i−1

xi − xi−1

. (5.55)

The neighbors Un
i , Un

i+1 of the cell boundary xi+1/2, and the neighbors Un
i−1, Un

i of
the cell boundary xi−1/2, are used independendly of the wave speed sign. With the
cell size ∆x = (xi+1/2 − xi−1/2) and the cell size ratios χR = (xi+3/2 − xi+1/2)/∆x,
χL = (xi+1/2 − xi−1/2)/∆x, the conservation law of Equation (5.49) becomes

Un+1
i =Un

i −C
[

(1− C)Ui+1 + (χR + C)Ui
1 + χR

− (1− C)Ui + (χL + C)Ui−1

1 + χL

]
, (5.56)

where C = a∆t/∆x is the Courant number. For equi-sized grid χR = χL = 1, this
becomes the finite volume Lax-Wendroff scheme

Un+1
i = Un

i −
1

2
C (Un

i+1 − Un
i−1) +

1

2
C2(Un

i+1 − 2Un
i + Un

i−1) . (5.57)

Hence, for equi-sized grid the finite volume method is identical with the finite dif-
ference method of Equation (5.37), but uses the cell average values instead of point
values.
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5.3.3.3 Third Order Upwind-Biased Scheme

In order to derive a thrird order scheme, all term shown in Equation (5.51) are used.
The approximations of u(xi+1/2, tn), ux(xi+1/2, tn), uxx(xi+1/2, tn) are derived from
Equation (5.20) for a quadratic reconstruction function on equi-sized grid

u(xi+1/2, tn) =
1

6
(2Un

i+1 + 5Un
i − Un

i−1) , (5.58)

ux(xi+1/2, tn) =
1

∆x
(Un

i+1 − Un
i ) , (5.59)

uxx(xi+1/2, tn) =
1

∆x2
(Ui+1 − 2Ui + Ui−1) . (5.60)

With the Courant number C = a∆t/∆x the numerical flux divided by the wave
speed reads

F n
i+1/2

a
=

1

6
(2Un

i+1 + 5Un
i −Un

i−1)− C
2

(Un
i+1−Un

i ) +
C2

2
(Ui+1− 2Ui +Ui−1) . (5.61)

Using a comparable equation for F n
i−1/2 gives for the conservation law

Un+1
i =

1

6
(−2C + 3C2 − C3)Un

i+1 +
1

6
(6− 3C − 6C2 + 3C3)Un

i +

1

6
(6C + 3C2 − 3C3)Un

i−1 +
1

6
(−C + C3)Un

i−2 . (5.62)

This is the same form as it was obtained for the third order finite differenc scheme
in Equation (5.45), although volume averages are used here instead of point values.
This result is quite estonishing, because the errors of un+1

i computed by Equation
(5.45) and of Un+1

i computed by Equation (5.62) are O(∆x4), while according to
Equation (5.5), the difference of Un+1

i to un+1
i is O(∆x2). Hence, the difference of

a volume average to a point value can be larger, than the discretization error of an
accurate numerical scheme.

5.3.3.4 High Resolution Scheme

The idea of high resolutions schemes is to combine a low order method with a
high order method. Usually, the first order upwind flux is used together with the
second order central flux of Lax-Wendroff. Near discontinuities, the solution of
the second order central flux tends to overshoots and oscilations, while the first
order upwind scheme does not show this phenomenon. In contrast, the first order
scheme does not only advect discontinuities, as it would be expected by the analytic
solution, but also smears out the jumps as it is done by physical models that include
diffusion. However, the high numerical diffusion of the first order scheme makes it
sometimes inappropriate for finding smooth solutions. Hence, the basic concept of
high resolution schemes is to find a clever switch between an accurate but oscilating
high order flux FH

i+1/2, and an in-accurate but non-oscilating low order flux FL
i+1/2.

The Lax-Wendroff flux on equi-sized grid FH
i+1/2 = a [Un

i + 1
2
(1−C)(Un

i+1−Ui)] from
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Equation (5.54) is usually combined with the first order upwind flux FL
i+1/2 = aUn

i

from Equation (5.52), to give for the numerical high resolution flux

F n
i+1/2 = FL

i+1/2 + (FH
i+1/2 − FL

i+1/2)φi+1/2(θi) , (5.63)

1

a
F n
i+1/2 = Un

i +
1

2
(1− C)(Un

i+1 − Un
i )φi+1/2(θi) , (5.64)

where φi+1/2(θi) is the flux-limiter function, giving the first order upwind scheme
for φi+1/2 = 0, and the second order central scheme for φi+1/2 = 1. The ratio of
consecutive gradinents

θi =
Un
i − Un

i−1

Un
i+1 − Un

i

(5.65)

is a measure for the smoothness of the solution, and uses the difference of upwind and
far-upwind values (Un

i − Un
i−1), and the difference of downwind and upwind value

Un
i+1 − Un

i , respectively. Rewriting gives θi = 1 − Uni+1−2Uni +Uni−1

Uni+1−Uni
, where the term

(Un
i+1−2Un

i +Un
i−1) = ∆x2uxx(xi+1/2)− 1

2
∆x3uxxx(xi+1/2) + . . . is a measure for the

curvature and (Un
i+1 − Un

i ) = ∆xux(xi+1/2) + 1
24

∆x3uxxx(xi+1/2) + . . . measures the

slope at position xi+1/2. Hence, θi ≈ 1 −∆x
uxx(xi+1/2)

ux(xi+1/2)
equals approximately one, if

the smoothness criterion ∆x
uxx(xi+1/2)

ux(xi+1/2)
� 1 is fulfilled. It can be expected that φi+1/2

should have a value between zero and one, depeding on the danger for oscilatory
solutions. However, it turns out, that the third order numerical flux obtained in
Equation (5.61) gives the Courant-number dependend limiter function

φ
O(3)
i+1/2(θi, C) = 1 +

1 + C

3
(θi − 1) , (5.66)

with a value of one at θi = 1, and a slope 1+C
3

. In the (θi, φi+1/2)–diagram all
second order schemes pass the point (1, 1). Hence, the slope must depend on the
Courant number to reach third order accuracy. Based on von Neumann and TVD
stability analysis, the maximal time step Cmax for these methods can be found.
Furthermore, the TVD stability criterion allows to find flux limiter function better
suited for discontinuities, while the limiter φ

O(3)
i+1/2 is the optimal choice for smooth

solutions.

5.3.4 Numerical Diffusion

The numerical diffusion of the first order upwind scheme used for the linear advection
equation is discussed. The first order scheme can be interpredated as a second order
scheme with additional diffusion. In order to find this diffusive expression, the
first order scheme is compared with a second order discretization of the advection
diffusion equation

ut + a ux = d uxx . (5.67)

The Cauchy Kowalewski time-discretization procedure for the advection diffusion
equation substitutes the time derivatives by space derivatives. The advectiv and
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the diffusive Courant number

C =
a∆t

∆x
, D =

d∆t

∆x2
, (5.68)

are used in combination with the first and the second time derivative

ut = −a ux + d uxx, utt = a2 uxx − 2 a d uxxx + d2uxxxx, (5.69)

to derive for the Taylor series in time un+1
i = uni + ut ∆t+ 1

2
utt∆t

2 + . . .

un+1
i =uni−C ∆xux+

(
C2

2
∆x2+D∆x2

)
uxx−C D∆x3uxxx+

D2

2
∆x4uxxxx+. . . . (5.70)

For a second order scheme the terms O(∆x3) and O(∆x4) can be neglected. Ap-
plying a second order central discretization gives

un+1
i = uni −C (uni+1−uni−1)+

C2

2
(uni+1−2uni +uni−1)+D (uni+1−2uni +uni−1) , (5.71)

where compared to the second order scheme for the advection equation, only the
last term stems from the diffusion. The first order upwind scheme un+1

i = uni −
C (uni − uni−1) applied to the advection equation ut + a ux = 0 with positive wave
speed a > 0, can also be written as

un+1
i =uni−

C

2
(uni+1−uni−1)+

C2

2
(uni+1−2uni +uni−1)+

C

2
(1−C)(uni+1−2uni+u

n
i−1) , (5.72)

where the first three terms are identical with the second order discretization, and the
last term is called the numerical diffusion of the first order scheme. Hence, comparing
the additional term with the second order advection diffusion approximation, gives
D = 1

2
C (1− C) or for the diffusion coefficient

d =
1

2

∆x2

∆t

a∆t

∆x

(
1− a∆t

∆x

)
. (5.73)

Hence, if the advective Courant number C = a∆t/∆x fulfills 0 < C < 1, the
coefficient of numerical diffusion is always positive for the first order upwind scheme.
The diffusive Courant number D = 1

2
C (1 − C) reaches its maximum Dmax = 1/8

at C = 1/2.

5.3.5 Von Neumann Stability

The von Neumann stability analysis discusses how some deviation of the initial data
evolves with respect to time. Basically, the analysis only works for linear equations,
because then, the difference of the approximated result to the analytic solution can
easily be obtained. As a consequence, the time evolution of the approximation
error is derived with the same numerical scheme as that for the discussed equation.
Applying a spatial wave ansatz for the initial disturbance uΩ(x) = eiΩx and the
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time-evolution ansatz uΩ(x, t) = eiΩx+β t, gives for the values in the cell-mid point
of an equi-sized grid with distance ∆x at time 0 and ∆t

uni+1 = uni e
i ω , (5.74)

uni−1 = uni e
−i ω , (5.75)

uni−2 = uni e
−i 2ω , (5.76)

un+1
i = uni e

β∆t , (5.77)

where ω = Ω ∆x and G = eβ∆t is the amplification factor.

5.3.5.1 First Order Upwind Scheme

Inserting the wave ansatz in the cell mid-point values of the first order upwind
scheme for the linear advection equation un+1

i = uni − C (uni − uni−1) with positive
wave speed a > 0, Equation (5.27) divided by uni becomes

G = 1− C (1− e−i ω) = (1− C + C cosω)− i C sinω . (5.78)

Stability requires that no waves of any length in the inital error will grow with respect
to time. Hence, the growth coefficient β must be non-positive or the modulus of the
amplification factor G is not larger than one |G| ≤ 1. The square of the modulus
|G|2 = G ·G∗ fulfills the equation |G|2 ≤ 1 if |G| ≤ 1 is fulfilled. For the first order
upwind scheme |G|2 becomes

|G|2 = (1− C + C cosω)2 + C2 sin2 ω = 1 + 2C (1− C)(cosω − 1) . (5.79)

Because −1 ≤ cosω ≤ 1 is fulfilled for any value of ω, the last bracket is non-positive
(cosω− 1) ≤ 0. Hence, the stability condition |G|2 ≤ 1 requires that C (1−C) ≥ 0,
or

0 ≤ C ≤ 1 (5.80)

for the first order upwind scheme. Since the time step is limited ∆t ≤ ∆xCmax/a by
the maximal Courant number Cmax = 1, the first order upwind scheme is said to be
conditionally stable under the condition in Equation (5.80). The stability analysis
for the first order upwind finite volume scheme follows the same pattern, but uses
volume averages instead of point values. However, the same result is obtained for
the time step restriction as for the finite difference scheme.

5.3.5.2 Second Order Central Scheme

The Lax-Wendroff or second order central scheme shown in Equation (5.37) for the
linear advection equation un+1

i = uni − 1
2
C(uni+1 − uni−1) + 1

2
C2(uni+1 − 2uni + uni−1)

written with cell mid-point values, gives after inserting the wave ansatz and division
by uni for the amplification factor and its squared modulus

G = 1−1

2
C(ei ω − e−i ω︸ ︷︷ ︸

i 2 sinω

)+
1

2
C2(ei ω − 2 + e−i ω︸ ︷︷ ︸

2 cosω−2

) = 1+C2(cosω−1)−i C sinω , (5.81)
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|G|2 = [1 + C2(cosω − 1)]2 + C2 sin2 ω , (5.82)

|G|2 = 1 + C2(C2 − 1)(cosω − 1)2 . (5.83)

Since C2(cosω−1)2 is always positive for any ω or Courant number C, the stability
condition |G|2 ≤ 1 requires that (C2 − 1) ≤ 0 or

0 ≤ C ≤ 1 , (5.84)

if C is assumed to be non-negative. Hence, the second order central scheme has
the same maximal Courant number Cmax as the first order upwind scheme. The
second order central scheme is conditionally stable under the time step restriction
∆t ≤ ∆xCmax/a. For the finite volume central scheme the same condition Cmax = 1
is valid.

5.3.5.3 Third Order Upwind-Biased Scheme

The von Neumann stability analysis for the third order upwind-biased finite differ-
ence scheme in Equation (5.45) or the equivalent third order upwind-biased finite
volume scheme in Equation (5.62) is a little more tedious. After some simplification
the squared modulus of the amplification factor reads

|G|2 = 1−4

9
C (2−C−2C2+C3)[3+2C−2C2−2 (1−C)C cosω] sin4(ω/2) . (5.85)

The expression sin4(ω/2) is non-negative for all ω. For ω = π the maximum value
sin4(π/2) = 1 is found. In the limit ω → π the relavant term |G|2 becomes
limω→π |G|2 = 1 + 8

9
C(C + 1)(C + 1/2)(C − 1)(C − 2)(C − 3/2). The function

C(C + 1)(C + 1/2)(C − 1)(C − 2)(C − 3/2) is non-positive in the range

0 ≤ C ≤ 1 , (5.86)

and turns positive at C > 1. With Equation (5.86) the stability limit |G|2 ≤ 1 is
fulfilled for all values of ω. Hence, the third order upwind-biased scheme has the
same stability restriction as the first order upwind scheme and the second order
central scheme.

