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Abstract

In this thesis, the expansion of cylindrical shock waves produced by instantaneous

release of energy per unit length along a line is investigated, as it can occur due to

a line explosion or a spark discharge. First, the conditions of a strong shock wave

are presumed, i.e. the pressure of the surrounding is – compared to the pressure

behind the shock – very low and thus can be neglected. Afterwards the equations

are expanded to consider and calculate the impact of the counter-pressure. Since

those equations are complex, they are simplified by asymptotic expansion for small

times and only the leading and first order terms are considered. The numerical

implementation of this problem is described, and all obtained results are ploted and

discussed, and conclusions are given.
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Nomenclature

Superscripts
� dimensional

�
partial derivate with respect to η

· partial derivate with respect to τ

h homogeneous part of the differential equation system

p particular part of the differential equation system

(m) discretisation step with respect to τ

(n) discretisation step with respect to η

Subscripts

0 order O(τ 0)

1 order O(τ 1)

s immediately behind the shock wave

u undisturbed surrounding

Symbols

∆η step size

η radius scaling function

γ ratio of specific heats

φ velocity scaling function
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Nomenclature

Π non-dimensional product to determine characteristic values

ψ density scaling function

ρ̃ density

τ time scaling function

Ã parameter dependent on τ ; constant

ã speed of sound

c̃v specifit heat capacity at constant volume

ẽ internal energy

Ẽc characteristic energy per unit length

Ẽcyl energy per unit length inside the cylinder

Ẽtot total energy per unit length in the system

Ẽu energy per unit length as pressure-volume work

f pressure scaling function

l̃c characteristic length

M̃ molecular weight of air

m̃ mass per unit length

Ma Mach number

P̃ perimeter of the shock wave cylinder

p̃ pressure

R̃ radius of shock wave

r̃ radius

R̃a common gas constant for air

R̃u universal gas constant
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Nomenclature

T̃ temperature

t̃ time

t̃c characteristic time

T̃ref reference temperature to define the internal energy

Ũ speed of shock wave

ũ velocity
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1 Introduction

The instantaneous release of energy along a straight line is investiaged as it happens

in the first stage of an explosion or in spark discharge. Afterwards the expansion

of the resulting shock wave is described and calculated. Figure 1.1 shows the shock

wave cylinder for two different times.

Ẽi

Ẽi

t̃0 = 0

Ũ

p̃, ũ, ρ̃

Ũ

shock wave

p̃s, ρ̃s p̃u, ρ̃u

p̃, ũ, ρ̃

p̃u, ρ̃u

R̃

r̃

t̃1 > 0

Figure 1.1: Model of the cylindrical shock wave.

The results of this thesis will be embedded and used in a research project [3] [4],

where the ignition in gas engines will be modeled. The aim of this thesis is to provide

a profile of pressure, density and velocity at a certain time.

Lin [10] extended G.I. Talylor’s analysis [2] of strong spherical explosions to strong

cylindrical shock waves, presented a set of ordinary differential equations for a sim-

ilarity solution and solved it nummerically. Here, we follow the scaling of [10] and

consider the case of a non-vanishing counter-pressure.

Plooster [7] investigated this problem, too. The main difference between his ap-
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1 Introduction

proach and the one used in this thesis is Plooster’s definition of the fluid: he does

not consider it as an ideal gas and uses an equation of state called Saha ionization

equation which considers the dissociation and ionization of the fluid. Furthermore, he

does not scale time and radius, respectively. Therefore, no similarity solution exists

and the results are purely numerical.

Ö. Ekici et al. [8] present a model for fast spark discharge with focus on the spark

discharge mechanism. However, we will focus on the fluid mechanical aspects.

In chapter 2,the governing equations will be introduced. In section 2.1, the problem

will be simplified in order to get a preliminary solution. Section 2.2 will provide us

with a more general approach to solving this problem. First, a system of partial

differential equations will be solved, and with the expansion made in section 2.2.1,

said system will become a system of ordinary differential equations. The boundary

conditions described in section 2.2.2 are set by jump conditions for pressure, density

and velocity. Some parameters we introduce can be calculated with an energy balance,

as described in section 2.2.3.

In chapter 3, the numerical implementation of the equations previously obtained

will be presented. The impact of the number of steps used for calculations and its

effect on the precision of the results is investigated.

