

Entwicklung eines Mehrkomponenten-Adsorptionsmodells für die Strömungssimulation in OpenFOAM[®]

Präsentation der Diplomarbeit Forschungsbereich Thermische Verfahrenstechnik und Simulation E166 Inst. f. Verfahrenstechnik, Umwelttechnik und Techn. Biowissenschaften Technische Universität Wien

Clemens Gößnitzer Matrikelnummer 1126267, Studienkennzahl 066 473 Wien, 30. März 2016

Ziele

- Thermodynamik der Adsorption
- Implementierung in Octave
- Ergebnisse der Adsorptionsmodelle
- Grundlagen von OpenFOAM
- Implementierung in OpenFOAM
- Ergebnisse der CFD-Simulation
- Zusammenfassung, Schlussfolgerungen und Ausblick

aufbauend auf adsorpFoam¹ soll ein numerischer Strömungslöser mit Mehrkomponenten-Adsorptionsmodellen entwickelt werden

- adaptierte Erhaltungsgleichungen, Randbedingungen, Einkomponentenadsorption und Berechnung der Adsorptionswärme und des Wärmeflusses schon implementiert
- Fokus auf in der Literatur schon vorhandene Modelle f
 ür Gleichgewicht und Kinetik
- Validierung der Implementierung mit Daten aus der Literatur

^I Haddadi, B., Jordan, C., und Harasek, M. (2015): Numerische Simulation des Konzentrations- und Strömungsprofiles in einem Festbettadsorber. Chemie Ingenieur Technik, 87(8):1040.

Adsorption: Nomenklatur

Nomenklatur der Adsorption.

Adsorption: Typen der Physisorption

Sechs Arten der Physisorption².

²Sing, K. S. (1985): Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and applied chemistry, 57(4):603–619.

Voraussetzungen:

- monomolekulare Adsorptionsschicht
- ► keine bevorzugte Adsorptionsstellen, homogene Oberfläche
- keine Poreneffekte (z.B. Kapillarkondensation)

Isotherme³:

zwei temperaturabhängige Anpassungsparameter
 C_m und *b*

$$egin{aligned} C(p) &= C_m rac{bp}{1+bp} \ b(T) &= b_0 \exp rac{T_0}{T} \ C_m(T) &= C_{m,0} + C_{m,1} \, T \end{aligned}$$

³Langmuir, I. (1918): The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9):1361–1403.

- ideal: nur Daten von Einzelgasisothermen notwendig
- Extended Langmuir Model ELM: Erweiterung der Einzelgasisotherme nach Langmuir
- Extended Langmuir Model mit Interaktionskoeffizienten ELMIAC: Einführung empirischer Interaktionskoeffizienten im Rahmen des ELM.
- Ideal Adsorbed Solution Theory IAST: Betrachtung der adsorbierten Phase als im Gleichgewicht stehend zur Gasphase, ähnlich wie im Flüssig-Dampf-Gleichgewicht

Voraussetzung für thermodynamische Konsistenz: alle $C_{m,i}$ gleich groß

Erweiterung der Einzelgasisotherme nach Langmuir⁴:

$$C_i(p) = C_{m,i} rac{b_i p y_i}{1 + \sum_{j=1}^N b_j p y_j}$$

Erweiterung mit empirischen Interaktionskoeffizienten⁵:

$$egin{aligned} C_i(oldsymbol{p}) &= C_{m,i}rac{\left(b_i/\eta_i
ight)oldsymbol{p} y_i}{1+\sum_{j=1}^N \left(b_j/\eta_j
ight)oldsymbol{p} y_j} \end{aligned}$$

⁴Do, D. D. (1998): Adsorption Analysis: Equilibria and Kinetics, Band 2. World Scientific.

⁵Schay, G. (1956): Theorie de l'adsorption physique des gaz du type Langmuir. Chim. Phys. Hungary, 53:691.