5.3.6 TVD Stability

The Total Variation Diminishing (TVD) property of Harten [36] gives a condition
for the TVD-stability of a combined space-time-discretization with a three-point
stencil

Un+1
i = Un

i − ci−1/2 (Un
i − Un

i−1) + di+1/2 (Un
i+1 − Un

i ) , (5.87)

where ci−1/2 and di+1/2 can depend on the Un values. Therefore, methods based on
Equation (5.87) are said to be in general non-linear. If the coefficients fulfill the
conditions

ci−1/2 ≥ 0 ∀i , (5.88)

di+1/2 ≥ 0 ∀i , (5.89)

ci−1/2 + di+1/2 ≤ 1 ∀i , (5.90)
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the scheme is said to be TVD stable. In his original text Harten [36] uses TVNI
(Total Variation Non Increasing) instead of TVD. This terminology is technically
correct, because a TVD stable scheme does not exceed the total variation of its
initial function. Indeed, a good numerical method applied to the linear advection
equation should conserve the initial total variation instead of diminishing it with
respect to time. Instead of the total variation defined in Equation (4.38), in TVD
schemes the discrete total variation

TV =
+∞∑

i=−∞
|ui+1 − ui| (5.91)

is non-increasing compared to its initial value. In contrast to the von Neumann sta-
bility analysis, the TVD stability criterion is also applicable to non-linear schemes
and non-linear partial differential equations. Furthermore, TVD schemes are strictly
non-oscilating, and the results will always stay positive if the inital function is pos-
itive as well.

5.3.7 TVD Flux Limiter

Due to the enormous importance of the TVD condition on the development of
numerical schemes, the consequences of this stability criterion on the flux limiter
functions φi+1/2(θi) used for the fluxes in Equation (5.64) of high resolution schemes
presented in section 5.3.3.4 are briefly discussed. Using θi = (Un

i −Un
i−1)/(Un

i+1−Un
i )

and θi−1 = (Un
i−1 − Un

i−2)/(Un
i − Un

i−1) the high resolution fluxes located at xi+1/2

and xi−1/2 for the linear advection equation read

F n
i+1/2 = aUn

i +
a

2
(1− C)(Un

i+1 − Un
i )φi+1/2(θi) , (5.92)

F n
i−1/2 = aUn

i−1 +
a

2
(1− C)(Un

i − Un
i−1)φi−1/2(θi−1) . (5.93)

Inserting these into the conservation law Un+1
i = Un

i − ∆t
∆x

(F n
i+1/2−F n

i−1/2) of a finite

volume scheme gives with C = a∆t/∆x

Un+1
i =Un

i −C
[
1− 1

2
(1−C)φi−1/2+

1

2
(1−C)φi+1/2

Un
i+1−Un

i

Un
i −Un

i−1

]
(Un

i −Un
i−1) . (5.94)

Comparison with Harten’s three-point stencil in Equation (5.87) shows di+1/2 = 0.
Hence, the condition of Equation (5.89) is fulfilled. The conditions of Equation
(5.88) and Equation (5.90) are fulfilled if

0 ≤ C +
1

2
C (1− C)

(
φi+1/2(θi)

θi
− φi−1/2(θi−1)

)
≤1 , (5.95)

−C ≤ 1

2
C (1− C)

(
φi+1/2(θi)

θi
− φi−1/2(θi−1)

)
≤1− C , (5.96)

− 2

1− C ≤
φi+1/2(θi)

θi
− φi−1/2(θi−1) ≤ 2

C
. (5.97)
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It has to be mentioned, that this is not the only possible choice. Subracting other
values from Equation (5.95) instead of C is also possible, and leads to other condi-
tions for φi+1/2(θi)/θi − φi−1/2(θi−1). However, this is the most common procedure
to derive TVD flux limiter functions. Furthermore, setting φi+1/2(θi) = 0 if θi ≤ 0
leads to φi−1/2(θi−1) ≤ 2/(1 − C), while setting φi−1/2(θi−1) = 0 if θi−1 ≤ 0 gives
φi+1/2(θi) ≤ 2 θi/C. Since the functions φi+1/2(θi) and φi−1/2(θi−1) are exchange-
able, a flux limiter function has to fulfill the restrictions of both functions. A limiter
function that fulfills all the TVD conditions, is the upper bound limiter

φUB
i+1/2(θi)=max

{
0,min

{
2

C
θi,

2

1−C

}}
=





0 : θi<0
2 θi/C : 0≤θi<C/(1−C)
2/(1−C) : C/(1−C) ≤ θi

. (5.98)

The upper bound limiter is used to define the TVD-region. Limiter functions that
fulfill φ1+1/2(θi) = 0 for θi ≤ 0, and 0 ≤ φ1+1/2(θi) ≤ φUB

i+1/2(θi) for θi > 0, are said to
lie inside the Courant number dependend TVD-region, and fulfill the TVD stability
criterion. The TVD-region can be used to restrict other numerical schemes, that
are not TVD stable. The third order upwind biased limiter function φ

O(3)
i+1/2(θi, C)

of Equation (5.66) intersects with 2 θi/C at θi = C/(3 + C) and with 2/(1− C) at
θi = (4−C)/(1−C). If the upper bound limiter φUB

i+1/2(θi) is used for θi ≤ C/(3+C)

and for θi ≥ (4 − C)/(1 − C), and the third order limiter φ
O(3)
i+1/2(θi, C) is used in

the range C/(3 + C) < θi < (4− C)/(1− C), the so-called Arora-Roe limiter [8] is
obtained

φAR
i+1/2(θi, C) = max

{
0,min

{
φ
O(3)
i+1/2(θi, C), φUB

i+1/2(θi, C)
}}

. (5.99)

The idea of using the upper bound limiter to restrict other methods was first pre-
sented by Roe and Baines [73]. The Arora-Roe limiter is locally third order accurate
near θi = 1, and it is limited where the TVD stability would be violated. A detailed
description of the limiter function φAR

i+1/2(θi, C) is found in Jeng and Payne [41]. Nu-
merical results for the Arora-Roe flux limiter and for the first order upwind scheme
are shown in Figure 5.2 for an initial function having a jump at x = 0.09, and and
for a initial hump function u(x, 0) = cos2((x − 0.18)/0.2). The smearing effects
of the first order upwind scheme are caused by numerical diffusion, comparable to
physical diffusion apearing in the results of Figure 4.1 for the advection-diffusion
equation. The Arora-Roe limiter gives much better results. It is only locally third
order accurate, but fulfills the requirements of TVD-stability. Outside the third
order accurate range for θi the limiter function falls back to the first order accurate
upper bound limiter. As can be seen in investigations by Kemm [42], the Arora-Roe
limiter shows the so-called clipping phenomenon. At local extrema, where θi ≈ −1
or (Ui+1 − Ui) ≈ −(Ui − Ui−1), the use of the first order upwind scheme φi+1/2 = 0
leads to a decrease of extrema due to the numerical diffusion. This effect can be
seen for all limiter functions where φi+1/2 = 0 for negative θi. Non-clipping TVD
flux limiters described by Cada and Torrilhon [16] avoid the use of the first order
upwind scheme for θi < 0, and apply a more accurate method near θi = −1. Skip-
ping the condition φi+1/2 = 0 for θi < 0 allows to find modified TVD conditions,
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where the upper bound value 2/(1 − C) can not be reached with the non-clipping
limiters. Numerical tests show, that these limiters slightly improve the behavior
near extrema, but descrease the solution quality near discontinuities.
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Figure 5.2: Jump (top) and hump (bottom) solution of the linear advection equation
ut+a ux = 0 solved with the first order upwind scheme (left) and the Arora-Roe flux
limiter (right) on a domain with length 1m. Numerical results are shown after 0
(red), 20 (green), 40 (blue), 60 (magenta), 80 (cyan) and 100 (yellow) timesteps with
size ∆t = 1.2 · 10−5 s. The wave speed a = 475m/s and the cell size ∆x = 0.01m
give the Courant number C = 0.57.

Since the TVD-region has been derived with pure mathematical manipulations, the
question arises what the upper bound limiter means in terms of numerics, and why
it makes sense to stick to that special complicated-looking first order method. While
for smooth functions higher order methods improve the results taking more values
of the neighborhood into account, this is not the case for discontinuous functions.
Avoiding oscilations of higher order schemes near discontinuities is the reason why
the TVD stability criterion is preferable to other stability measures.

Indeed, Després and Lagoutière [21] showed, that the upper bound limiter func-
tion is optimal for piecewise constant data. Furthermore, it can be shown, that
φUB
i+1/2(θi, C) gives the optimal numerical flux for the propagation of a single jump in

the initial data. This means, that the numerical results of the upper bound limiter
for a single jump, will only have one value in-between the upper constant value and
the lower constant value of the jump for any time t > 0. Assume the initial function
jumps from U−∞ for x < x∗ to U+∞ for x > x∗. Since a finite volume method only

67



stores cell average values Ui of cells with length ∆x, the position x∗ of the jump is
not stored, as it would be done in a discontinuity tracking method. However, the
cell Ci where the jump is located, will have some intermediate value Ui between U−∞
and U+∞, directly related to the jump position.

All the other cell averages left of the cell Ci have the constant value U−∞, while
the cells right of the cell Ci have the value U+∞. Hence, if the value Ui is known,
the information of the neighbor cells can be used to define the position of the jump
x∗ inside the cell. Once this reconstruction with three cell averages is done for ev-
ery cell, the single discontinuity can be advected according to the analytic solution
of the linear advection equation. If the solutions is transformed into a numerical
flux, this gives exactly the upper bound limiter function. The re-interpretation
of the TVD-region shows, that in contrast to many texts found in the literature,
the optimal scheme for a single jump is not the first order upwind scheme. A de-
tailed investigation yields, that the function φi+1/2 = 2 θi/C is a numerical flux
limiter representation of a single jump propagating inside a cell, while the constant
φi+1/2 = 2/(1−C) gives exactly the downwind flux, avoiding overshoots of the solu-
tion. Hence, TVD-fluxes are chosen in-between the upwind flux and the downwind
flux. As a consequence, Drikakis et.al.[24] states

• All monotone algorithms are TVD,

• All TVD schemes are monotonicity preserving.

From a philosophical point of view, a shock tracking method computing the posi-
tion of a jump, is transfered into a shock capturing method computing a numerical
flux. Since in the last three decades it was not possible to find a mathematically
strict proof for TVD stability in two or three space dimensions, it is maybe possible
to find some technique for the reconstruction of discontinuities inside cells based
on neighbor values. The numerical fluxes derived from that procedure can then
be used to limit the fluxes of any high order method. Similar considerations have
recently been developed in the extended finite element method (XFEM), where dis-
continuities inside an element are allowed, and the smooth functions on both sides
of the discontinuity are coupled via jump conditions. The methods have orginally
been developed for gas dynamics where shocks are expected. However, they can be
applied e.g. to Stefan problems, where the position of the discontinuity is part of
the solution.

The result found by Goodman and LeVeque [31], that TVD-schemes in two space
dimensions are at most first order accurate expect for trivial cases, is not very en-
couraging. It can not be expected to derive accurate results, if a very sophisticated
TVD-scheme developed for one-space dimension is applied to a complex three di-
mensional flow situation. Therefore, the additional accuracy of three dimensional
TVD-like schemes must be questioned, compared to the much more simpler first
order upwind schemes. In Chapter 6, where solvers for the three dimensional Euler
equations are presented, the discussion is focused on the properties of first order
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methods. Although these methods are not that accurate as higher order methods,
the numerical diffusion increases the robustness of the schemes, especially for com-
plex flow situations. However, even the solutions of some first order upwind schemes
can lead to unphysical results. The reason is the flexibility of choosing the strength
of numerical diffusion in different space directions. Some aspects of the so-called
multidimensional Riemann-Solver debate are highlighted in Chapter 6.
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Chapter 6

Numerical Euler-Equation Solver

For the Euler equations in three space dimensions derived in section 3.2.2, special nu-
merical methods exist, that consider the hyperbolic character of the equations, and
some of them allow to solve discontinuous solutions, that may appear at high Mach
number flows. An overview of methods used for the computation of gas dynamics
is given in Laney [48]. Denoted in cartesian coordinates x, y, z, the differential form
of the transport equations for mass, momentum and energy reads

∂

∂t
U +

∂

∂x
f (x)(U) +

∂

∂y
f (y)(U) +

∂

∂z
f (z)(U) = 0 , (6.1)

where the flux vectors f (x), f (y), f (z) in different space directions

U=




ρ
ρ u
ρ v
ρw
E



, f (x)=




ρ u
ρ u2 + p
ρ u v
ρ uw

(E + p)u



, f (y)=




ρ v
ρ u v

ρ v2 + p
ρ v w

(E + p) v



, f (z)=




ρw
ρ uw
ρ v w

ρw2 + p
(E + p)w



.

(6.2)
depend on the state-variables ρ, U=ρ u, V =ρ v, W =ρw, E=ρ [e+(u2 +v2 +w2)/2]
collected in the state vector U, and the thermodynamic pressure p. In order to
close the system of equations, a material equation describing the dependency of the
pressure p = p(ρ, e) on the density ρ and the specific inner energy e is required.
For ideal gas with constant specific heats (e = cv T ) the equation of state given in
Equation (3.12) can then be expressed in terms of the state vector components

p =
R
Mρ T =

R
M cv

ρ e = (γ − 1)

[
E − 1

2
ρ−1(U2 + V 2 +W 2)

]
. (6.3)

and the ratio of heat capacities γ = cp/cv. Hence, the flux function in x-direction
denoted in state-variables reads

f (x) =




U
1
2
(3− γ)ρ−1U2 − 1

2
(γ − 1)ρ−1(V 2 +W 2) + (γ − 1)E

ρ−1U V
ρ−1U W

−1
2
(γ − 1)ρ−2(U3 + U V 2 + U W 2) + γ ρ−1 U E



. (6.4)
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Similar expression can be found for the fluxes f (y) and f (z) using the rotational
invariance theorem presented in section 4.2.1. Since Equation (4.7) is fulfilled for
the Euler equations, the fluxes in any direction can be derived based on the flux
vector f (x) and the direction vector n.