In chapter 4, a numerical solution with chosen parameters will be showed. In

section 4.1, the limitations of the solutions will be discussed. Any numerical solution

needs to correspond with the general laws of physics, these restrictions then limit

the possible range of certain parameters. In section 4.2, the numerical solutions are

presented and plotted.

In chapter 5, the solution obtained is discussed and some conclusions are given.
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2 Physical model

In order to solve the problem presented in chapter 1, the following will be as-

sumed [10]:

• constant specific heat capacities,

• friction and heat conduction and radiation are neglected.

• The problem given is considered to be cylindrically symmetrical.

The fundamental equations for solving the given problem are the Euler equation of

momentum and the equation of continuity. With time t̃, radius r̃, pressure p̃, velocity

ũ and density ρ̃, it reads:

∂ũ

∂ t̃
+ ũ

∂ũ

∂r̃
= −

1

ρ̃

∂p̃

∂r̃
, (2.1)

∂ρ̃

∂ t̃
+ ũ

∂ρ̃

∂r̃
+ ρ̃

�
∂ũ

∂r̃
+

ũ

r̃

�
= 0. (2.2)

The total derivate (derivate in frame of reference of fluid particle) of the entropy s̃

is constant as long as the particle is not hit by a shock [9], where γ is the ratio of

specific heats:

�
∂

∂ t̃
+ ũ

∂

∂r̃

��
p̃

ρ̃γ

�
= 0. (2.3)

Furthermore, the shock front is located at r̃ = R̃. Therefore, the solutions to equa-

tions (2.1) to (2.3) must fulfill the jump conditions over the shock wave which follow

from [5] and [10]. With the speed of the shock Ũ , and the entities before and after

the shock – subscript u and s, respectively – the following equations are obtained:
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2 Physical model

p̃s
p̃u

=
2 γ

γ + 1
Ma2 −

γ − 1

γ + 1
, (2.4)

ρ̃s
ρ̃u

=
γ + 1

γ − 1 + 2Ma−2 , (2.5)

ũs

Ũ
=

2

γ + 1

�
1−Ma−2

�
, (2.6)

Ũ =
dR̃

dt̃
, (2.7)

with the speed of sound ã and the Mach number Ma

ã =

�
γ p̃u
ρ̃u

, (2.8)

Ma =
Ũ

ã
. (2.9)

For the formulation of the energy balance, a system whose boundaries are just outside

of the shock wave is chosen. At this boundary, the gas is still at rest and thus, the

increase of energy per unity time of the control volume is equal to the internal energy

of the mass which is passed over with the shock wave moving boundary, see figure 2.1.

t̃
t̃+ dt̃

dẼcyl = ρ̃u Ũ P̃ ẽu dt̃

R̃

R̃ + dR̃

Ẽcyl

T̃ , ρ̃, ẽ, ũ T̃u, ρ̃u, ẽu

shock wave

system boundary

Ũ = dR̃/dt̃

Figure 2.1: System boundary and energy per unit length transfer into the system.

dẼtot = ρ̃u Ũ P̃ ẽu dt̃, (2.10)

4



2.1 Solution for strong shock waves

with the perimeter of the chosen system P̃ , specific heat at constant volume c̃v and

the definition of internal energy per unit length ẽ

ẽ(T̃ ) = c̃v (T̃ − T̃ref ), (2.11)

and thus

dẼtot

dt̃
= ρ̃u Ũ P̃ c̃v

�
T̃u − T̃ref

�
. (2.12)

The energy per unit length in the system Ẽcyl consists of the internal energy per unit

length and the kinetic energy per unit length in the system. By integrating over the

area of the cross section of the shock wave cylinder, Ẽcyl conforms with:

Ẽcyl =

�

Ã

�
ρ̃ ẽ+

1

2
ρ̃ ũ2

�
dÃ =

�

Ã

�
ρ̃ c̃v (T̃ − T̃ref ) +

1

2
ρ̃ ũ2

�
dÃ. (2.13)

By setting the reference temperature of internal energy T̃ref to T̃u, the energy per

unit length in the system remains constant, see equation (2.12). Therfore, the total

energy per unit length Ẽtot can be defined:

Ẽtot = 2 π

� R̃

0

ρ̃

�
c̃v
�
T̃ − T̃u

�
+

1

2
ũ2

�
r̃ dr̃, (2.14)

or, using the ideal gas equation (see also [1]):