ähnlich wie bei Flüssig-Dampf-Gleichgewicht wird die adsorbierte Phase über Oberflächenpotentiale beschrieben

- ideales Verhalten aller Phasen vorausgesetzt
- basiert auf Einzelgasisothermen
- Einzelgasisotherme kann beliebiger Art sein
- ► System an Gleichungen, welches gelöst werden muss⁶:

$$\frac{\pi A}{RT} = \frac{\pi_i^0 A}{RT} = -\int_0^{p_i^0} \frac{n_i^0(\bar{p}_i^0)}{\bar{p}_i^0} d\bar{p}_i^0, \qquad py_i = p_i^0 x_i,$$
$$\sum_{i=1}^N \frac{x_i}{n_i(p_i^0)} = \frac{1}{n}, \qquad \sum_{i=1}^N x_i = 1.$$

⁶Myers, A. L. und Prausnitz, J. M. (1965): Thermodynamics of mixed-gas adsorption. AIChE Journal, 11(1):121–127.

Adsorption: Diffusionskinetik

Triebkraft der Adsorption ist Unterschied im chemischen Potential

- Kopplungsmatrix, benötigt Diffusionskoeffizienten von Mischungen⁷
- Adsorptionrate einer Komponente hängt vom Zustand aller Komponenten ab

$$\frac{\partial \boldsymbol{C}}{\partial t} = -\frac{\boldsymbol{\mathsf{D}}}{l} \cdot \frac{\partial \boldsymbol{C}}{\partial x},$$

mit

$$\mathbf{D} = \left\{ D_{ij} = D_{m,i} \frac{C_i}{\rho_i} \frac{\partial \rho_i}{\partial C_j} \right\}$$

⁷ Reid, R. C., Prausnitz, J. M., und Poling, B. E. (1987): The properties of gases and liquids. McGraw Hill Book Co., New York, vierte Auflage.

Octave: Matlab-ähnliche Programmiersprache für numerische Berechnungen

- Entwicklung der Lösungsalgorithmen
- Validierung der Implementierung in OpenFOAM
- ELM und ELMIAC einfach
- IAST und Diffusionskinetik aufwendig
- IAST: Iteration notwendig
- Diffusionskinetik: Berechnung von Diffusionskoeffizienten von Mischungen

Vergleich von sechs Mehrkomponentensystemen mit Daten aus Experimenten aus der Literatur⁸

- IAST (fast) immer besser als ELM
- ► CH₄-CO, CO-H₂: Vorhersagen von ELM und IAST akzeptabel
- CH₄-CO₂, CO₂-CO, CH₄-CO₂-H₂: Vorhersagen von IAST deutlich besser als ELM
- ► CH₄-CO-H₂: Vorhersagen von ELM und IAST nicht akzeptabel

⁸Ritter, J. A. und Yang, R. T. (1987): Equilibrium Adsorption of Multicomponent Gas Mixtures at Elevated Pressures. Industrial & Engineering Chemistry Research, 26(8):1679–1686.

TU

Gemessene und berechnete, adsorbierte Mengen für das System CO₂-CO.

Absoluter Fehler des Systems CO₂-CO.

Was ist OpenFOAM?

- Open Field Operation And Manipulation
- Sammlung von Open-Source-Programmen und -Bibliotheken, u.a. zur Lösung von CFD-Problemstellungen
- basierend auf dem Finite-Volumen-Verfahren

Warum OpenFOAM?

- Quelltext frei verfügbar, d.h. Erweiterungen möglich
- modular und objektorientiert, in C++ geschrieben
- verwendet im Forschungsbereich Thermische Verfahrenstechnik und Simulation

- Adaptierung der Erhaltungsgleichungen: partielle Massenbilanz neu geschrieben, alle anderen wurden von adsorpFoam übernommen
- zeitlicher Ablauf der Adsorptionsberechnungen:
 - am Anfang jeder Zeitschleife
 - Berechnung von Molenbrüchen und Adsorptionsparameter
 - Berechnung des Gleichgewichts
 - Berechnung der Adsorptionsrate
 - Überprüfung, ob Limiter angewendet werden müssen
 - Berechnung der freigesetzten Adsorptionswärme und des Wärmeflusses
 - danach: Lösen von adaptierten Erhaltungsgleichungen, usw.
- Randbedingungen von adsorpFoam übernommen

Einschränkungen:

- Wärmeleitung im Festkörper nicht berücksichtigt
- ► reine Oberflächenadsorption, Oberfläche ideal glatt
- zu großer Zeitschritt kann zu unphysikalischen Ergebnissen führen, Limiter

Möglichkeiten:

