
Supersonic thin profile
In this example we will compute the supersonic potential flow around a thin symmetric airfoil aligned with a 

horizontal incoming flow .

Initialization
clearvars; % Clear workspace variables
close all; % Close all figure windows

We will employ symbolic variables for easier substitutions and computation of derivatives

syms x y M epsilon
assume(x      ,'real'); 
assume(y      ,'real'); 
assume(M      ,'real'); % Mach number
assumeAlso( M > 1 );
assume(epsilon,'real'); % Small thickness parameter
assumeAlso( epsilon>0 );  

Shape
Consider a thin parabolic airfoil profile

    for 

where 

h   = 1-x^2;     % local thickness of the airfoil
h_x = diff(h,x)  % derivative of h(x)

h_x = 

1



Potential flow
For large Reynolds numbers the flow is inviscid and irrotational 

except from a thin boundary layer. For an irrotational flow there exists a velocity potential  such that

 and .

Asymptotic expansion
We assume that the thin airfoil will cause a small perturbation of the flow, proportional to its thickness. Thus, 
we expand  into power series for small values of :

 

where  

phi_0 = x;

represents the undisturbed incoming flow and  is the perturbation which is governed by the wave equation

with the boundary conditions

                        at 

        at     ,

            for     .

Analytical solution
We transform the problem into a new coordinate system aligned with the characteristics

, 

xi = x - sqrt(M.^2-1).*y ;
eta= x + sqrt(M.^2-1).*y ;

and search for a solution in the new coordinate system such that

.

The transformed wave equation reads

.

The analytical solution of the transformed wave equation takes the following form
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,

which can be transformed back to the original coordinate system as

.

The functions f and g are determined by the boundary conditions.

Matching with the boundary conditions
Since boundary conditions are prescribed along the symmetry plane , we must split the domain into 
an upper side (y > 0) and a lower side (y < 0). The solutions in the upper and the lower side are reflection 
symmetric about y = 0. 

Far-field condition
First we employ the far-field condition

    as                     

which in the new coordinate system transforms to

    as .

Therefore, 

.

We can conveniently set the constants to 0 such that

and

,    .

Symmetry condition
For the symmetry condition

    at 

we transform the y-derivative on the left-hand side into the new coordinate system using the chain rule

.

Again, we have to define the boundary in terms of the new coordinates  and . The leading and the trailing 
edges of the airfoil are located, respectively, at 

.
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The transformed symmetry condition reads

.

Integrating the symmetry condition we obtain

, , , .

From the far-field condition we can determine

.

Furthermore, the velocity potential must be continuous at the symmetry plane and thus

.

Kinematic condition
Finally, we transform the kinematic condition at the airfoil to obtain

,

which after integration leads to

.

Again, we must ensure a continuous velocity potential at the boundaries between different intervals by 
matching the integration constants. Along the characteristics  and  passing through leading 
edge we have, respectively,

,

,

so that

.

Analogously, at  and  we match the constants

.

Result: Analytical velocity potential as a piecewise function
The analytical velocity potential reads
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.

Defining the velocity potential in MATLAB as a symbolic piecewise function
% Intervals of the piecewise function
upstream   = xi <= -1 | eta <= -1 ;
downstream = (xi>=1 & y>=0) | (eta>=1 & y<=0) ;
upper      = xi >-1 & xi <1 & y>0 ;
lower      = eta>-1 & eta<1 & y<0 ;

% Solution in different sub-domains
phi_upper = 1./sqrt(M.^2-1) .* (xi .^2 -1) ;
phi_lower = 1./sqrt(M.^2-1) .* (eta.^2 -1) ;

% Global function
phi_1 = piecewise(upstream | downstream, 0, ...
                  upper,                 phi_upper, ...
                  lower,                 phi_lower)

phi_1 = 

phi = phi_0 + epsilon*phi_1

phi = 

Velocity components
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u = diff(phi,x)

u = 

v = diff(phi,y)

v = 

Visualization
Let's try to plug in some values

% Parameters
M_val   = 2  ; % value of the Mach number
Epsilon = 0.1; % value of epsilon