Ẽtot = 2 π

� R̃

0

�
p̃− p̃u
γ − 1

+
1

2
ρ̃ ũ2

�
r̃ dr̃. (2.15)

2.1 Solution for strong shock waves

First, it is assumed that the pressure in front of the shock wave has no influence on

the shock or the fluid behind it, i.e. the pressure after the shock wave is significantly

higher than the pressure before, p̃s � p̃u, or, in other words, the Mach number is
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2 Physical model

high, Ma � 1. Because of lack of a reference length and time, it is possible to

introduce a similarity varible η and the partial differential equations (2.1) to (2.3)

become ordinary differential equations. By scaling pressure, density and velocity the

solutions obtained are non-dimensional. First, partially dimensional scaling functions

are introduced. Later, another set of completely non-dimensional scaling functions is

used. Introducing the dimensional scaling functions for pressure f̃ and velocity φ̃, the

non-dimensional scaling function for density ψ̃, and the similarity variables η which

scales radius r̃ and τ which scales time t̃ [10]:

p̃(r̃, t̃) =
p̃u

R̃2(τ)
f̃(η), (2.16)

ũ(r̃, t̃) =
1

R̃(τ)
φ̃(η), (2.17)

ρ̃(r̃, t̃) = ρ̃u ψ(η), (2.18)

r̃ = R̃(τ) η(r̃, t̃), (2.19)

t̃ = t̃c τ(t̃). (2.20)

Reference time t̃c and reference length l̃c are introduced here and will be defined in

section 2.2 when the counter-pressure is reintroduced into the problem. Inserting the

scaling functions into equations (2.1) to (2.3), following equations are obtained after

rearranging terms and putting the equations in standard variable separated form:

R̃ ˙̃R

t̃c
=

�
φ̃ φ̃� +

p̃u
ρ̃u

f̃ �

ψ

��
φ̃+ η φ̃�

�−1
, (2.21)

R̃ ˙̃R

t̃c
=

φ̃

η
+

�
φ̃� +

φ̃

η

�
ψ

η ψ� , (2.22)

R̃ ˙̃R

t̃c
=

�
γ f̃ φ̃

ψ�

ψ
− φ̃ f̃ �

��
γ η f̃

ψ�

ψ
− η f̃ �

− 2 f̃

�−1

. (2.23)

Given that the left part of equations (2.21) to (2.23) is only dependent on time,

whereas the right part is only a funtion of η, both parts must be constant. The

resulting constant is being called Ã:
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2.1 Solution for strong shock waves

Ã : =
R̃ ˙̃R

t̃c
. (2.24)

The time independent constant Ã has the dimension of a velocity multiplied by a

length. With this definition, it is possible to introduce a set of completely non-

dimensional scaling functions [10]:

f̃(η) =
Ã2

ã2
f(η), (2.25)

φ̃(η) = Ãφ(η). (2.26)

With these new functions, equations (2.21) to (2.23) become, after sorting the indi-

vidual terms with respect to the derivate:

γ−1 f �
− (η − φ)ψ φ� = φψ, (2.27)

−ψ φ� + (η − φ)ψ� = φψ η−1, (2.28)

−(η − φ)ψ f � + γ (η − φ) f ψ� = 2 f ψ. (2.29)

In order to describe the problem more clearly, the system of ordinary differential

equations is written in matrix-vector form:

Lx� = n (2.30)

with

L =




γ−1 −(η − φ)ψ 0

0 −ψ η − φ

−(η − φ)ψ 0 γ f (η − φ)



 ,

x =
�
f(η) φ(η) ψ(η)

��
,

n =
�
φψ φψ η−1 2 f ψ

��
.
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2 Physical model

This system of ordinary differential equations can be solved subjected to the boundary

conditions given by equations (2.4) to (2.6). Inserting the scaling functions into the

boundary conditions, it reads as follows:

f(1) =
2 γ

γ + 1
−

γ − 1

γ + 1
Ma−2, (2.31)

φ(1) =
2

γ + 1
−

2

γ + 1
Ma−2, (2.32)

ψ(1) =
γ + 1

γ − 1
−

2 (γ + 1)

(γ − 1)2
Ma−2. (2.33)

For the similarity solution a very high Mach number is assumed, Ma � 1. Therefore,

the boundary conditions simplify to:

f(1) ∼
2 γ

γ + 1
, (2.34)