6.1 Godunov Method

A successful method to find approximate solutions to the Euler equations that also
can tackle the difficulties with discontinuities was presented by Godunov [30]. The
fundamental idea is to use a piecewise constant reconstruction of the cell average
values, demonstrated for a one-dimensional situation in Figure 5.1. In general,
cells are subdivisions of space, and the cell boundary of a certain cell is partioned
in so-called faces. Every face of the cell boundary has contact to two neighbor
cells. After cell average reconstruction, the two neighbor cells to a cell face have
different constant values of their unknown variables, that jump at the cell boundary.
This discontinous situation is referred to as Riemann problem. Depending on the
values of density, velocity and pressure in both neighbor cells, the Riemann problem
for the Euler equations can have different solutions. Usually a Riemann problem
creates discontinuous solutions like shocks and contact discontinuites described by
the Rankine-Hugoniot conditions of Equation (3.26), and continuous solutions with
constant entropy, that are called rarefaction waves. Finding the exact solution for
the Riemann problem of the Euler equations requires an iterative procedure, that can
be computationally time consuming. Therefore, the exact Riemann solver proposed
by Godunov [30], may be substituted by an approximate Riemann solver. Methods
that do not solve the Riemann problem exactly are called approximate Riemann
solvers, or Godunov-Type methods. They are commonly preferred if the flow is
purely subsonic and no discontinuity is expected. Approximate Riemann solvers
also work very well if the flow is mainly subsonic, and the shocks in the supersonic
zones are weak. However, if contact discontinuities are expected, e.g. at the phase
changing zone in multiphase flows, some approximate Riemann solvers may be to
inaccurate.

6.2 Godunov-Type Methods

Godunov-type Methods use the same in-cell reconstruction methodology as the Go-
dunov method, but solve the Riemann problem at the cell boundaries approximately.
An overview of different methods is given in Toro [81]. Basically, two differenct con-
cepts for approximate Riemann solver can be defined

• Flux Vector Splitting (FVS),

• Flux Difference Splitting (FDS).

An explanation of the flux vector splitting method developed by van Leer [83] can
be found in Hirsch [38], [39]. The flux difference splitting method developed by Roe
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[70], [71], [72] usually gives better results as the FVS method, but it is a little bit
more expansive. Since the Roe method is used within the present work to solve the
flow inside a reciprocating compressor, its derivation is discussed in more detail. The
Roe method is based on a wave decomposition of loacally linerazied Euler equations.

It may be worth to mention, that simpler numerical schemes can be derived from the
Roe method. A method that consideres only the largest eigenvalues of the linearized
system was presented by Rusanov [76]. The Rusanov method, nowadays referred to
as a local Lax Friedrichs scheme, had been developed a long time before Roe came
up with his idea. A scheme that used two eigenvalues of the Roe method is the
Harten-Lax-van Leer (HLL) Riemann solver [37]. The scheme neglects the contact
discontinuity and substitutes the rarefaction wave by a shock wave. The HLLC Rie-
mann solver (C stands for contact discontinuity) developed by Toro et al. [82] also
consideres the contact discontinuity. If contact discontinuities are expected, e.g. in
multi-phase flows, the HLLC solver gives much better results as the HLL method.
However, the numerical diffusion of HLLC is still larger than that of the Roe method.

Although the Roe scheme is said to be the most accurate approximate Riemann
solver, it can not be recommended for any situation without care. Quirk [65]
demonstrates, how Godunov-type schemes can fail quite spectacularly on occasions,
although they are often held up to be models of robustness. Some of the pre-
sented failures in [65] are expansion shocks, negative internal energies, slowly mov-
ing shocks, the carbuncle phenomenon when the grid is aligned with shocks, kinked
Mach stems and odd-even decoupling. To overcome such failings Quirk [65] proposes
to employ the HLLE Riemann solver of Einfeldt et al. [26], or an adaptive Riemann
solver, beeing some combination of two methods. The HLLE scheme of Einfeldt [25]
preserves the positivity of the scheme near low densities, and can be used for waves
propagating into almost vacuum. However, the HLLE solver as a stand alone will
not have the same accuracy as the Roe scheme. A class of rotated-hybrid Riemann
solvers had been presented by Nishikawa and Kitamura [61]. Recently, Ren [67]
has demonstrated how a 2-dimensional Roe Riemann solver can avoid many of the
shortcomings mentioned above, if the direction of the wave decomposition is based
on local flow properties. Since solution-aligned rotated Riemann solver are more
cumbersome and not well understood in 3-dimensions, the implementation in the
present code follows the concept of the so-called grid-aliged rotated Riemann solver.

6.3 Roe Method

The Roe method for computing the numerical fluxes at cell boundaries is used for
aribitrary shaped cells with boundaries that are allowed to move. As shown in
Equation (4.3), a finite volume method uses the projection of the flux tensor onto
the normal n of the surface to compute the numerical flux through the boundary
of the control volume based on the state-vectors of the cell neighbors. In case
of a one-dimensional situation all cell boundary normal vectors n can be thought
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co-linear with the direction vector x of the coordinate x. Figure 6.1 illustrates a one-
dimensional situation, where the left cell with state vector UL and the right cell with
state vector UR share a boundary perpendicular to the x-direction that is allowed
to move with the grid velocity ẋ in x–direction. For the three-dimensional case the
face normal vector n at every cell boundary is used instead of the x-direction.

L R

x

x

t
ẋ

ẋ∆t

ũ− c̃ ũ ũ+ c̃

UL

U∗
L U∗

R

UR

Figure 6.1: Two cells with state vectors UL, UR sharing a cell boundary that moves
with speed ẋ in its normal direction. The Roe method uses a wave decomposition
to compute the intermediate state vectors U∗L, U∗R and the numerical flux through
the moving cell boundary.

A grid-aligned rotated Riemann solver rotates the neighbor cell average values in
the direction n of the shared face, before it is used to compute the numerical fluxes.
According to Equation (4.7), a rotation of the state vector TU based on the trans-
formation matrix T given in Equation (4.6) can be applied to find the flux vector f
in the direction n using f (x). If the cell boundary moves with speed ẋ in the direction
of its normal, the numerical flux scheme has to consider the motion additionally to
the non-moving numerical flux. This Arbitrary Lagragian Eulerian (ALE) approach
derived in Equation (3.8) allows more flexibility in the choice of mesh motion. It
can be expected, that the approximate solution of the Riemann problem, producing
the intermediate states U∗L and U∗R, is not effected by the motion of the boundary
moving with speed ẋ. Therefore, the first step is to solve the Riemann problem in
the same way as it is done for a non-moving case. The mesh motion ẋ then adds
some extra terms depending on the local solution as described in section 6.3.1. In
order to find an approximate solution of the non-moving Riemann problem, the Roe
flux vector difference method is applied in the direction of the face normal

fR − fL = A(Ũ) · (UR −UL) (6.5)
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where UL, UR and fL, fR are rotated state and flux vectors, and A(Ũ) = ∂f(Ũ)/∂U
is the Jacobi matrix of the so-called Roe-averaged state vector Ũ. Equation (6.5) is
used to determine A(Ũ). A detailed description how Equation (6.5) is derived and
how it is solved for the Euler equations can be found in appendix A.

The Roe method selects the numerical flux Fnonmoving in the direction of the face
normal n for a non-moving grid

Fnonmoving =





fL : (ũ− c̃) > 0

fL + A(Ũ) · (U∗L −UL) : ũ > 0

fL + A(Ũ) · (U∗R −UL) : ũ < 0
fR : (ũ+ c̃) < 0

(6.6)

depending on the size of the eigenvalues (ũ− c̃), ũ, (ũ+ c̃) of the Jacobi matrix. In
appendix A.4 the intermediate state vectors U∗L and U∗R are derived, based on the
eigenvector decomposition.

6.3.1 Numerical Flux on Moving Meshes

In order to consider the effects of a moving mesh, the numerical flux for a non-
moving mesh Fnonmoving must be modified, following the idea of the Arbitrary La-
gragian Eulerian (ALE) approach derived in Equation (3.8). According to the local
circumstances at a cell boundary shown in Figure 6.1, the ALE numerical flux F at
a cell face becomes

F =





Fnonmoving − ẋUL : ẋ < (ũ− c̃)
Fnonmoving − ẋU∗L : ẋ ≤ ũ
Fnonmoving − ẋU∗R : ẋ > ũ
Fnonmoving − ẋUR : ẋ > (ũ+ c̃)

(6.7)

where ẋ = ẋ · n is the velocity of the moving cell boundary in the direction of its
normal. Hence, the additional term depending on the mesh motion allows to move
the mesh in an arbitrary way, without losing the advantage of a numerical flux and
the idea of conservation within a finite volume method. It may be noticed, that the
ALE flux formulation, although demonstrated herein only for the Roe method, can
be used in the same way for any kind of approximative Riemann solver as well.

This concept is very useful especially for the mesh inside the cylinder domain of
a reciprocating compressor. The speed of the piston can be used as a reference
speed for the mesh. Right at the piston, the mesh velocity has to be identical with
the time-dependend piston velocity, while it may decreases linearly with increasing
distance to the piston, and finally becomes zero at the non-moving cylinder head.
As a consequence, it is possible to use cells having equal height along the cylinder
axis. Hence, cells with very small size can be avoided, and the timestep size for an
explicit time intergration scheme may be chosen in an reasonable manner.
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6.4 Mesh Strategy

6.4.1 Moving Structured Cylinder Mesh

The cylinder geometry, sketched in Figure 2.2, consists of a circular cylinder with
diameter dP and height zmin+zP (ϕ), where zP (ϕ) given in Equation (1.1) is a time-
dependend function, representing the piston motion. Basically, the mesh on the
cylinder geometry is structured, i.e. every mesh node position can be accessed by
indices i, j, k. The mesh node distribution is based on the mesh of a cuboid, that
is deformed to give the mesh of a circular cylinder. The parameter n1 controls how
many cells are used along the piston radius rP = dP/2, while the parameter n3 con-
trols the number of cells in axial direction for zP (ϕ) = 0. The parameter n2 allows to
eventually control the number of cells on a piston rod with radius rR = dR/2. How-
ever, the ability for considering a general piston rod is not fully implemented in the
code yet. In Figure 6.2 the cut through the cylinder mesh is sketched, showing the
piston together with a piston rod and the mesh inside the cylinder. While n3 cells
are used in axial direction when the cylinder height is zmin, the number of cells in z–
direction increases until the height reaches the value zmin + 2 r, where r is the crank
radius. In the same fashion, the number of cells reduces to n3, if the cylinder height
reaches the value zmin again. Because the height of the cylinder changes dramati-
cally with respect ot time, a special routine is necessary to handle the mesh in axial
direction. In order to reduce the complexity of this routine, all cells in z–direction
have the same height, based on the optimal cell height ∆zopt = ∆zopt(∆zinit, ρ̄), that
is determined by the initial cell height ∆zinit = zmin/n3, and is slightly modified
during run by a function depending on the average density ρ̄ = m/V inside the
compressor, where m is the mass contained in the compressor, and V is the volume
of the complete domain, including cylinder and valve pockets. The ρ̄–dependency of
the function ∆zopt allows to avoid the appearance of to many cells in axial direction
when the cylinder has its maximal extension in z–direction.

Furtunately, the cylinder mesh in the x, y–plane needs no modification with respect
to time. Therefore, it makes sense to create a non-uniform mesh distribution in the
piston plane, allowing cells of different size. Usually, the cell size measure rP/n1 is
larger than the initial cell height zmin/n3 in axial direction. Since the valve pockets
are located near the cylinder circumferential walls, the cell size there can be reduced
using so-called cell size grading. The mesh refinement by grading allows a better
resolution of the connection to the meshes of the valve pockets, see e.g. Figure 6.4.
In the implemented code, a parameter 0 ≤ gradingP ≤ 1 allows to modify the cell
size near the diameter dP , where a value 0 would result in an equi-distant mesh node
distribution along the cylinder radius, and a value 1 would give a cell size of zero
close to the circumferential cylinder walls. For n1 = 15, setting gradingP = 0.99 is
not problematic. Anyway, in cases where n1 � 15 it is recommended to reduce the
value of gradingP slightly.
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∆t1 ∆t2Interpolate

Figure 6.2: Mesh strategy for the moving cylinder mesh: three cells in axial direction
at time t (left), three stretched cells in axial direction after solving the flow with
timestep size ∆t1 (mid–left), interpolation of the flow solution at time t+ ∆t1 onto
a mesh with four cells in axial direction without solving the flow (mid–right), four
stretched cells in axial direction after solving the flow with timestep size ∆t2 (right).

In Figure 6.2 the mesh strategy is illustrated for the moving cylinder mesh. Starting
at time t, a mesh with a certain number of cells in axial direction (e.g. three) is
shown. If the cell heights in axial direction at time t are not to large compared to the
optimal cell height ∆zopt, the cells are simply stretched according to a spring-model
during a run of the flow solver with timestep size ∆t1. This is possible, because the
ALE technique allows to include the velocity of the cell boundaries ẋ at time t. This
mesh velocity is zero at the cylinder head, and increases linearly in axial direction
to the instantaneous piston velocity vP (ϕ) at position zmin + zP (ϕ). After that, the
flow solution and the mesh node positions are given at time t+ ∆t1. Note, that the
linearly distributed mesh velocity lets all mesh nodes arive on equi-distant positions
again.

