

Project Update: Heat Transfer and Internal Flow in Reciprocating Compressors

Herbert Steinrück & Thomas Müllner

Institute of Fluid Mechanics and Heat Transfer Vienna University of Technology

Nov $6^{\rm th},\,2015$

Outline

- Flow3D
- eat Transfer
- Examples, Mesh study
- Instructions and file structure
- Onclusions

Program family Compressor1D/2D/3D

Changes since April 2015

- A bug in the "valve dynamics" has been eliminated.
- The graphical representation of the flow properties on the side walls has been improved.
- Preliminary version of the PhD-thesis of Thomas Müllner is available.
- http://www.fluid.tuwien.ac.at/EFRC_Projects

Flow 3D

Features

- Flow 3D simulates the **inviscid gas flow**, described by the Euler equations, in the cylinder and in the valve pockets and the motion of the valve plates.
- Cylinder: structured mesh mesh is characterized by th number of grid points in radial direction

dynamic layering along cylinder axis.

Solver: Roe's method for structured grids

• Unstructured mesh. A meshed reference valve pocket is given.

cone + cylinder

• A posteriori calculation of heat transfer coefficients. for each face as function of the crank angle.

Turbulent Boundary Layer

• defect layer:
$$u = U_{in} - u_{\tau} f'(y^+ R e_{\tau})$$

• overlap region: $u = u_{\tau} \left(\frac{1}{\kappa} \ln y^+ + C_2\right)$

• viscous sub-layer $u = u_{\tau} f(y^+)$

$$u_{\tau}^2 = \frac{\tau_w}{\rho}, \quad y_+ = \frac{yu_{\tau}}{\nu}, \quad Re_{\tau} = \frac{u_{\tau}\delta}{\nu}$$

inviscid flow

U_{in} T_{in}

Turbulent Boundary-Layer

Assumption: High-Reynolds number attached boundary layer flow. see: Schlichting/Gersten.

• friction law:

$$\frac{U}{u_{\tau}} = \frac{1}{\kappa} \ln \frac{u_{\tau}\delta}{\nu} + C^+ + \frac{2\Pi(x)}{\kappa} \approx \frac{1}{\kappa} \ln \frac{u_{\tau}\delta}{\nu} + C^+$$

• friction velocity

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}}$$

friction coefficient:

$$c_f = \frac{2\tau_w}{\rho U^2} = 2\frac{u_\tau^2}{U^2}$$

- von Karman constant: $\kappa = 0.40$
- unknown boundary layer thickness δ .

The Boundary-Layer Thickness

Options:

- a) solve boundary-layer equations (finite volume method)
- b) solve boundary-layer equations with integral method for δ
- c) estimate boundary layer thickness for each face.- Implemented

Heat Transfer

logarithmic temperature profile in overlap region implies:

$$\frac{T_{\infty} - T_w(x)}{T_{\tau}(x)} = \frac{1}{\kappa_{\theta}} \ln \frac{u_{\tau}\delta}{\nu} + C_{\theta}^+(\Pr) + \tilde{C}_{\theta}(x)$$

friction temperature

$$T_{\tau} = -\frac{\bar{q}_w}{\rho c_p u_{\tau}}$$

 $\kappa_{\theta} = 0.47, \quad C_{\theta}(\Pr) = 13.7 \Pr^{2/3} - 7.5, \quad \Pr > 0.5$

Reynolds analogy

$$St = \frac{\bar{q}_w}{\rho c_p (T - T_\infty) U} = \frac{c_f / 2}{\kappa / \kappa_\theta + \sqrt{\frac{c_f}{2}} D_\theta(x, \Pr)} \approx \frac{\kappa_\theta}{\kappa} \frac{c_f}{2}$$

Valve Pocket

Parameters of valve pocket: cylinder radius r_Z valve radius r_V cone height h_K height of valve cylinder h_V

Mesh on Surface of Valve Pocket

Structured Mesh in Cylinder

grid defined by number of cells along cylinder radius

Connecting Surface

Surface connecting cylinder and vale pocket (blue)

- Euler solver on structured grid, delivered 2012, source code available.
- Euler solver on unstructured grid integrated in executable euler.exe delivered April 22rd,2015
- Coupling algorithm structured/unstructured mesh integrated in euler.exe delivered April 22nd,2015
- A posteriori calculation of heat transfer coefficients.
- No meshing tool for valve pockets is provided. Referent valve pocket is delivered. For other geometries a *.msh file has to be created with NETGEN. But additional information concerning the boundary condition is needed.
- GUI April 22nd,2015