φ(1) ∼
2

γ + 1
, (2.35)

ψ(1) ∼
γ + 1

γ − 1
(2.36)

The imparted energy per unit length must remain constant in the system, therefore

Ã can be calculated by inserting the scaling functions into equation (2.15), with the

assumption that p̃s � p̃u:

Ẽtot = 2 π ρ̃u Ã
2

� 1

0

�
f

γ (γ − 1)
+

φ2ψ

2

�
η dη. (2.37)

2.2 Extension to shock waves with counter-pressure

For this extension, the counter-pressure in front of the shock wave is not neglected

any longer. Therefore, the scaling functions (2.16) to (2.18) change and are now

explicitly time, i.e. τ , dependent as follows:

p̃(r̃, t̃) =
p̃u

R̃2(τ)
f̃(η, τ), (2.38)
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2.2 Extension to shock waves with counter-pressure

ũ(r̃, t̃) =
1

R̃(τ)
φ̃(η, τ), (2.39)

ρ̃(r̃, t̃) = ρ̃u ψ(η, τ). (2.40)

Because of the time dependence in the scaling functions f̃ , φ̃ and ψ, there are addi-

tional terms in equations (2.21) to (2.23):

R̃ ˙̃R

t̃c
=

�
φ̃ φ̃� +

p̃u
ρ̃u

f̃ �

ψ
+

R̃2

tc

˙̃φ

��
φ̃+ η φ̃�

�−1
, (2.41)

R̃ ˙̃R

t̃c
=

φ̃

η
+

�
φ̃� +

φ̃

η

�
ψ

η ψ� +
R̃2

η tc

ψ̇

ψ� , (2.42)

R̃ ˙̃R

t̃c
=

�
γ f̃ φ̃

ψ�

ψ
− φ̃ f̃ � +

R̃2

tc

�
γ f ψ̇

ψ
−

˙̃f

���
γ η f̃

ψ�

ψ
− η f̃ �

− 2 f̃

�−1

. (2.43)

The left part of equations (2.41) to (2.43) is only dependent on time, whereas the

right part is merely a function of η and τ . Thus, parameter Ã can only depend on τ :

Ã(τ) : =
R̃(τ) ˙̃R(τ)

t̃c
. (2.44)

With this definition, the completely non-dimensional scaling functions conform with:

f̃(η, τ) =
Ã2(τ)

ã2
f(η, τ), (2.45)

φ̃(η, τ) = Ã(τ)φ(η, τ), (2.46)

Ã(τ) =
l̃2c
t̃c
A(τ), (2.47)

R̃(τ) = l̃c R(τ). (2.48)

Inserting the scaling functions into equations (2.41) to (2.43) and ordering terms with

respect to the derivates, it follows:

γ−1 f �
− (η − φ)ψ φ� = φψ −

R2

A
ψ φ̇−

R2

A2
ψ φ Ȧ, (2.49)

9



2 Physical model

−ψ φ� + (η − φ)ψ� = φψ η−1 +
R2

A
ψ̇, (2.50)

−(η − φ)ψ f � + γ f(η − φ)ψ� = 2 f ψ +
R2

A

�
γ f ψ̇ − ψ ḟ

�
− 2

R2

A2
f ψ Ȧ. (2.51)

Putting this system of differential equations in matrix form, it reads as follows:

Lx� = n+
R2

A
K̂ ẋ+

R2

A2
m̂ Ȧ, (2.52)

with

L =




γ−1 −(η − φ)ψ 0

0 −ψ η − φ

−(η − φ)ψ 0 γ f (η − φ)



 ,

x =
�
f(η, τ) ψ(η, τ) ψ(η, τ)

��
,

n =
�
φψ φψ η−1 2 f ψ

��
,

K̂ =




0 −ψ 0

0 0 1

−ψ 0 γ f



 ,

m̂ =
�
−φψ 0 −2 f ψ

��
.