At this point in time it is checked, if it possible to increase the cell number in
axial direction, without violating the optimal cell size criterion. If the number of
cells in axial direction can be increased (e.g. to four), an interpolation routine maps
the solution at time t+ ∆t1 onto a mesh with more cells, without moving the mesh
or running the flow solver. In order to have a conservative interpolation method,
a piecewise constant reconstruction of cell average values as shown in Figure 5.1 is
applied on the mesh with the original number of cells (e.g. three). After that, all
the piecewise constant functions in z–direction are re-sampled onto the new mesh
consisting of more cells, by building the cell averages within the cell boundaries of
the new mesh. At the end of this process, the cell average values at time time t+∆t1
are given on a mesh with one more cell in axial direction.

Now that all the required data is given to perform a new time step, the flow solver
can run a timestep with size ∆t2, and the procedure described herein can start
again. Note, that in general the interpolation routine allows to map on any new
mesh, independent of the number of cells in axial direction before and after the
interpolation. Therfore, the same strategy can be used to decrease the number of
cells, if the cylinder height is reducing. Finally it can be stated, that the requirement
of increasing or reducing the number of cells in z–direction is the main reason for
chosing a structured mesh inside the cylinder.
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6.4.2 Non-Moving Unstructured Valve Pocket Mesh

The complex geometric shape of the valve pockets consisting of a cone cut by a
cylinder, does not allow to easily use a structured mesh. Therefore, an unstructured
tetrahedral mesh is preferred for the pockets. One advantage of the valve pocket
mesh is that it is not moving. As a consequence, no re-meshing is required, and the
determination of the connectivity of mesh nodes, faces and volumes only needs to
be done once. Based on some classical tetrahedral meshing tool (e.g. NETGEN),
the additional required conncetivity information necessary for the application of
the finite volume method is stored in an self-developed file format with extension
.msh. This file format also stores different types of boundaries, that represent the
functionality of the valve pockets surface mesh, shown in Figure 6.3.

Figure 6.3: Typical surface mesh of the non-moving valve pocket with differnt types
of faces: wall of the cone shaped scallop (red), interface to the cylinder domain
at head (green), interface to the cylinder circumferential face (blue), wall of the
cylindrical pocket part (magenta), connection to the valve (cyan).

For the surface mesh of the valve pocket illustrated in Figure 6.3, four distinct types
of boundary conditions are available:

• wall

• connection to a suction valve or a discharge valve

• interface to the cylinder head

• interface to the cylinder circumferential surface
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The boundary conditon wall is comparable to that on the cylinder mesh, and does
not allow any flow of mass trough the surfaces declared as walls. Of course, for
non-moving walls, the flow of energy through the wall is also zero, while a force
acting on the walls is allowed.

The boundary condition that connects the surface mesh to a suction valve or dis-
charge valves is described in detail in section 6.6. Basically, a local mass flow through
every triangular face with boundary condition valve is computed based on Equation
(3.37), where the effective flow cross section φ2 in this formula depends on the valve
plate lift, see Equation (2.6). However, finding numerical boundary conditions at
valve-boundaries for the flow of momentum and the flow of energy is not trivial.
Simple methods that just extrapolate the solution inside the domain to the bound-
ary, as described in Hirsch [39], do not seem to work in some situations. Anyway, it
was not possible to detect a specific reason for the dysfunction of that concept. On
the other hand, Hirsch [39] also proposes a more complex boundary condition treat-
ment based on a decomposition in characteristics, if problems are to be expected
with the extrapolation technique. Therefore, in section 6.6 a numerical boundary
treatment based on the Godunov method is presented. While for the suction valve
described in section 6.6.1, this still results in an iterative procedure that also requires
an inital guess, for a discharge valve an analytic solution to the appearing system
of Rankine-Hugoniot conditons can be found using the solutions of cubic equations,
see section 6.6.2.

The boundary types having either an interface to the cylinder head or to the cylin-
der circumferential surface, are the most sophisticated ones. While the interface
connection to the cylinder head has to deal with a distorted quadrilateral mesh,
the connection to the cylinder circumferential surface is curved, and the intersection
of triangular and quadrilaterial meshes needs to be computed in every timestep.
Therefore, it is required to implement a prodecure that is computationally efficient.
The interface coupling method is described in section 6.4.3.

6.4.3 Interface Coupling Method

The conservative interface coupling is a convenient way to directly use the finite
volume method for two non-conforming meshes, that geometrically share an area in
space. In case of the reciprocating compressor, the tetrahedral mesh for the valve
pockets needs to be connected to the hexahedral mesh of the cylinder. Hence, on
the cylinder head and on the cylinder circumferential surface, the surface triangles
of the valve pocket meshes have contact to the surface quadrilaterals of the cylinder
mesh. Figure 6.4 shows the cylinder head (z = 0), having a planar interface zone
shared by two surface meshes made of quadrilateral and triangles, respectively.
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Figure 6.4: Interface coupling at the cylinder head: valve pocket surface triangles
(blue) used for the head-interface, and cylinder quadrilaterals made of red and green
lines.

In the situation shown in Figure 6.4, some parts of the cylinder head area that
originally have a wall boundary condition, will automatically change the boundary
condition to internal, where the interface routine detects intersection with the sur-
face mesh of the valve pocket. For the cylinder head interface the triangular surface
mesh will always be an internal zone, whereelse at the cylinder circumferential zone
the interface connection can bring up internal and wall boundary conditions, due to
the moving piston.

In order to derive a conservative method, the numerical fluxes of mass, momen-
tum and energy leaving the cylinder mesh, have to enter the connected valve pocket
mesh with the same strength. This property can be achieved, if a numerical flux
entering a face of a cell at the interface zone, is the sum of single numerical fluxes
through partitions of the face, called fluxes through facets. The time-evolution of
mass, momentum and energy of the cells adjacent to the interface is then accom-
plished by the numerical fluxes through faces that are not part of the interface
(internal faces), and by numerical fluxes through one or more facets that are part
of the interface. Hence, it can be expected, that the sum of facet fluxes entering or
leaving every interface neighbor cell, has the same accuracy as the flux through a
single face would have.

In other words, before the finite volume methods and its numerical flux proce-
dure can be applied, the intersection of the surface triangle mesh with the surface
quadrilateral mesh needs to be computed. Hence, in order to derive the interface
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facets, all the triangles of the valve pocket surface mesh and all the quadrilaterals
of the cylinder surface mesh are decomposed into a a priori unknown number of
polyhedra, beeing the result of that intersection. Every single polyhedron is then
part of a triangle and a quadrilateral, respectively. Recently, Fahs [27] identified five
possible configurations for the intersection of triangles with convex quadrilaterals,
giving polyhedra with either three, four, five, six or seven edges. Once the number
of edges and the positions of the intersection points of every polyhedron are known,
the area of every polyhedron can be computed easily by decomposing it into sin-
gle triangles. It is also not difficult to compute the bary-centers of the polyhedras,
eventually required for a second order finite volume method. However, for a first
order finite volume method, the numerical flux computation only requires the area
and its unit normal vector, here taken in the area center.

At the cylinder head interface the zonal connection is a planar face. Hence, no
problem occours because of tolerance issues on eventually non-planar interfaces.
However, at the cylinder circumferential zone, the interface has the shape of a cir-
cular cylinder. Since the interface procedure has to work for any position of the
piston, and independent of the angular location of the valve pockets, it is recom-
mended to project the nodes of both meshes related to the interface onto a local
cylinder coordinate system, and run the intersection procedure in the axial and
azimuthal coordinates. A transformation back in the original cartesian coordinate
system is straight forward. The numerical flux computation can then be performed
in the same fashion as it is done for internal faces of cells. Each polyhedral shaped
facet of an interface exactly has one hexahedral neighbor cell, and one tetrahedral
neigbor cell, used for piecewise constant reconstruction of cell data. From an code
implementation point of view, finding the correct number of the adjacent cell on an
unstructured grid is the most difficult part of the interface routine. In section 7.3.1
the mass conservation property of the method will be demonstrated in Figure 7.2.

6.5 Positivity Criterion

Some physical quantities, e.g. the density ρ or the temperature T , require to have
a positive value. Therefore it makes sense to ask, if a numerical method guarantees
that some quantities will stay positive after performing a small time step ∆t, if their
values have been non-negative before. Since the components of a velocity vector
can have either positive or negative values, the momentum equations can not be
used to find any restriction for the time step. But, for the equations of mass and
energy transport the positivity requirement is an issue. Since the positivity of the
energy equation is usually difficult to analyse, the continuity equation ρ + (ρ u)x +
(ρ v)y + (ρw)z = 0 is used to find a restriction for the time step size. Of course, this
restriction depends on the grid and the discretization used to find an approximate
solutions. For simplicity, the velocity vector is assumed to be constant u = const.
Then, the continuity equation reads

ρ+ u ρx + v ρy + w ρz = 0 . (6.8)
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The equation may be solved on a regular structured grid consisting of hexahedral
cells with dimensions ∆x, ∆y, ∆z. A cell with indices (i,j,k) shares six surfaces
with six neighbor cells having the indices (i+1,j,k), (i−1,j,k), (i,j+1,k), (i,j−1,k),
(i,j,k + 1), (i,j,k − 1). In order to discuss the positivity of a numerical scheme, the
density values of the neighbor cells at time tn are set to ρni+1 = ρni−1 = ρnj+1 = ρnj−1 =
ρnk+1 = ρnk−1 = 0, while the density of the cell (i,j,k) is ρn > 0. A finite volume
discretization of the equation for the cell with volume V = ∆x∆y∆z reads

V
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are the numerical fluxes at the cell bound-
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= ∆z∆x, Ak+ 1
2

=Ak− 1
2

= ∆x∆y are
the areas of the boundary faces. Assuming u > 0, v > 0, w > 0 and applying a first
order upwind scheme for the numerical fluxes gives

∆x∆y∆z
ρn+1 − ρn

∆t
=u ρni−1∆y∆z + v ρnj−1∆z∆x+ w ρnk−1∆x∆y

− u ρn∆y∆z − v ρn∆z∆x− w ρn∆x∆y . (6.10)

For ρni−1 = ρnj−1 = ρnk−1 = 0 the numerical massflow into the cell is zero at three
cell boundaries, but mass flows out of the cell at the three other cell boundaries. In
order to guarantee that the density

ρn+1 = ρn −∆t ρn [u/∆x+ v/∆y + w/∆z] (6.11)

at time tn+1 = tn + ∆t is positive, for any choice of u, v and w the timestep has
to fulfill the condition ∆t < 1/(|u|/∆x + |v|/∆y + |w|/∆z). Hence the sum of the
directional Courant numbers C(x) = |u|∆t/∆x, C(y) = |v|∆t/∆y, C(z) = |w|∆t/∆z
has to be smaller than one. If the velocity vector is co-linear with the cell diagonal
vector, all three directional Courant numbers have the same size C(x) = C(y) = C(z)

as the Courant number C = ||u||∆t/∆L built with the length of the diagonal
∆L =

√
∆x2 + ∆y2 + ∆z2. The time step restriction for that case is

∆t <
1

3
∆L/||u|| , (6.12)

or in other words, the Courant number has to fulfill C < 1/3. This condition in
combination with a safety factor for non-orthogonality is used by the Euler equation
solver on grids with hexahedral cells, e.g. on the cylindrical domain of the recipro-
cating compressor. Numerical tests show that the von Neumann stability criterion
requires a similar time step restriction, see e.g. Toro [81].
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6.6 Numerical Boundary Conditions for Valves

For the numerical boundary conditions of valves the flows of mass, momentum and
energy crossing the boundary are needed. According to Equation (3.37) the flow
of mass |ṁ2| is known depending on ρ1, u1, p1, p2 shown in Figure 3.1. The flow
of momentem and energy have to be determined. The method to determine these
numerical boundary conditions are presented for the suction valve and the discharge
valve.