- Adsorption von mehreren Komponenten möglich
- Adsorption an mehreren Randflächen möglich
- Spezifizierung der Parameter pro adsorbierender Randfläche möglich

Simulation eines Festbettadsorbers:

- ▶ Gitter mit 1.3 × 10⁶ Zellen, zur Verfügung gestellt
- \blacktriangleright Durchmesser 3.2 cm, Höhe 13 cm, Adsorptionsfläche $6.32\times 10^{-2}\,m^2$
- Anfangsbedingungen: stationäre Lösung für Geschwindigkeit und Druck, nur H₂ (nicht adsorbierend) im Adsorber
- Randbegingungen: 300 K Temperatur am Einlass, 1 bar Druck am Auslass, Haftbedingung
- ► Einlass: vier Komponenten, H_2 (w = 0.1/y = 0.58), CH₄ (0.3/0.22), CO₂ (0.3/0.08) und CO (0.3/0.12), Geschwindigkeit 0.1 m s⁻¹
- ELM mit Diffusionskinetik

OpenFOAM: Simulationsergebnisse

(a) Geometrie, stationäres (b) Druck- und (c) Geschwindigkeitsfeld.

Einzelgasisothermen für CH₄, CO₂ und CO nach Langmuir bei 300 K.

Massenbruch von CO₂ in der Gasphase für unterschiedliche Simulationszeiten.

Massenbruch von CH₄ in der Gasphase für unterschiedliche Simulationszeiten.

Massenbruch von CO in der Gasphase für unterschiedliche Simulationszeiten.

Verteilung der adsorbierten Menge an CO₂ für unterschiedliche Simulationszeiten.

Verteilung der adsorbierten Menge an CH4 für unterschiedliche Simulationszeiten.

Verteilung der adsorbierten Menge an CO für unterschiedliche Simulationszeiten.

Temperaturverteilung im Festbett für unterschiedliche Simulationszeiten.

- Adsorption von mehreren Komponenten in OpenFOAM möglich
- Adsorption an unterschiedlichen Flächen möglich
- drei Gleichgewichtsmodelle verfügbar (ELM, ELMIAC, IAST)
- zwei Kinetikmodelle verfügbar (LDF, Diffusionskinetik)

- ► Verbesserungen: zusätzliche Modelle, Modularisierung, Zeitschritt
- Aufsetzen der Simulation: zuerst stationäre Lösung, danach Adsorption
- Anwendung: Simulation von Adsorbern mit experimenteller Überprüfung der Ergebnisse, Entfernung von Schadstoffen, Trennung von Gasgemischen

Danke für Ihre Aufmerksamkeit!

Zusätzliche Folien

auch Computational Fluid Dynamics CFD genannt

- Pre-Processing: Gittererstellung, Anfangs- und Randbedingungen
- eigentliche Simulation: Diskretisierung, Interpolation, numerische Lösung der Erhaltungsgleichungen
- Post-Processing: Auswertung der Daten
- meist auf dem Finite-Volumen-Verfahren basierend

Massenerhaltung:

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \nabla \cdot (\boldsymbol{\rho} \boldsymbol{u}) = \boldsymbol{0}.$$

Impulserhaltung:

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla \rho + \mu \nabla^2 \boldsymbol{u} + \left(\zeta + \frac{\mu}{3}\right) \nabla \left(\nabla \cdot \boldsymbol{u}\right) + \rho \boldsymbol{f}$$

Energieerhaltung:

$$\frac{\partial}{\partial t} \left[\rho \left(\frac{\boldsymbol{u}^2}{2} + \boldsymbol{e} + \boldsymbol{g} \boldsymbol{z} \right) \right] + \nabla \cdot \left[\rho \boldsymbol{u} \left(\frac{\boldsymbol{u}^2}{2} + \boldsymbol{h} + \boldsymbol{g} \boldsymbol{z} \right) \right] = \rho \dot{\boldsymbol{q}}$$

Zustandsgleichung:

$$p =
ho RT$$

OpenFOAM: Validierung

Validierung der Implementierung in OpenFOAM mithilfe einer Drei-Zellen-Geometrie

OpenFOAM: Verlauf der adsorbierten Masse

Adsorbierte Masse pro Komponenten in der Packung