2.2.1 Expansion with respect to small τ

Now all functions and variables are expanded with respect to τ . Entities of oder

O(τ 0) have subscript 0, entities of order O(τ 1) have subsrcipt 1:

f(η, τ) ∼ f0(η) + τ f1(η), (2.53)

φ(η, τ) ∼ φ0(η) + τ φ1(η), (2.54)

ψ(η, τ) ∼ ψ0(η) + τ ψ1(η), (2.55)

R(τ) ∼
√
τ (R0 + τ R1) , (2.56)

A(τ) ∼ A0 + τ A1. (2.57)
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2.2 Extension to shock waves with counter-pressure

Now two different systems of equations have to be solved: one with order O(τ 0), and

another one with order O(τ 1). Expanding equation (2.52) with respect to the order

of τ will become for the order O(τ 0):

L0 x
�
0 = n0, (2.58)

with

L0 =




γ−1 −(η − φ0)ψ0 0

0 −ψ0 η − φ0

−(η − φ0)ψ0 0 γ f0 (η − φ0)



 ,

n0 =
�
φ0 ψ0 φ0 ψ0 η−1 2 f0 ψ0

��
,

which equals the system described in section 2.1, and for the order O(τ 1):

L0 x
�
1 = −L1 x

�
0 + n1 +

R2
0

A0
K̂0 x1 +

R2
0

A2
0

m̂0 A1, (2.59)

with

R2
0 = 2A0, (2.60)

and, thus

L0 x
�
1 = −L1 x

�
0 + n1 +K0 x1 +m0 A1, (2.61)

with

L1 =




0 φ1 ψ0 − (η − φ0)ψ1 0

0 −ψ1 −φ1

φ1 ψ0 − (η − φ0)ψ1 0 γ (f1 (η − φ0)− f0 φ1)



 ,
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2 Physical model

n1 =
�
φ1 ψ0 + φ0 ψ1 (φ1 ψ0 + φ0 ψ1) η−1 2 (f1 ψ0 + f0 ψ1)

��
,

K0 =




0 −2ψ0 0

0 0 2

−2ψ0 0 2 γ f0



 ,

m0 =
�
−2φ0 ψ0 A

−1
0 0 −4 f0 ψ0 A

−1
0

��
.

In order to simplify the structure of this equation system, x1 is singled out:

L0 x
�
1 = −L1 x

�
0 + n1 +K0 x1 +m0 A1, (2.62)

L̂0 x1 : = −L1 x
�
0, (2.63)

N0 x1 : = n1, (2.64)

L0 x
�
1 =

�
L̂0 +N0 +K0

�
x1 +m0 A1, (2.65)

P0 : = L̂0 +N0 +K0, (2.66)

with

L̂0 =




0 −φ�

0 ψ0 (η − φ0)φ�
0

0 ψ�
0 φ�

0

−γ (η − φ0)ψ�
0 γ f0 ψ�

0 − f �
0 ψ0 (η − φ0) f �

0



 ,

N0 =




0 ψ0 φ0

0 ψ0 η−1 φ0 η−1

2ψ0 0 2 f0



 .

Now the equation system in matrix form is more structured:

L0 x
�
1 = P0 x1 +m0 A1, (2.67)

with

12



2.2 Extension to shock waves with counter-pressure

P0 =




0 −ψ0 − φ�

0 ψ0 (η − φ0)φ�
0 + φ0

0 ψ0 η−1 + ψ�
0 φ0 η−1 + φ�

0 + 2

−γ (η − φ0)ψ�
0 γ f0 ψ�

0 − f �
0 ψ0 (η − φ0) f �

0 + 2 f0 (1 + γ)



 .

2.2.2 Boundary conditions

The boundary conditions dependent on the Mach number Ma were given by equa-

tions (2.31) to (2.33). In order to be able to expand those equations, a correlcation

of Ma−2
is necessary. The lowest order of Ma−2

is O(τ 1):

Ma−2 =

�
ã

dR̃/dt̃

�2

, (2.68)

dR̃

dt̃
=

dR

dτ

l̃c
t̃c
, (2.69)

Ma−2
∼

4 ã2 t̃2c
R2

0 l̃
2
c

τ. (2.70)

Therefore, the boundary conditions conform with:

f(1, τ) ∼ f0(1) + τ f1(1), (2.71)

φ(1, τ) ∼ φ0(1) + τ φ1(1), (2.72)

ψ(1, τ) ∼ ψ0(1) + τ ψ1(1), (2.73)

for the order O(τ 0):

f0(1) =
2 γ

γ + 1
, (2.74)

φ0(1) =
2

γ + 1
, (2.75)

ψ0(1) =
γ + 1

γ − 1
, (2.76)

and for the order O(τ 1):
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2 Physical model

f1(1) = −
γ − 1

γ + 1

4 ã2 t̃2c
R2

0 l̃
2
c

, (2.77)