6.6.1 Suction Valve

It is possible to use the Godunov scheme based on the Rankine-Hugoniot conditions
to determine force and enthalpy flow. Figure 6.5 showes the characteristics occuring
at the interface of a boundary cell on the computation domain (point 2) and a
fictive ghost cell (point 1). In order to avoid confusion, it has to be mentioned, that
the velocity u2 is related to the computation domain and is not identical with the
velocity in the nozzle from Equation (3.36). Since the boundary condition is applied
at x = 0, the nozzle of the valve can be thought to be represented by the variables
ρ∗1, u∗1, p∗1 shown in Figure 6.5.
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Figure 6.5: Cell and characteristics at suction valve boundaries

Assuming isentropic flow from point 1 to the intermediate state 1∗, using Equation
(3.18) gives ρ∗1 = ρ1 (p∗1/p1)1/γ. Inserting the relations for the contact discontinuity
u∗1 = u∗2, p∗1 = p∗2 from Equation (3.30) in the shock condition from Equation (3.33)
gives u∗2 = u2 − c2 (p∗2/p2 − 1)/

√
γ
2
(γ − 1) + γ

2
(γ + 1) p∗2/p2. With the mass flux

j∗1 = −|ṁ2|/A2 computed from the given mass flow |ṁ2| in Equation (3.37), an
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implicit equation for p∗1

j∗1 = ρ∗1u
∗
1 = ρ1

(
p∗1
p1

)1/γ
[
u2 − c2

p∗1/p2 − 1√
γ
2
(γ − 1) + γ

2
(γ + 1)p∗1/p2

]
(6.13)

is obtained. Using the Mach number Ma2 = u2/c2, this can be written as a nonlinear
function for the unknown pressure ratio p∗1/p2

f

(
p∗1
p2

)
=

[
Ma2 −

j∗1
ρ1c2

(
p1

p2

)1/γ(
p∗1
p2

)−1/γ
]√

γ

2
(γ − 1) +

γ

2
(γ + 1)

p∗1
p2

− p∗1
p2

+ 1 = 0

(6.14)
that has to be solved numerically. A good initial value for an iterative procedure is
found making a Taylor series expansion for p∗1/p2 ≈ 1

p∗1
p2

= 1− γ (j̃ −Ma2)

1− (3− γ) j̃/4− (γ + 1)Ma2/4
+ . . . , (6.15)

where j̃ = (p1/p2)1/γj∗1/(ρ1c2) is a dimensionless mass flux, usually smaller than
zero for the suction valve. With p̃ = p∗1/p2 an iterative routine to find p̃∗ that fulfills
f(p̃∗) = 0 is the pseudo-code

p̃1 = p̃0

p̃2 = p̃1 + ∆p̃0

while (|f(p̃2)| ≤ ε) {
p̃∗ = p̃1 − f(p̃1)

p̃2 − p̃1

f(p̃2)− f(p̃1)
p̃1 = p̃2

p̃2 = p̃1 + (p̃∗ − p̃1)κ
} ,

(6.16)

where p̃0 is the initial value taken from Equation (6.15), ∆p̃0 is a small initial step
size, ε is the accepted error and 0 < κ ≤ 1 is the under-relaxation factor close to one
for a Newton-Raphson solver. Hence, the numerical boundary condition applied to
each cell of a suction valve boundary uses the following flow of mass, momentum
and total enthalpy

ṁ(b) = j∗1A2 , (6.17)

F (b) = (j∗21 /ρ
∗
1 + p∗1)A2 , (6.18)

Ḣ
(b)
t =

(
γ

γ − 1

p∗1
ρ∗1

+
1

2

j∗21

ρ∗21

)
j∗1A2 . (6.19)

6.6.2 Discharge Valve

The Godunov scheme is also applied to discharge valve boundaries, in order to deter-
mine the numerical boundary conditions force and enthalpy flow. Figure 6.6 showes

83



the characteristics occuring at the interface of a boundary cell on the computation
domain (point 1) with given data ρ1, u1, p1, and a fictive ghost cell (point 2).
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Figure 6.6: Cell and characteristics at discharge valve boundary

Two characteristics with speeds σ(2) and σ(3) leave the computation domain, while
a single characteristic assumed as discontinuity propagates into the domain with
speed σ(1). The intermediate variables ρ∗1, u∗1, p∗1 should occour in such a way, that
the mass flux j∗1 = ρ∗1u

∗
1 at the cell boundary during the time step becomes identical

with |ṁ2|/A2 obtained from the mass flow in Equation (3.37)

j∗1 = ρ1c1
φ2

A2

(
p2

p1

)1/γ

√√√√Ma2
1 +

2

γ − 1

[
1−

(
p2

p1

)1−1/γ
]
, (6.20)

where c1 =
√
γ p1/ρ1 is the sound speed and Ma1 = u1/c1 is the Mach number

in point 1. Using u∗1 = j∗1/ρ
∗
1 the system of Rankine-Hugoniot conditions from

Equations (3.27), (3.28), (3.29) to determine the unknowns σ(1), ρ∗1, p∗1 reads

j∗1 − ρ1u1 = σ(1) (ρ∗1 − ρ1), (6.21)

j∗21

ρ∗1
− ρ1u

2
1 + p∗1 − p1 = σ(1) (j∗1 − ρ1u1), (6.22)

1

2

(
j∗31
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− ρ1u
3
1

)
+

γ

γ − 1

(
j∗1
ρ∗1
p∗1 − u1p1

)
= σ(1)

[
1

2

(
j∗21

ρ∗1
− ρ1u

2
1

)
+
p∗1 − p1

γ − 1

]
. (6.23)

The solution σ(1) = u1, ρ∗1 = ρ1, p∗1 = p1 has to be excluded, because it describes
the contact discontinuity denoted with σ(2) in Figure 6.6. With the dimensionless
quantities µ̃ = j∗1/(ρ1c1) and δ̃ = 1

2
[(γ+ 1)Ma1− (γ− 1) µ̃] the non-trivial solutions
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for the propper characteristic

σ(1) = u1 +

[
2

3

√
3 + δ̃2 cos

(
1

3
arccos

(
27 µ̃− 9 δ̃ − 2 δ̃3

2 (3 + δ̃2)3/2

)
− 2π k

3

)
− δ̃

3

]
c1, (6.24)

ρ∗1 = ρ1 + (j∗1 − ρ1u1)/σ(1) , (6.25)

p∗1 = p1 + ρ1 (j∗1 − ρ1u1)(σ(1) − u1)2/(j∗1 − ρ1u1 + ρ1σ
(1)) , (6.26)

are the result of a cubic equation, where k = 0, 1, 2 offers three possibilities. De-
pending on Ma1 and µ̃ the correct subsonic solution with σ(1) ≤ 0 is extracted. The
numerical boundary conditions for mass flow, force and total enthalpy flow applied
to every discharge valve boundary are

ṁ(b) = j∗1A2 , (6.27)

F (b) = (j∗21 /ρ
∗
1 + p∗1)A2 , (6.28)

Ḣ
(b)
t =

(
γ

γ − 1

p∗1
ρ∗1

+
1

2

j∗21

ρ∗21

)
j∗1A2 . (6.29)
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Chapter 7

Results
7.1 Results Overview
In this section, the results obtained with the flow solver are presented for recipro-
cating compressors with different size and different number of suction and discharge
valves located at the cylinder circumferential surface in rather symmetrical arrange-
ment. The influence of the valves mass-spring setting on the valve plate closing
velocities is briefly discussed by varying the spring-stiffness. For the compressor
with the largest piston diameter, the flow inside the working chamber is forced into
the supersonic regime by applying a higher, but not unrealistic, rotational crank
speed. In general, the results may be splitted in global flow properties, e.g. the
time-dependend massflows entering or leaving the compuation domain, and local
flow properties like the pressure or the velocity field acting on the piston. The
following quantities relevant for a reciprocating compressor are discussed:

• MASS and MASSFLOWS: In order to demonstrate the conservation ability
of the finite volume method the working chamber mass is shown to be really
a constant while the valves are closed during gas expansion and gas compres-
sion. The pulsative character of the massflows through suction valves and
discharge valves is highlighted, especially for valves with non-optimal valve-
spring-layout.

• VALVE PLATE LIFTS: The valve plate lifts of suction and discharge valves
and the plate velocities are presented for different valve springs and maximal
valve plate lifts.

• PRESSURE: The area-averaged pressure on the piston and on the valves is
plotted over crank-angle and working chamber volume for comparison with the
idealized process. In order to show the wave effects, the pressure distribution
on the piston is shown at many different crank angles.

• FLOW VELOCITIES: The velocity field near the piston is sketched out during
gas expansion. Since there is no flow passing the valves during expansion, the
velocity magnitude slowly vanishes with respect to time.

• MACH-NUMBERS: The maximal Mach numbers occuring within a compres-
sor period inside the cylinder and the valve pockets of suction and discharge
valves are plotted over crank-angle. This illustrates, that subsonic and super-
sonic flows can be computed pretty well.
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7.2 Investigated Cases
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Figure 7.1: Top-view on four different reciprocating compressors with piston stroke
2r = 150mm and different number of suction valves (SV) and discharge valves (DV):
Large piston diameter dP = 680mm with five suction and five discharge valves (top),
mid-sized piston diameter dP = 340mm with four suction and four discharge valves
(bottom, left), small piston diameter dP = 170mm with three suction and three
discharge valves (bottom, middle), and very small piston diameter dP = 85mm
with two suction and two discharge valves (bottom, right)
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In order to get an overview of the Euler-solver flexibility, four reciprocating com-
pressors with totally different size, and number of suction and diescharge valves
are investigated. Figure 7.1 shows the top-view on the cylinder-head for a large, a
mid-sized, a small and a very small cylinder diameter. As can be seen easily, the
diameter is always half of the larger compressor. Therefore, the piston area of the
compressor with the next smaller diameter is excactly a quarter of the previous one.
Using the same crank-shaft with a crank radius r = 0.075m for all four compressors
will result in designs with the same piston stroke 2 r = 0.15m. Hence, the volume
inside the cylinder of the compressor with piston diameter dP = 680mm is four
times the cylinder volume of the compressor with dP = 340mm.

In the shown cases in Figure 7.1 the valve pockets are designed according to the
data given in Table 2.1. Based on this geometrical data, the sum volume of all valve
pockets of each compressor is 12.6% of the swept plunger volume. If the shown com-
pressors are operated with the data presented in Table 2.2, all four machines are
comparable in terms of dimensionless quantities of Equation (3.39). Since according
to Table 2.2, the suction density ρs of the next smaller compressor is four-times that
of the larger one, it can be expected, that due to the decreased volume of the smaller
compressor, the delivered mass per crank-rotation is nearly the same.

7.3 Global Flow Properties

7.3.1 Mass and Massflows

An important feature of the finite volume method, used herein for the numerical so-
lution of the Euler-equations, is its conservation property. E.g. if the suction valves
and the discharge valves of a reciprocating compressor are closed, no massflow can
enter or leave the compuation domain. Since all the other surfaces except the valve
areas are walls, it is possible to check, that the mass inside the compressor remains
constant during gas expansion and gas compression. In Figure 7.2 the mass and the
boundary mass flow over the computation domain surface are plotted over crank-
angle for four different compressors delivering the same mass per crank rotation.

Of course, the mass curve over crank angle slightly differs from the curve for the
ideal process described in section 3.4. However, as a consequence of the used numer-
ical method, the mass is really a constant for all four compressors, while the suction
and discharge valves are closed.
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Figure 7.2: Includes gas mass (top) and mass flows at the boundaries (bottom)
over crank angle, for the idealized cycle of a reciprocating compressor, and for four
different compressors delivering almost the same mass per crank rotation.
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7.3.2 Valve Plate Motion

7.3.2.1 Original Valve-Spring Data

Using the valve data given in Table 2.4 and Table 2.5, the valve plate lifts over crank-
angle shown in Figure 7.3 are obtained for the compressors with piston diameters
dP = 680mm, dP = 340mm, dP = 170mm and dP = 85mm.
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Figure 7.3: Valve plate motion over crank angle for four different compressor with
piston diameters dP = 680mm, dP = 340mm, dP = 170mm, dP = 85mm running
with averaged piston speed v̄P = 4m/s. The valve data is based on Table 2.4 and
Table 2.5.

It turns out, that the suction valve SV1 of the compressor with piston diameter
dP = 85mm does not reach the maximal valve plate lift xV,max = 1.75mm, and
closes near the pistons bottom dead center at CA = 540◦. The same is true for the
similar moving suction valve SV2, not plotted in Figure 7.3. For the compressors
with diameters dP = 170mm and dP = 340mm, it seems to be difficult for the
suction valves SV1 and SV2 to stay open at xV,max = 2.0mm and xV,max = 2.25mm,
respectively. This can also be observed for the discharge valves DV1 and DV2 of the
compressor with piston diameter dP = 170mm.

In the original valve data given in Table 2.4, the maximal valve plate lift xV,max
was chosen in such a way, that for a maximal open valve, the geometric cross sec-
tion of the valve plate seat passage fe(xV,max) equals that of the valve ports fports,
see for instance Equation (2.3). However, the question arises, if that large maximal
valve plate lift is necessary for all compressors shown in Figure 7.1. Therefore, a
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smaller maximal valve plate lift is considered for all cases 1, 2, 3 and 4.

Furthermore, for the compressors with smaller piston diameter, a high-freqency
oscillation of the valve plate lifts can be observed after leaving the valve guards.
The reason for that phenomenon might be a high valve spring force, trying to close
the valve rapidly. If, as a first guess, the fluid force acting on the valve plate is
assumed to be only a disturbance, the valve plate approximately oscillates with the
eigenfreqency of the mass-spring-system. Since the maximal valve plate lift and the
valve-plate motion-frequencies of the compressor with the diameter dP = 680mm
are not too bad, the value for xV,max as well as the eigenfrequencies of the com-
pressors with diameters dP = 340mm, dP = 170mm, dP = 85mm are adapted
according the data of case 1.

7.3.2.2 Smaller Valve-Spring Stiffness and Maximal Plate Lift

Since the original valve spring data presented in Table 2.5 results in high-frequently
oscillating valve-plate lifts for the smaller piston diameter compressors, the eigen-
frequency of the mass-spring-system

fMSS =
1

2π

√
kV
mV

(7.1)

from the compressor with piston diameter dP = 680mm (case 1), is also used in
the cases with piston diameters dP = 340mm (case 2), dP = 170mm (case 3), and
dP = 85mm (case 4). If the valve plate mass mV is kept unchanged for all cases,
the valve spring constants kV = (2π fMSS)2mV for the cases 2, 3 and 4 have to be
adapted to obtain the eigenfreqency of case 1, namely 53.52Hz. For comparison,
the frequency of a compressor rotation with 800 rpm is 13.33Hz. The force area
Af of the valve plates is also kept unchanged. Hence, in order to keep the pressure
difference of the closed valved ∆pclosed = kVLV /Af on the same level, it is necessary
to also adapt the length parameter LV , representing the spring force of a closed
valve. In Table 7.1 the modified mechanical valve parameters are listed.

Case 1 2 3 4

Af (m2) 1.781 · 10−2 6.769 · 10−3 2.654 · 10−3 1.168 · 10−3

mV (kg) 210 · 10−3 79.7 · 10−3 31.3 · 10−3 13.8 · 10−3

kV (N m−1) 23750 9014 3540 1516
LV (m) 0.75 · 10−3 3.0 · 10−3 12.0 · 10−3 47.9 · 10−3

Table 7.1: Modified mechanical valve parameters used for the simulations.