Test examples

Case	1	2	3	4
speed rpm	800	800	800	800
$ ho_s~({ m kg/m^3})$	1	4	16	64
$p_s~(bar)$	1	4	16	64
p_d (bar)	4	16	64	256
$d_P \; (mm)$	680	340	170	85
# Suc./Dis. V.	5/5	4/4	3/3	2/2
stroke /mm)	150	150	150	150
$d_V \; (mm)$	200	125	80	54

Valve lift, Cases 1 & 2

Valve lift, Cases 3 & 4

Pressure, Case 1

Pressure at opening of DVs

Internal Pressure Waves Pressure at Dead Center

Internal Pressure Waves Pressure at Dead Center

Internal Pressure Waves Pressure at Dead Center

Velocity Magnitude at Piston

Velocity Magnitude at Piston

Velocity Magnitude at Piston

Maximal Mach number 800 rpm

Herbert Steinrück & Thomas Müllner

Heat Transfer and Internal Flow in Reciprocating Compressors

Maximal Mach number 1200 rpm

Herbert Steinrück & Thomas Müllner

Heat Transfer and Internal Flow in Reciprocating Compressors

Velocity at Piston CA=420°

Pressure at piston CA=306°

Temperature at side wall CA=504°

Example 2 valve compressor

	2-valve comp.
Piston diameter d_P (m)	0.220
Minimal gap between $z_{ m min}$ (m)	0.00150
Crank radius r (m)	0.045
Con-rod length L (m)	0.300
Crank shaft speed omega (rpm)	980
Ratio of specific heat capacities γ	1.4
Suction pressure p_s (bar)	1.0
Discharge pressure p_d (bar)	4.0
Suction density $ ho_s~({ m kg/m^3})$	1.0

A new reference mesh with halves all edges has been created for comparison, not delivered.

cells along radius	mesh in valve pocket	comp. time $CA = 420^{\circ}$
15	standard	10 h 23 min
30	standard	sing. at $CA=9^{\circ}$
30	fine	81 h 48 min

Pressure

fine mesh, standard mesh

Pressure difference

fine mesh, standard mesh

Vertical velocity CA=100° - Intake

Grid dependence of flow field \Rightarrow Grid dependence of heat transfer coefficient during intake!

Vertical velocity CA=300° - Discharge

Flow field grid independent during discharge \Rightarrow No grid dependence of heat transfer coefficient during discharge!

Heat transfer coefficients

HTCs depend on grid during intake, grid independent otherwise.

File Structure

GUI: Compressor3D.exe resides in Executing Files.

It creates the files InputCylinder.txt Input-Valves.txt and puts them into the right place. It creates the Output directory Casexxx and its sub-directories.

It calls euler.exe which writes the output data in the corresponding directories.

Output.txt Valve data and some global data for every times step.

sidennn.txt, pistonnnn.txt, headnnn.txt velocity, density pressure for each surface cell at crank angle nnn.

alpha_on_HSP.txt Heat transfer coefficients for head, piston side wall as function of crank angle.

Instructions

- Download setupComp3D.exe from http://cddlab2.fluid.tuwien.ac.at/EFRC/Compressor3D/Version04
- Install Compressor3D by executing setup3D.exe
- Start Compressor3D: (Switch to Compressor3D/ExecutingFiles and run Comp3D.exe)
- Define the Compressor data or read an the Input data files (2 Files needed: InputCylinder.txt, InputValves.txt)
- Define a case name and run the program (11 hours for two complete cycles on my laptop).
- Display the data
- The data can be accessed in the files Output.txt and headnnn.txt, sidennn.txt, pistonnnn.txt (see file structure)

Conclusions

Flow in cylinder	Flow in valve cage	Heat transfer		
proposal				
inviscid 3D	inviscid 1D	boundary-layer along cylin- der walls		
delivered				
inviscid 3D	inviscid 3D	boundary-layer along cylin- der walls		

File download:

http://www.fluid.tuwien.ac.at/EFRC_Projects

Recommendation

- For detailed analysis: Commercial CFD program (license costs are of the order of this project) not pre-competitive.
- We have reached, what can be done by a one person project.
- alternative pre-competitive approach: Open source CFD software: OpenFoam.