φ1(1) = −
2

γ + 1

4 ã2 t̃2c
R2

0 l̃
2
c

, (2.78)

ψ1(1) = −
2(γ + 1)

(γ − 1)2
4 ã2 t2c
R2

0 l̃
2
c

. (2.79)

Setting ã t̃c/l̃c = 1 (see also section 2.2.3), the boundary conditions in new scaling for

η = 1 read as follows:

f1(1) = −
2 (γ − 1)

γ + 1
A−1

0 , (2.80)

φ1(1) = −
4

γ + 1
A−1

0 , (2.81)

ψ1(1) = −
4 (γ + 1)

(γ − 1)2
A−1

0 . (2.82)

2.2.3 Energy balance

The energy per unit length inside the shock wave cylinder consists of internal energy

per unit length and kinetic energy per unit length. By integrating over the area, Ẽcyl

equals:

Ẽcyl = 2 π

� R̃

0

�
p̃

γ − 1
+

1

2
ρ̃ ũ2

�
r̃ dr̃. (2.83)

Since the counter-pressure in front of the shock wave is not neglected anymore, a

definition of an energy per unit length Ẽu that reflects the counter-pressure can be

defined as:

Ẽu = −2 π

� R̃

0

p̃u
γ − 1

r̃ dr̃. (2.84)

The total energy per unit length Ẽtot in the system is composed of the energy per

unit length in the cylinder Ẽcyl, and the energy per unit length Ẽu. As it was

14



2.2 Extension to shock waves with counter-pressure

already showed in equations (2.11) to (2.15), the total energy per unit length remains

constant:

Ẽtot = Ẽcyl + Ẽu = const. (2.85)

Using the scaling functions, Ẽcyl, Ẽu and Ẽtot can be written as:

Ẽcyl = 2 π
ρ̃u l̃4c
t̃2c

A2

� 1

0

I η dη, (2.86)

Ẽu = −π p̃u l̃
2
c R

2, (2.87)

Ẽtot = π
ρ̃u l̃4c
t̃2c

�
2A2

� 1

0

I η dη −
ã2 t̃2c
l̃2c

R2

�
, (2.88)

with

I =
f

γ (γ − 1)
+

φ2 ψ

2
.

Scaling Ẽtot, Ẽcyl and Ẽu with a characteristic energy per unit length Ẽc, it reads:

Ẽtot = Ẽc Etot, (2.89)

Ẽcyl = Ẽc Ecyl, (2.90)

Ẽu = Ẽc Eu. (2.91)

Looking at equations (2.88) and (2.90), three non-dimensional products can be found

to determine the characteristic quantities:

Π1 =
Ẽtot

Ẽc

(2.92)

Π2 =
ã t̃c

l̃c
(2.93)

Π3 =
ρ̃u l̃4c
Ẽtot t̃2c

. (2.94)
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2 Physical model

Setting Π1 = Π2 = Π3 = 1 without loss of generality, it reads:

Ẽc = Ẽtot, (2.95)

t̃c =

�
Ẽtot

ρ̃u
ã−2, (2.96)

l̃c =

�
Ẽtot

ρ̃u
ã−1. (2.97)

By expanding the total, i.e. initial, energy per unit length Etot and the energy per

unit length inside the shock wave cylinder Ẽcyl, the energies per unit length conform

with:

Etot ∼ Etot,0 + τ Etot,1, (2.98)

Ecyl ∼ Ecyl,0 + τ Ecyl,1. (2.99)

The energy per unit length Eu scales with R2
, therefore it is of the order O(τ 1) and

higher, and only the first order will be considered:

Eu ∼ τ Eu,1. (2.100)

Therefore, and with the scaling for the energy per unit length, the leading oder terms

are:

Etot,0 = Ecyl,0 = 1, (2.101)

Etot,0 = 2 πA2
0

� 1

0

I0 η dη, (2.102)

with

I0 =
f0

γ (γ − 1)
+

φ2
0 ψ0

2
.
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2.2 Extension to shock waves with counter-pressure

The total energy per unit length remains constant. Thus, the first order terms of Ecyl

and Eu, i.e. Etot,1, must equal zero:

Etot,1 = Ecyl,1 + Eu,1 = 0, (2.103)

Etot,1 = 2 πA2
0

� 1

0

I1 η dη + 4 πA0 A1

� 1

0

I0 η dη −
π

γ(γ − 1)
R2

0, (2.104)

with

I1 =
f0

γ (γ − 1)
+ φ0 φ1 ψ0 +

φ2
0 ψ1

2
.