The maximal valve plate lift xV,max may be chosen as a fraction of the valve diameter
dV . In order to test the influence of reducing the maximal valve plate lift, the values
xV,max = 0.0100 dV , xV,max = 0.0125 dV and xV,max = 0.0150 dV are considered.
Table 7.2 lists the numerical values for xV,max.
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Case 1 2 3 4

dV (m) 0.200 0.125 0.080 0.054
0.0100 dV (m) 2.0 · 10−3 1.25 · 10−3 0.8 · 10−3 0.54 · 10−3

0.0125 dV (m) 2.5 · 10−3 1.5625 · 10−3 1.0 · 10−3 0.675 · 10−3

0.0150 dV (m) 3.0 · 10−3 1.875 · 10−3 1.2 · 10−3 0.81 · 10−3

Table 7.2: Smaller maximal valve plate lifts xV,max depending on valve diamter dV .

According to Equation (2.1), the maximal geometrical valve plate passage area is
fe(xV,max) = fe1mm xV,max, where fe1mm is defined in Equation (2.2). Given the
maximal valve plate lifts xV,max of Table 7.2, and the number of suction valves nSV
and discharge valves nDV for the different cases 1, 2, 3 and 4, it may be interesting
to know, how big the maximal valve plate geometrical passage area of all suction
valves nSV fe(xSV,max) and all discharge valves nDV fe(xDV,max) is relative to the
piston area AP = π

4
d2
P . In the presented cases, the number of discharge valves

equals the number of suction valves nDV = nSV , and the maximal valve plate lifts
of suction valves and discharge valves are the same, xDV,max = xSV,max. Hence, the
dimensionless quantities nSV fe1mm xSV,max/(

π
4
d2
P ) and nDV fe,1mm xDV,max/(

π
4
d2
P ) are

identical as well. Therefore, in Table 7.3 only the area ratios of the suction valves
are shown for xSV,max = 0.0100 dV , xSV,max = 0.0125 dV and xSV,max = 0.0150 dV ,
respectively.

Case 1 2 3 4

0.0100nSV fe,1mm dV /(
π
4
d2
P ) 0.1635 0.1381 0.1169 0.1058

0.0125nSV fe,1mm dV /(
π
4
d2
P ) 0.2044 0.1726 0.1462 0.1323

0.0150nSV fe,1mm dV /(
π
4
d2
P ) 0.2453 0.2071 0.1754 0.1587

Table 7.3: Maximal geometrical valve plate passage area relative to the piston area
for different maximal valve plate lifts: xV,max/dV = {0.0100, 0.0125, 0.0150}.

7.3.2.3 Valve Plate Lifts and Velocities

The valve plate lifts for suction valves xSV and discharge valves xDV are computed
as function of the crank angle, for the cases 1, 2, 3 and 4. The maximal valve plate
lifts xV,max are taken accoording to Table 7.2. The suction valve plate velocities ẋSV
and discharge valve plate velocities ẋDV are also presented. In Figure 7.4, Figure
7.5 and Figure 7.6, the valve plate lifts (left figure side) and the valve plate velocites
(right figure side) are shown for all compressor cases and all suction and discharge
valves, except the valves located symmetrically to that shown in the figures.
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Figure 7.4: Valve plate lifts (left) and velocities (right) over crank angle for four
compressor with piston diameters dP = 680mm, dP = 340mm, dP = 170mm,
dP = 85mm running with averaged piston speed v̄P = 4m/s. The maximal valve
plate lift is xV,max = 0.01 dV .
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Figure 7.5: Valve plate lifts (left) and velocities (right) over crank angle for four
compressor with piston diameters dP = 680mm, dP = 340mm, dP = 170mm,
dP = 85mm running with averaged piston speed v̄P = 4m/s. The maximal valve
plate lift is xV,max = 0.0125 dV .
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Figure 7.6: Valve plate lifts (left) and velocities (right) over crank angle for four
compressor with piston diameters dP = 680mm, dP = 340mm, dP = 170mm,
dP = 85mm running with averaged piston speed v̄P = 4m/s. The maximal valve
plate lift is xV,max = 0.015 dV .
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For the valve life, the impact velocity of the valve plate on the valve guard and on
the valve seat plays an important role. In the present valve model, the impact is
modelled as completely inelastic. That means, that if the valve hits the guard at
xV = xV,max, or comes back to the seat at xV = 0, the valve plate velocity is set to
zero, in both cases. Hence, it is implicitly assumed, that the kinetic energy of the
valve plate motion is dissipated into heat, immediately. Four valve velocities can be
evaluated:

• The valve plate impact velocity on the suction valve guard ẋSV,guard.

• The valve plate impact velocity on the suction valve seat ẋSV,seat.

• The valve plate impact velocity on the discharge valve guard ẋDV,guard.

• The valve plate impact velocity on the discharge valve seat ẋDV,seat.

Table 7.4 shows the valve plate impact velocities for all cases shown in Figure 7.4,
Figure 7.5 and Figure 7.6. Only the valves with the largest velocity value are
presented in the table.

ẋSV,guard ẋSV,seat ẋDV,guard ẋDV,seat
(m/s) (m/s) (m/s) (m/s)

xV,max
dV

=0.0100

1.068(1)(SV1) −0.636(1)(SV1) 1.995(1)(DV1) −3.487(1)(DV3)
1.706(2)(SV1) −0.513(2)(SV1) 3.130(2)(DV1) −2.828(2)(DV2)
2.355(3)(SV1) −0.296(3)(SV1) 3.608(3)(DV1) −1.173(3)(DV1)
2.991(4)(SV1) −0.004(4)(SV1) 4.558(4)(DV1) −1.464(4)(DV1)

xV,max
dV

=0.0125

1.020(1)(SV1) −1.070(1)(SV1) 2.094(1)(DV1) −3.386(1)(DV3)
1.773(2)(SV1) −0.243(2)(SV1) 2.968(2)(DV1) −3.624(2)(DV2)
2.504(3)(SV1) −0.615(3)(SV1) 3.886(3)(DV1) −1.056(3)(DV1)
3.167(4)(SV1) −0.001(4)(SV1) 4.839(4)(DV1) −2.897(4)(DV1)

xV,max
dV

=0.0150

0.930(1)(SV1) −1.053(1)(SV1) 2.158(1)(DV1) −2.591(1)(DV3)
1.811(2)(SV1) −0.883(2)(SV1) 2.767(2)(DV1) −4.121(2)(DV2)
2.610(3)(SV1) −0.552(3)(SV1) 4.130(3)(DV1) −1.568(3)(DV2)
3.298(4)(SV1) −0.001(4)(SV1) 5.068(4)(DV1) −2.977(4)(DV1)

Table 7.4: Valve plate impact velocities on the suction and discharge valve guards
and seats for case 1:(1), case 2:(2), case3:(3), and case 4:(4).

It can be concluded, that a reduction of the maximal valve lift from xV,max = 0.015 dV
to xV,max = 0.01 dV reduces the impact velocity on the valve guard from 3.298m/s to
2.991m/s for case 4, from 2.610m/s to 2.355m/s for case 3, and from 1.811m/s to
1.706m/s for case 2. Only for case 1, the impact velocity on the suction valve guard
of suction valve 1 (SV1) is slightly increasing from 0.93m/s to 1.068m/s. However,
impact velocities of about 1m/s can be seen as relatively small anyway. In contrast,
the data of the valve plate impact velocities on the valve seat of the suction valves
is more scattered. The reason for that observation is, that the suction valve closing
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motion is more sensitive than the motion of valve opening. The closing of the
discharge valves also depends on the valve location. Especially for the compressor
with piston diameter dP = 680mm the discharge valve 3 (DV3) shows a much larger
valve plate lift after the pistons top-dead-center (TDC), than it can be observed for
the discharge valve 1 (DV1). For the compressor with piston diameter dP = 340mm
both plotted valves DV1, DV2 have somehow a re-opening after TDC. Hence, the
impact velocities on the valve seats are very much different depending on the specific
valve data and on the valve position. Regarding the impact velocities on the valve
guards of the discharge valves, a maximal lift reduction from xV,max = 0.015 dV
to xV,max = 0.01 dV decreases the maximal values from 5.068m/s to 4.558m/s for
case 4, from 4.130m/s to 3.608m/s for case 3, and from 2.158m/s to 1.995m/s
for case 1, while case 2 shows even growing velocities from 2.767m/s to 3.130m/s.
Usually, a smaller maximal valve plate lift also reduces the time from the beginning
of valve opening until the plate hits the guard. Since the pressure difference acting
on the valve plate causes the body acceleration, a reduction of the opening time also
hinders the plate to gain that much speed.

7.3.3 Valve Plate Forces and Piston Force

For an idealized compressor model, where the compressibility effects of the fluid
during suction and discharge are neglected, the pressure inside the working chamber
only depends on the crank-angle ϕ, see e.g. section 3.4. Such a thermodynamic
model is also said to be zero-dimensional in space, because there is no space depen-
dency of the quantities at all. However, in a three-dimensional CFD-model, where
the wave dynamic due to compressibility is included, the pressure can be expected
to be a function of space as well. In order to get an impression of the different
results compared to the simple thermodynamic model plotted in Figure 3.3 and
Figure 3.2, the area-averaged pressure on the piston and on the valves is plotted in
Figure 7.7 over the crank-angle, and over the volume of the working chamber for
the compressor with a piston diameter dP = 680mm, having 5 suction valves and
5 discharge valves allowing a maximal valve plate lift of xV,max = 2.5mm. Because
the geometrical configuration of the valve pockets SV5 and SV4 is symmetrically to
the pockets SV1 and SV2, the average pressure curves over crank angle and volume
are similar as well. The same is true for the symmetric location of the valve pockets
DV5 and DV4 relative to the pockets DV1 and DV2. Therefore, in Figure 3.3 and
Figure 3.2. only the averaged pressure on the faces of the valve pockets SV1, SV2,
SV3, DV1, DV2, DV3, are shown.

Since the plotted pressure curves for the piston and the valves are derived from
dividing the pressure force acting on the zone by the area of the zone, the time-
oscillations of the pressure due to that filtering, are not that large as they are in a
single point of the domain.
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Figure 7.7: Area-averaged pressure on piston and valves over crank-angle (top) and
volume (bottom) for a compressor with piston diameter dP = 680mm running with
averaged piston speed v̄P = 4m/s, having 5 suction valves and 5 discharge valves
in symmetric configuration.

However, it can be observed, that during compression the average pressure acting
on piston and valves pretty much follows the same curve, while during expansion
especially the pressure at suction valve 3 (SV3) and the pressure at discharge valve
3 (DV3) are deviating from the pressure at the piston.
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During suction and discharge the pressure curves differ even more from each other.
In particular, the pressure acting on the suction valves during discharge is larger
than that acting on the piston and on the discharge valves. Since the discharge
valves open at the crank angle ϕ = 660.48◦, it seems that the compression still takes
place near the suction valves, while near the discharge valves the compression has
stopped due the out-going discharge valve massflows. The only explanation for this
phenomenon is, that near the suction valves the information of an open discharge
valve has not arrived yet, due to the time it takes to transport the wave reflected
on the open discharge valve with the speed of sound through the working chamber.

An estimate of the required time for a pressure wave to propagate through the
working chamber with diameter dP = 0.68m gives t = 1.49 · 10−3s based on the
sound speed c =

√
γ p/ρ = 456m/s derived from a pressure level of p = 4 · 105Pa

and a density of approximately ρ = 2.692 kg/m3 at discharge for γ = 1.4. These
values can simply be computed a priori based on the idealized pressure process de-
scribed in section 3.4, without doing any CFD. Note, that with the CFD-results a
sound speed of approximately c = 470± 5m/s can be found during discharge. Con-
sidering the rotational speed of the compressor ϕ̇ = π

30
800 rad/s, the time-difference

t = 1.49ms can be transfered into a crank angle difference of ∆ϕ = 7.16◦. In the
CFD-results the wave propagation speed is maybe slightly faster, because the com-
pression higher than discharge pressure also increases the sound speed. In Figure
7.7 it can be observed, that the peak averaged pressure p̂DV1,2,3 = 4.233 · 105Pa at
the discharge valves DV1, DV2 and DV3 occurs at the crank angle ϕDV1,2,3 = 663.28◦,
while the suction valves SV1, SV2 and SV3 have their peak averaged pressure values
p̂SV1 = 4.854 · 105Pa, p̂SV2 = 5.060 · 105Pa and p̂SV3 = 5.141 · 105Pa at the crank
angle values ϕSV1 = 669.61◦, ϕSV2 = 669.87◦ and ϕSV3 = 670.04◦, respectively. The
maximal pressure at the piston p̂P = 4.703 · 105Pa averaged over the piston area
can be recognized at the crank angle ϕP = 670.33◦. Hence, there is really a crank
angle delay of approximately ∆ϕ ≈ 7◦ between the pressure peaks of the discharge
valves and the suction valves.

In Figure 7.8 the averaged pressure acting on the piston and on the valves is
shown for the compressors with piston diameters dP = 340mm, dP = 170mm
and dP = 85mm. It can be seen, that the pressure overshoots after discharge valve
opening become smaller with decreasing piston diameters. The required time for
waves to carry the information of an open discharge valve through the domain is
directly proportional to the piston diameter, if the speed of sound is assumed to be
the same. In case of a smaller distance between discharge valves and suction valves,
the maximal compression pressure near the suction valves shown in Figure 7.8 can
not reach such a high level as for the large diameter compressor shown in Figure 3.3
and Figure 3.2. As a consequence it can be concluded, that the additional piston
driving power necessary to produce the pressure overshoots, is not purely caused
by the losses of the flow through the discharge valves, but mainly comes from the
dynamic effect of waves propagating through the fluid domain.
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Figure 7.8: Area-averaged pressure on piston and valves over crank-angle (left) and
volume (right) for compressors running with averaged piston speed v̄P = 4m/s. The
piston diameters are dP = 340mm (top), dP = 170mm (middle) and dP = 85mm
(bottom).