% Range for plotting
xmin = -1.5; 
xmax =  3  ; 
ymin = -2  ; 
ymax =  2  ; 

% Resolution for velocity vectors
n = 10;

% Distribution of velocity vectors
[X,Y] = meshgrid(linspace(xmin,xmax,n),linspace(ymin,ymax,n));

% Substitute values into expressions
H   = Epsilon * h;
Phi = subs(phi,{M,epsilon},{M_val,Epsilon});
Xi  = subs(xi ,M,M_val);
Eta = subs(eta,M,M_val);
U   = subs(u,{x,y,M,epsilon},{X,Y,M_val,Epsilon});
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V   = subs(v,{x,y,M,epsilon},{X,Y,M_val,Epsilon});
P   = subs(2*(1-u), {M,epsilon}, {M_val,Epsilon});

and plot the solution. 

figure(1); 
hold on; 
box on;
set(gca,'TickDir','out','linewidth',1.5);
axis([xmin xmax ymin ymax]);
xlabel('$x$','Interpreter',"latex");
ylabel('$y$',"Interpreter","latex");
colormap(redblue);
clim([-0.5, 0.5]);

pressure = fcontour(P, [xmin xmax ymin ymax], 'Fill', 'on','MeshDensity',200);
cbar = colorbar;
cbar.Label.Interpreter = "latex";
cbar.Label.String = "$\frac{p-p_{\infty}}{\rho_{\infty} u_{\infty}^{2} / 2}$";
cbar.Label.Rotation = 0;
cbar.Label.FontSize = 15;
cbar.Label.Position = [3.3,0.05,0];

wing = fplot([H, -H], [-1 1], 'k-','LineWidth',2); 
potential = fcontour(Phi, [xmin xmax ymin ymax]);
schock1 = fcontour(Xi , '--','LevelList',[-1 1]);
schock2 = fcontour(Eta, '--','LevelList',[-1 1]);
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arrows = quiver(X,Y,U,V);

Analytical streamlines
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Streamline  is a trajectory of an infinitely small fluid particle which moves with the steady flow. 
Therefore, the streamline is at all points tangential to the flow velocity. Streamlines can be computed, for 
example, by solving the initial value problem

for given initial conditions  corresponding to the initial locations of the fluid elements.

syms y_s(x)
f(x, y) = subs(v/u, {M,epsilon}, {M_val,Epsilon});
eq = diff(y_s,x) == f(x,y_s)

eq(x) = 

We may try to find an analytical solution for the streamlines as follows:

sol   = dsolve(eq)

Warning: Unable to find symbolic solution.
 
sol =
 
[ empty sym ]
 

sol = dsolve(eq,y_s(-1)==1)

Warning: Unable to find symbolic solution.
 
sol =
 
[ empty sym ]
 

In this case MATLAB didn't find any analytical solution, so we will instead solve the initial value problem 
numerically using the solver ode45.

Numerical streamlines
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First, we have to convert the right-hand side into a standard MATLAB function:

filename = 'streamline_slope.m';
F = odeFunction(f(x,y_s),y_s(x),'file',filename);

Then, we solve the initial value problem for a list of initial conditions and plot each resulting streamline.

for y0 = linspace(ymin,ymax,n)
    [X_s,Y_s] = ode45(F,[xmin,xmax],y0);
    plot(X_s,Y_s,'k-')
end

Finally, we clean up the plot and export it into a file.

potential.Visible = "off";
arrows.Visible = "off";
x_profile = -1:0.01:1;
y_profile = Epsilon*(-1+x_profile.^2);

x_profile = [x_profile, flip(x_profile)];
y_profile = [y_profile,-flip(y_profile)];

profile = fill(x_profile,y_profile,[0.5 0.5 0.5]);
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saveas(gcf,'supersonic_flow.svg')
saveas(gcf,'supersonic_flow.png')
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