Now A0 can be expressed using equation (2.102):

A0 =
1�

2 π
� 1

0 I0 η dη
. (2.105)

The value of A1 has to be know in oder to be able to calculate the correct value of

I1:

A1 =
π

2 γ (γ − 1)
A0 R

2
0 − πA3

0

� 1

0

I1 η dη. (2.106)

As the system of equations is linear in the order O(τ 1) terms, two values for A1

can be set at will and solve those two problems individually. If A1 = 0, the problem

is linear and homogeneous, therefore this solution will have the index h, whereas the

particular solution will have the index p. Ah
1 = 0 and Ap

1 = 1 will be chosen. When

the solution to both problems is known, the real value of A1 can be calculated by

superposing the two solutions. The superposed solution must also fulfill the boundary

conditions. Therefore, the boundary condition for the homogeneous solution are

chosen according to equations (2.80) to (2.82), and for the particular solution the

boundary conditions are set zero, xp
1(1) = 0. Now A1 can be calculated using the

physical condition, that the velocity must be zero ũ = 0 at η = 0. That means that

there is no source of mass at the center of the shock wave cylinder, i.e. the energy

per unit length balance can be satisfied. Equations (2.39) and (2.46) show that this
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2 Physical model

means that φ1(0) = 0. A1 will be chosen accordingly:

x1 = xh
1 + A1 x

p
1, (2.107)

φ1 = φh
1 + A1 φ

p
1, (2.108)

A1 = −
φh
1(0)

φp
1(0)

. (2.109)

18



3 Numerical implementation

The numerical method used to solve the system of ordinary differential equations

presented before is the explicit Euler method. The BLAS functions were provided

by the GNU Scientific Library. The first system, i.e. equation (2.58), is non-linear,

the second one, i.e. equation (2.67), is linear. First, the system of the order O(τ 0)

problem is solved by starting at η = 1 and integrating to η = 0, then A0 is calculated

using equation (2.105). The integral in this equation is solved by the GNU Scientific

Library provided function using the QAG adaptive integrating algorithm with the 61

point Gauß-Kronrod rules [6]. Then the solution to the second system is obtained

with two chosen values for A1 (Ah
1 = 0 and Ap

1 = 1) as described in section 2.2

starting again at η = 1 integrating to η = 0. After getting those solutions, the exact

value of A1 is calculated according to equation (2.109). The two systems of ordinary

differential equations are as follows:

L0 x
�
0 = n0, (3.1)

L0 x
�
1 = P0 x1 +m0 A1. (3.2)

These equations are discretised:

L(n)
0

x(n)
0 − x(n−1)

0

∆η
= n(n)

0 , (3.3)

L(n)
0

x(n)
1 − x(n−1)

1

∆η
= P (n)

0 x(n)
1 +m(n)

0 A1. (3.4)

The only unknowns in these equations are x(n−1)
0 and x(n−1)

1 , respectively:

x(n−1)
0 = x(n)

0 −L(n)
0

−1
n(n)

0 ∆η, (3.5)
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3 Numerical implementation

x(n−1)
1 = x(n)

1 −L(n)
0

−1
�
P (n)

0 x(n)
1 +m(n)

0 A1

�
∆η. (3.6)

Figure 3.1 shows how the systems of differential equations were solved. Noteworthy

is that the integrating was done starting at η = 1 to η = 0.

x

η
0 η(n)η(n−1)

x(n−1) ≈ x(n) − x(n)� ∆η

∆η

x(n)

x(n−1)

∆x

Figure 3.1: Explicit Euler method for integrating.

The number of steps, i.e. the size of ∆η, may not have an influence on the results.