7.4 Local Flow Properties

7.4.1 Pressure Distribution on the Piston

7.4.1.1 After Discharge Valve Opening

The pressure wave traveling through the domain after the opening of the discharge
valves at crank angle ϕ = 300.48◦ (or ϕ = 660.48◦ in the second period) is important
for the maximal pressure reached near the suction valves, especially for compressors
with larger piston diameters. Therefore, in Figure 7.9 the pressure distribution on
the piston is illustrated for the compressor with piston diameter dP = 680mm at
six different crank angles after discharge valve opening.
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(f) ϕ = 306◦

Figure 7.9: Pressure distribution on the piston at six different crank angles after
opening of the discharge valves for a reciprocating compressor with piston diameter
dP = 680mm and with 10 valves.
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Right after the discharge valve opening at crank angle ϕ = 301◦, Figure 7.9 (a)
shows that the pressure acting on the piston is completely symmetrically. Hence, all
the asymmetric flow patterns that occur during suction have disappeared at the end
of compression. At crank angle ϕ = 303◦ the pressure field becomes asymmetric.
Near the connection to the suction valve pockets the piston pressure is increasing
due to the ongoing gas compression, while at the connection to the discharge valve
pockets the pressure on the piston increases only slighty. A large field with higher
pressure on the piston forms on the left side of Figure 7.9 (d), while on the right
side of the picture the pressure wave coming from the discharge valve pockets unite
to a single wave front, that reaches the suction valve pockets SV1 and SV5 at crank
angle ϕ = 305◦. At ϕ = 306◦ the wave front in the middle of the compressor is
almost planar. The discharge valve pockets DV1 and DV2 close to the suction valve
pockets only cause a small deformation of the wave shape.

7.4.1.2 At the Top-Dead-Center

In Figure 7.10 the pressure distribution on the piston in shown at the pistons top-
dead-center, where the crank angle becomes ϕ = 360◦. At this position the distance
between the piston and the cylinder head has its minimal value.
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Figure 7.10: Pressure acting on the piston with diameter dP = 680mm at ϕ = 360◦.
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While the average pressure acting on the piston is larger than the discharge pressure
pd = 4·105 Pa, the smallest value in the middle of the piston is below pd. The largest
value of the pressure on the piston occurs close to the mid suction valve pocket SV3.
The piston pressure dramatically drops between the position of the suction valve
pocket SV1 and the discharge valve pocket DV5, and between the pockets SV5 and
DV1. The effect of the 10 valve pockets on the piston pressure distribution can be
clearly recognized in Figure 7.10. Between the discharge valve pockets the flow can
not leave the cylinder domain, and the pressure increases due to the stagnation of
the gas at the wall. These pressure peaks between the pockets demonstrate the
functionality of the cylinder to valve pocket interface coupling method, described in
section 6.4.3.

7.4.1.3 After the Top-Dead-Center

After the pistons top-dead-center TDC the cylinder volume starts to increase. How-
ever, as can be seen in Figure 7.5 for the compressor with dP = 680mm and
xV,max = 2.5mm, the discharge valves are still open for a crank angle larger than
ϕ = 360◦. The valve plate lifts after TDC seem to be very sensitive to the plate
motion before TDC, and are also different for every discharge valve, depending on
the location along the cylinder circumferential surface. Hence, the expansion of the
gas does not happen uniformly.

In Figure 7.11 the pressure on the piston is shown for six different crank angles
after the top-dead-center. The largest pressure on the piston always appears near
the connection to the suction valve pockets, while in Figure 7.11 (a) the minimal
pressure occurs close to the center. A local pressure maximum is present between the
pockets of the discharge valves. As can be observed in Figure 7.11) (c), the region
of minimal pressure separates into two zones, that are located closer to the cylin-
der walls, but still lie almost in the symmetry plane between suction and discharge
valves. According to the coordinate system defined in Figure 2.2, this symmetry
plane is the (y, z)-plane. In Figure 7.11 (d) a corridor of low pressure can be seen
near the (y, z)-plane, while in Figure 7.11 (e) and Figure 7.11 (f) the pressure fur-
ther decreases near the cone tips of the suction valve pockets with the largest x-value.

Although no symmetry has been assumed in the flow solver, the results are pretty
much symmetrical with respect to the (x, z)-plane. The influence of non-symmetrical
valve pocket arrangements or the orientation of the structured cylinder mesh to the
valve pocket geometry has not been investigated so far. Note, that all the presented
results are just using n1 = 15 non-uniformly distributed cells along the piston ra-
dius. Even with this coarse mesh, the contours of the pressure are resolved with
acceptable accuracy. Calculations performed with n1 = 20 along the piston radius
to not show any remarkable difference to the shown results.
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(f) ϕ = 366◦

Figure 7.11: Pressure wave on piston after the pistons top-dead-center for a recip-
rocating compressor with piston diameter dP = 680mm and 10 valves.
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7.4.2 Velocity Distribution near the Piston
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(f) ϕ = 410◦

Figure 7.12: Velocity magnitude decay near the piston after discharge valve closing.
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7.4.3 Mach-numbers for Subsonic and Supersonic Flow

In order to check if the solver can handle supersonic flows as well as subsonic flows
for complex geometries, the rotational crank speed of the compressor with piston
diameter dP = 680mm is increased from 800 rpm to 1200 rpm. The average pis-
ton speed for this compressor design with crank radius r = 75mm increases from
v̄P = 4m/s to v̄P = 6m/s.

In Figure 7.13 the maximal Mach numbers occuring inside the cylinder and in the
valve pockets are plotted over crank angle for two compressor periods. The maxi-
mal Mach numbers during suction and discharge approximately follow the massflows
crossing the suction valves and discharge valves. During suction, the Mach number
goes up to the value 0.4 in the suction valve pockets and in the cylinder for the case
running with 800 rpm. Increasing the speed by 50% to 1200 rpm does not increase
the maximal Mach number during suction by the same factor. However, almost
Ma = 0.55 is obtained during suction due to increased piston velocity. The settings
of the suction and discharge valves are the same for both compressor speeds, and
the valve plate motion is maybe slightly different due to the increased rotational
speed.

During discharge, the maximal Mach number obtained in the 800 rpm case be-
comes slightly larger than 0.8. Hence, the flow solver only has to operate in the
subsonic regime. On the other hand, for the case running with 1200 rpm the Mach
number during discharge becomes larger than one somewhere in the discharge valve
pockets. Since the solver is suited to handle supersonic flows, the computation does
not break. However, it is not recommended to run a compressor at Mach numbers
larger than one, even if the supersonic flow occurs only on a small domain for a
short time. The increased rotational speed is only used to demonstrate the ability
of running supersonic simulations.

For a certain design operated at given conditions, the solver can be used to identify
whether the flow is subsonic or supersonic during discharge. The higher mass deliv-
ery rate per rotation of a faster running compressor is an advantage, the appearence
of supersonic flow can be a disadvantage. Design changes of the valve pocket ge-
ometries are maybe helpful to allow subsonic compressor operation even at high
piston speeds. Since higher piston speeds are also a challange for the design and
the strength of the moving compressor parts, an average piston speed higher than
v̄P = 6m/s seems to be unrealistic also from this point of view. For compressors
with smaller piston diameters, a similar behavior is expected, although not discussed
herein.
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Appendix A

Roe 3D-Solver Derivation

A.1 Basic Idea

The Roe method is an approximate Riemann solver used for the compuation of nu-
merical fluxes in finite volume schemes. The basic idea is to solve the linearized
Euler equations locally at every face of a cell boundary. Since a constant in-cell
reconstruction lets all physical quantities jump from a left state vector UL to a
right state vector UR at the face, it is necessary to find an intermediate state vector
Ũ used for the linearization of the set of partial differential equations. It can be
expected, that the intermediate state lies somewhere in-between the value of the left
and the right neighbor cell values.

The space and time-dependend solution of the linearized Euler equations adapted
to the pieceswise constant inital conditions can then be solved analytically using a
decomposition in eigenvectors of the Jacobi matrix. As shown in Figure 6.1, two
state vectors U∗L, U∗R appear, that are seperated by a contact discontinuity. For
the linearized Euler equations the characterstics are straight lines in the space-time
diagram, while for the fully non-linear Euler equations these lines are curved. The
speed of the characteristics are the eigenvalues of the Jacobi matrix. The numerical
flux computed by the Roe scheme makes use of U∗L and U∗R, derived in section A.4.

A.2 Roe Condition

Although the Roe scheme was not derived this way in the original work of Roe [70],
the Taylor series expansion at an unknonwn intermediate state Ũ performed by Roe
and Pike [74] gives

fR = f(Ũ) + A(Ũ) · (UR − Ũ) + . . . (A.1)

fL = f(Ũ) + A(Ũ) · (UL − Ũ) + . . . (A.2)
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where A = ∂f/∂U is the Jacobi matrix. Using Equation (3.20) for the sound speed
c of ideal gas, and the flow veloctiy vector v = [u, v, w]>, the Jacobi matrix reads

A=




0 1 0 0 0
−u2+ γ−1

2
v2 (3−γ)u (1−γ) v (1−γ)w γ−1

−u v v u 0 0
−uw w 0 u 0

−u
[
c2

γ−1
+
(
1− γ

2

)
v2
]

c2

γ−1
+ 1

2
v2−(γ−1)u2 (1−γ)u v (1−γ)uw γ u




(A.3)
Hence, for a given material equation, all entities in the matrix A representing the
linearized Euler equations can be expressed in the velocity components of the flow,
and the velocity of the sound. The difference of Equation (A.1) and Equation (A.2)

fR − fL = A(Ũ) · (UR −UL) (A.4)

gives the implicit condition for the determination of the intermediate state Ũ, if UL

and UR are given state-vectors from the neighbor cells adjacent to a face where a
numerical flux is computed.

A.3 Roe Averages

If the material equation for ideal gas is assumed, the flux vectors can also be ex-
pressed in terms of the flow velocity components and the speed of sound. In case of
a three-dimensional situation Equation (A.4) gives five equations

ρR uR − ρL uL = ρR uR − ρL uL (A.5)(
ρR u

2
R +

ρR c
2
R

γ

)
−
(
ρL u

2
L +

ρL c
2
L

γ

)
=

[
−ũ2 + γ−1

2
(ũ2 + ṽ2 + w̃2)

]
(ρR − ρL) + (3− γ) ũ (ρR uR − ρL uL)

+(1− γ) ṽ (ρR vR − ρL vL) + (1− γ) w̃ (ρR wR − ρLwL)

+(γ − 1)
[
ρR c

2
R

γ (γ−1)
+ ρR

2
(u2

R + v2
R + w2

R)− ρL c
2
L

γ (γ−1)
− ρL

2
(u2

L + v2
L + w2

L)
]

(A.6)

ρR uR vR−ρL uL vL=−ũ ṽ (ρR−ρL)+ṽ (ρR uR−ρL uL)+ũ (ρR vR−ρL vL) (A.7)

ρR uR wR−ρL uLwL=−ũ w̃ (ρR−ρL)+w̃ (ρR uR−ρL uL)+ũ (ρR wR−ρLwL) (A.8)[
ρR c

2
R

γ−1
+ ρR

2
(u2

R + v2
R + w2

R)
]
uR −

[
ρL c

2
L

γ−1
+ ρL

2
(u2

L + v2
L + w2

L)
]
uL =

−ũ
[
c̃2

γ−1
+
(
1− γ

2

)
(ũ2 + ṽ2 + w̃2)

]
(ρR − ρL)

+
[
c̃2

γ−1
+ 1

2
(ũ2 + ṽ2 + w̃2)− (γ − 1) ũ2

]
(ρR uR − ρL uL)

+(1− γ) ũ ṽ (ρR vR − ρL vL) + (1− γ) ũ w̃ (ρR wR − ρLwL)

+γ ũ
[
ρR c

2
R

γ (γ−1)
+ ρR

2
(u2

R + v2
R + w2

R)− ρL c
2
L

γ (γ−1)
− ρL

2
(u2

L + v2
L + w2

L)
]

(A.9)

Inserting

ṽ =
ρR uR vR − ρL uL vL + (ρL vL − ρR vR) ũ

ρR uR − ρL uL + (ρL − ρR) ũ
(A.10)
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from Equation (A.7) and

w̃ =
ρR uR wR − ρL uLwL + (ρLwL − ρR wR) ũ

ρR uR − ρL uL + (ρL − ρR) ũ
(A.11)

from Equation (A.8) into Equation (A.6) gives a forth order equation in ũ with four
solutions

ũ1,2 =
ρR uR − ρL uL ±

√
γ−1
γ−3

ρR ρL [(vR − vL)2 + (wR − wL)2]

ρR − ρL
(A.12)

ũ3,4 =
ρR uR − ρL uL ±√ρR ρL (uR − uL)

ρR − ρL
=

√
ρR uR ∓√ρL uL√

ρR ∓√ρL
(A.13)

The root
√

γ−1
γ−3

ρR ρL [(vR − vL)2 + (wR − wL)2] is not a real number if 1 ≤ γ ≤ 3.