Therefore, comparing two numerical solutions with different numbers of steps will

show if there is a difference between those solutions. If this difference is very small

or inexistent, the number of calucation steps is high enough. Figure 3.2 shows that

the numerical calculation does not change noticeably choosing ∆η1 = 1× 10−4
, i.e.

n1 = 1× 104, or ∆η2 = 5× 10−6
, i.e. n2 = 2× 105.
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0.4
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(a) ∆η1 = 1× 10−4, n1 = 1× 104
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η
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(b) ∆η2 = 5× 10−6, n2 = 2× 105

Figure 3.2: Comparison of f0 for two different step sizes.
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4 Numerical solutions

4.1 Limitations

The approach to solve this problem is only valid when τ � 1. The three scaling

functions have to fulfill the following physical conditions:

• The pressure p at η = 1 must be higher than the pressure of the undisturbed

surrounding pu.

• The density ρ at η = 1 must be higher than the density of the undisturbed

surrounding ρu

• Looking at figures 4.2 and 4.8, it is possible to find a τmax,φ so that the velocity

inside the cylinder is zero. This would mean that the shock wave has become

too weak to be described correctly by the equations obtained.

Therefore, three conditions are set for τmax. The first condition assumes that

the pressure directly behind the shock wave may not be below the pressure of the

undisturbed surrounding:

p̃(r̃, t̃)

p̃u
=

A2

R2
f(η(r̃, t̃), τ(t̃)), (4.1)

p̃(R̃, τmax,f ) = p̃u, (4.2)

f(1, τmax,f ) =
R2(τmax,f )

A2(τmax,f )
. (4.3)

The second condition is that the density immediately behind the shock wave may

not fall below the density in the undisturbed surrounding:
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4 Numerical solutions

ρ̃(r̃, t̃)

ρ̃u
= ψ(η(r̃, t̃), τ(t̃)), (4.4)

ρ̃(R̃, τmax,ψ) = ρ̃u, (4.5)

ψ(1, τmax,ψ) = 1. (4.6)

The third condition for τmax says that the velocity inside the shock wave cylinder

may not be less than zero. If the velocity is zero, that means that the shock wave

has decayed completely, and we cannot fulfil the shock wave equations anymore.

Therefore, the assumptions made in chapter 2 are not valid any longer.

4.2 Results

The following parameters were used for the results presented in this section:

• T̃u = 300K,

• p̃u = 1× 105 Pa,

• γ = 1.4,

• Ẽi = 5× 10−2
Jm

−1
,

• R̃u = 8.314 JK
−1

mol
−1

,

• M̃ = 2.897 kg mol
−1

,

• n = 2× 106.

Using these parameters for the numerical calculations, the calculated parameters

conform with:

• A0 = 0.504,

• A1 = 1.983,

• lc = 5.976× 10−4
m,

• R0 = 1.004,

• R1 = 0.988,

• tc = 1.721× 10−6
s,

• τmax,f = 0.853,

• τmax,φ = 0.182,

• τmax,ψ = 0.042.
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4.2 Results
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4 Numerical solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

η

f 0

Figure 4.1: Solution of f0.
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Figure 4.2: Solution of φ0.
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Figure 4.3: Solution of ψ0.
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Figure 4.4: Homogeneous (a) and particular (b) solution of f1.
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Figure 4.5: Homogeneous (a) and particular (b) solution of φ1.
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Figure 4.6: Homogeneous (a) and particular (b) solution of ψ1.
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Figure 4.7: Solution of f1.
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Figure 4.8: Solution of φ1.
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Figure 4.9: Solution of ψ1.
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5 Conclusions

The simplifications made in chapter 2.2.1 were necessary because it was not possible

to solve the system of partial differential equations numerically directly. The problems

occuring were primarily the following: when η approaches zero, the results for φ were

physically impossible.

Although there are two different equations to calculate the value of A1, imple-

menting those two equations numerically will give the same result. This shows that

the energy per unit length balance and the physical assumption that the velocity at

η = 0, respectively, are valid and interchangeable

The rather small values of τmax indicate, that terms of higher order than O(τ 1)

become significant quite soon. Therefore,they have to be considered in calcualtions

after a rather short period of time.

However, the solution procedure outlined before may be extended and used in a

simple numerical scheme integrating with respect to time: By setting a solution for

a very small value of ∆τ � τmax as the new order O(τ 0) solution, τ can be increased

step by step:

x(0) = x0 +∆τ x1 (5.1)

x(m)
0 : = x(m−1)

(5.2)

x(m) = x(m)
0 +∆τ x(m)

1 . (5.3)

This simple extension allows to calculate x for τ > τmax without having to calculate

higher order terms. The vadility of this extension has to be checked seperately and

will not be discussed in this thesis.
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