Therefore, ũ1 and ũ2 from Equation (A.12) cannot be seen as general solutions. For
ρR = ρL the expression ũ3 from Equation (A.13) becomes infinite, which excludes
ũ3 from being a general solution as well. Hence, the only correct solution is ũ = ũ4.
Inserting this in Equation (A.10) and Equation (A.11) gives the so called Roe-
averaging for the velocity components

ũ =

√
ρR uR+

√
ρL uL√

ρR+
√
ρL

, ṽ =

√
ρR vR+

√
ρL vL√

ρR+
√
ρL

, w̃ =

√
ρR wR+

√
ρLwL√

ρR+
√
ρL

(A.14)

From (A.9) the intermediate sound-speed c̃ becomes

c̃2 =

√
ρR c

2
R+
√
ρL c

2
L√

ρR+
√
ρL

+
γ − 1

2

√
ρR
√
ρL [(uR−uL)2+(vR−vL)2+(wR−wL)2]

(
√
ρR+
√
ρL)2

(A.15)

As a consequence, the total specific enthalpy

H̃ = cp T̃ +
1

2
(ũ2 + ṽ2 +w̃2) =

c̃2

γ − 1
+

1

2
(ũ2 + ṽ2 +w̃2) =

√
ρRHR +

√
ρLHL√

ρR +
√
ρL

(A.16)

is also a Roe-average of the left and the right total specific enthalpies HR and HL.

A.3.1 Eigenvalues and Eigenvectors

The basic concept how to find the eigenvalues and eigenvectors of a diagonalizable
matrix is demostrated in section 4.3.1. The eigenvalues λ and the right eigenvectors
r of the matrix A are the solutions of the system

(A− λ I) r = 0 (A.17)

where I is the idendity matrix. All eigenvalues of the Roe-matrix A(Ũ) are

λ(1) = ũ− c̃, λ(2) = ũ, λ(3) = ũ, λ(4) = ũ, λ(5) = ũ+ c̃ (A.18)
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The eigenvalues determine the positon of the characteristics in the space-time dia-
gram, see Figure 6.1 for comparison. To each eigenvalue one can find an eigenvector
r. Collecting them in a matrix of right eigenvectors R = [r(1), r(2), r(3), r(4), r(5)] gives
the matrix

R =




1 1 0 0 1
ũ− c̃ ũ 0 0 ũ+ c̃
ṽ ṽ 1 0 ṽ
w̃ w̃ 0 1 w̃

H̃ − ũ c̃ 1
2
ṽ2 ṽ w̃ H̃ + ũ c̃




(A.19)

According to the example shown in section 4.3.2, the inverse matrix

R−1 =
γ − 1

2 c̃2




1
2
ṽ2 + ũ c̃

γ−1
−u− c̃

γ−1
−ṽ −w̃ 1

1
2
ṽ2 + 2 c̃2

γ−1
2 ũ 2 ṽ 2 w̃ −2

−2 ṽ c̃2

γ−1
0 2 c̃2

γ−1
0 0

−2 w̃ c̃2

γ−1
0 0 2 c̃2

γ−1
0

1
2
ṽ2 − ũ c̃

γ−1
−ũ+ c̃

γ−1
−ṽ −w̃ 1




(A.20)

is required to find the vector of characteristic variables.

A.3.2 Characteristic Variables

In contrast to section 4.3.2, where the vector of characteristic variables is denoted
as v = R−1U, here the notation v = R−1(U−UL) is used instead. Because UL is a
constant state vector from an adjacent cell, subtracting it from U does not change
the solution of the linearized systems of partial differential equations presented in
Equation (4.18). However, the adaption to the inital conditions is easier, because
inserting the left state vector U = UL simply gives vL = 0, while adaption to the
right state vector U = UR gives vR = α, where

α = R−1(UR −UL) (A.21)

can be interpreted as wave strength vector, see e.g. Toro[81]. With the inverse
matrix of Equation (A.20) based on Roe-averaged states, and pR = ρR c

2
R/γ, pL =

ρL c
2
L/γ, ρ̃ =

√
ρR ρL, one can write

α1 =
1

2 c̃2
[(pR − pL)− c̃ ρ̃ (uR − uL)] (A.22)

α2 =
1

c̃2
[c̃2(ρR − ρL)− (pR − pL)] (A.23)

α3 = ρ̃ (vR − vL) (A.24)

α4 = ρ̃ (wR − wL) (A.25)

α5 =
1

2 c̃2
[(pR − pL) + c̃ ρ̃ (uR − uL)] (A.26)

for the entities in the wave strength vector α = [α1, α2, α3, α4, α5].
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A.4 Intermediate States

According to Equation (4.20), the solution of the linear PDE-system can be com-
posed using the vector of characteristic variables and the eigenvectors

∆U =
5∑

i=1

αir
(i) (A.27)

where ∆U denotes the change of the state vector U, when jumping across a charac-
teristic. Hence, as illustrated in Figure 6.1, the intermediate state vectors U∗L and
U∗R can be computed

U∗L = UL + α1r
(1) (A.28)

U∗R = UR − α5r
(5) (A.29)

Note, that according to Equation (A.18), the eigenvalues λ(2), λ(3), λ(4) have the
identical value ũ. Hence, the three characteristics represented by these eigenvalues
melt together to a single curve in the space-time diagram.

For the computation of the numerical flux, the Roe method does not use f(U∗L)
and f(U∗R) directly. Instead, a similar form of Equation (A.4) is used to find the in-
termediate fluxes, see Equation (6.6) for non-moving mesh. Therefore, the numerical
flux computation is sometimes termed as flux difference splitting method.
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Appendix B

Solver Testing

B.1 Motivation

The development of a three-dimensional finite volume solver for the Euler equations
based on structured hexahedral mesh is not very difficult, if the method is restricted
to a first order accurate approximate Riemann solver. If an explicit time-intergration
technique is used, problems are usually concerned with stability, especially on dis-
torted meshes. However, numerical tests on both regular and distorted meshes with
different time step size indicate, that the positivity criterion discussed in section 6.5
gives a good hint, where the stability limit can be expected for upwind-orientated
methods.

On the other hand, the development of a three-dimensional solver based on tetra-
hedral mesh offers a lot of challanges. The unstructured nature of such a method
is a possible source of code implementation failures. Therefore, it is necessary to
perform extensive solver testing before using it for a complex valve pocket geometry
of a reciprocating compressor with additional difficulties arising from the boundary
conditions at valves or the non-conforming interfaces to the cylinder mesh. As a
first step, simple tests have to be considered to check, if the basic properties ex-
pected from the solver either work or not. The conservation property of the finite
volume method can be used to show, that the mass and the total inner energy inside
a completely closed non-moving computational domain do not change with respect
to time, for any flow that eventually appears due to some arbitrary initial conditions.

Therefore, four different tetrahedral meshes of valve pockets shown in Figure B.1
have been created, to check if mass and total inner energy inside the computational
domains are conserved, if the surfaces are all set as wall boundary conditions. This
valve pocket meshes are also used for the calculations with the full compressor mod-
els. Hence, the different diameters of the piston dP = 680mm, dP = 340mm,
dP = 170mm, dP = 85mm have to be considered already in the pocket geometry
design. Note, that the valve diameters dV = 200mm, dV = 125mm, dV = 80mm,
dV = 54mm are also decreasing with smaller piston diameters. Therefore, for the
smaller valve pockets smaller cell sizes are used as well. However, the number of
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tetrahedral cells 1203, 1271, 1813, 2066 is slightly growing for the smaller pockets.

Figure B.1: Tetrahedra meshes of valve pocket geometries capable to match with
piston diameters dP = 680mm (top left), dP = 340mm (top right), dP = 170mm
(bottom left) and dP = 85mm (bottom right).

On the other hand, tests with completely closed complex geometries only indicate
a correct implementation of the wall boundary conditons, and that every numerical
flux through an inner face that leaves a cell, enters the neighbor cell of that face with
the same strength. However, it cannot be verified with such tests, that the numerical
flux is physically correct in terms of approximating solutions of the Euler equations.
Therefore, a test is set up, where the solution of the Euler equations is known,
and the accuracy of the results can be compared with a similar one-dimensional
situation.
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B.2 Modified Shock Tube Test

B.2.1 Test Case Description

In order to test a numerical method, in Toro [81] a modification of the classical
shock tube example given by Sod is presented. At inital conditions, the shock tube
consists of a straight pipe containing two zones with fluid at rest, separated by a thin
membrane. The two fluid zones on both sides of the membrane have different density
and pressure at the beginning. After the membrane is torn, a supersonic flow can
occur, depending on the initial data. Hence, this configuration seems to be optimal
to test a numerical solver with the capability to solve subsonic and supersonic flows.
The so-called Toro test case 1 additionally allows, that the fluid at the beginning
of the test has a flow velocity. For the testing of 1d-solvers, Toro [81] proposes the
initial conditions listed in Table B.1 for a pipe with a length of 1m.

ρ (kg/m3) u (m/s) v (m/s) w (m/s) p (Pa)
0.0m ≤ x ≤ 0.3m: 1 0.75 0 0 1
0.3m < x ≤ 1.0m: 0.125 0 0 0 0.1

Table B.1: Initial conditions for the 1d shock tube test of Toro[81].

The velocity components v and w are not relevant for the 1d-solver testing, but
are necessary for testing the 3d-solver. The fluid is assumed to be ideal gas with a
specific heat capacity ratio γ = 1.4. Hence, the speed of sound c =

√
γ p/ρ obtained

for x ≤ 0.3m is c = 1.183m/s and c = 1.058m/s for x > 0.3m. The Mach number
Ma = 0.634 for x ≤ 0.3m shows, that the flow is subsonic at the beginning, but it
will turn into supersonic flow right after the membrane is broken.

B.2.2 3D-Model Setup

In order to test the three-dimensional solver for Euler equations, the one-dimensional
Toro test case 1 is solved with a three-dimensional tube model. The results presented
in Toro [81] at time t = 0.2 s are obtained with a 1d-version of the Roe approximate
Riemann solver with an additional sonic entropy fix to avoid the wrong solutions near
Ma = 1. The 1d-results for the Toro test case 1 shown in Figure B.4 are calculated
with exactly the same 1d-solver explained in Toro [81]. In the 1d-situation, the
mesh consists of 100 equi-sized cells along the pipe length of 1m, having a cell size
of ∆x = 0.01m. In order to compare the accuracy of the 3d Roe-solver with the
1d-results, a 3d-mesh of a tube with a diameter of 0.1m and a length of 1m is
created, consisting of 17080 tetrahedral cells. The surface mesh of the 3d-tube is
shown in Figure B.2.
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Figure B.2: Surface mesh of the 3d shock tube test model with a length of 1m and
a diameter of 0.1m, consisting of 17080 tetrahedral cells.

The size of the tetrahedral cell is chosen in such a way, that approximately the
same accuracy can be expected as in the 1d-situation with cell size ∆x = 0.01m. A
detailed view on the surface mesh in Figure B.3 shows, that the tetrahedral mesh
was not created by subdiving the pipe in 100 sectors in x–direction, that are meshes
afterwards. Since the mesh of the 3d-tube was created with an advancing front
mesh generator, the mesh on the surface and inside the domain can really have any
irregularity in terms of node positions and face directions.

Figure B.3: Detailed view on the surface mesh of the 3d shock tube test model.
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B.2.3 Comparison 1d/3d-Results

Goal of the comparison of the 1d-version and the 3d-version of the Roe approximate
Riemann solver is to show, that both methods give nearly the same results with
comparable accuracy. In Figure B.4, density, x–velocity component and pressure
of the gas are plotted in every cell mid-point of the 1d-mesh and the 3d-mesh at
time t = 0.2 s. Similar to the description in Toro [81] for the test case 1, a Courant
number C = 0.9 is used for the 1d-calculation. Since for the 1d-situation the cell
size ∆x = 0.01m is relevant for determining the timestep size, only 60 timesteps
are necessary to reach the time t = 0.2008610 s, plotted in Figure B.4. On the other
hand, for the 3d-calculation based on 17080 tetrahedral cells and the same Courant
number C = 0.9, 371 timesteps are required to reach the plotted computation time
t = 0.1999925 s.

The reason for that large difference in required timesteps is the length scale that
determines the timestep size. While in the 1d-case this length is clearly ∆x, in
the 3d-case the radius R of a sphere inscribed in every tetrahedron is used for that
length. It is commonly thought, that the choice of R is sufficient to guarantee stabil-
ity on even highly distorted tetrahedral meshes, because a wave travelling from the
center of every tetrahedron cannot reach any tetrahedra face if the Courant number
fulfills C < 1. However, to the knowledge of the author, a proof for the stability con-
cerning the Euler equations is not known. Nevertheless, for the three-dimensional
advection equation with constant wave speeds, a positivity criterion exists, showing
that for the first order upwind scheme this length must be smaller than one third
of the smallest tetrahedra height. Since for a regular tetrahedron R is one forth of
the height, the chosen criterion based on R is assumed to be at least stronger than
the criterion using one third of the height for the length scale.

Another important point is the way how the Riemann problem is solved. As al-
ready stated in section 6.2, a so-called grid-aliged rotated Riemann solver is used, as
it is presented in Toro [81]. Hence, for the numerical flux computation, the decom-
position of the waves occuring at the discontinuities at cell boundaries is performed
in the direction of the face-normal. However, as can be seen in Figure B.3, the cell
faces on the surface and on the inside of the computation domain may have any
arbitrary direction. While for the 1d-case the grid-normal vector is always normal
to the shock, this is definitely not the case for the 3d tetrahedral mesh. Anyway,
the results in Figure B.4 demonstrate that the implemented method works with the
same accuracy as the 1d Roe solver. Further improvements can be expected, by
extending the 2d-version of a solution-aligned rotated Riemann solver shown in Ren
[67] to three space dimensions.
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Figure B.4: One-dimensional shock tube test of Toro [81] at time t = 0.2 s, solved
with a 1d-version and a 3d-version of the Roe approximate Riemann solver with sonic
entropy fix: density (top), x–velocity component (middle), and pressure (bottom)
at every cell mid-point.
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