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5 SUPERSONIC FLOW OVER A THIN AIRFOIL AT ZERO LIFT: D’ALEMBERT SOLUTION 

5 Supersonic flow over a thin airfoil at zero lift: 

D’Alembert solution 

In this chapter we will find an analytical solution for the supersonic (𝑀∞ > 1) potential flow around a thin symmetric airfoil 

aligned with a horizontal incoming flow, as sketched in Figure 3. The profile of small thickness 𝜖 ≪ 1 causes a small 

perturbation of the outer potential flow. The small perturbation is described by Eq. (4.22) with the boundary conditions 

(4.24), (4.26), (4.30) and (4.32). For 𝑀∞ > 1, Eq. (4.22) is a wave equation. Thus, it can be solved with the D’Alembert 

solution, as described, e.g., by Lebl (2025). In this chapter we will show how the D’Alembert solution can be used to satisfy 

the boundary conditions of the present problem.  

 

Figure 4: Sketch of the dimensionless problem formulation and the new coordinate axes. 

5.1 Change of variables 

We transform the problem into a new coordinate system aligned with the characteristics 

 𝜉 = 𝑋 −√𝑀∞
2 − 1 𝑌, 𝜂 = 𝑋 + √𝑀∞

2 − 1 𝑌 (5.1) 

and search for a solution 𝜙 in the new coordinate system such that 

 𝜙1(𝑋, 𝑌) = 𝜙(𝜉(𝑋, 𝑌), 𝜂(𝑋, 𝑌)). (5.2) 

The coordinate axes are sketched in Figure 4. The transformed wave equation (4.22) in the new coordinate system 

reads 

𝜕2�̃�

𝜕𝜉𝜕𝜂
= 0. (5.3) 

The solution of the transformed wave equation takes the following form: 

 �̃� = 𝑓(𝜉) + 𝑔(𝜂), (5.4) 

𝑼0 = (1,0) 

𝑋 

𝑌 

𝜕𝜙1
𝜕𝑌

= 0 
𝜕𝜙1
𝜕𝑌

= 0 
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which can be transformed back to the original coordinate system as 

𝜙1 = 𝑓 (𝑋 −√𝑀∞
2 − 1 𝑌) + 𝑔 (𝑋 +√𝑀∞

2 − 1 𝑌) . (5.5) 

The functions f and g are determined by the boundary conditions. 

5.2 Boundary conditions 

Since boundary conditions are prescribed along the symmetry plane 𝑌 = 0, we must split the domain into an upper side 

(Y > 0) and a lower side (Y < 0). The solutions in the upper and the lower side are reflection symmetric about Y = 0. 

Incoming flow condition 

First, we employ the far-field condition (4.24), which in the new coordinate system transforms to 

�̃� → 0    as    {
𝜉 → −∞,    for  𝑌 > 0
𝜂 → −∞,    for  𝑌 < 0

  . (5.6) 

Therefore,  

{
𝑔(𝜂) = const. = −𝑓(−∞)    for  𝑌 > 0 ,

𝑓(𝜉) = const. = −𝑔(−∞)    for  𝑌 < 0 .
 (5.7) 

We can conveniently set the constants to 0 such that 

𝜙 = {
𝑓(𝜉)    for  𝑌 > 0 

𝑔(𝜂)    for  𝑌 < 0 
 (5.8) 

and 

𝑓 → 0    as    𝜉 → −∞, 

𝑔 → 0    as    𝜂 → −∞. 
(5.9) 

Symmetry condition 

Next, we transform the symmetry condition (4.26) to the new variables. Using the Ansatz (5.8), the left-hand side of 

Eq. (4.26) can be expressed with the chain rule as follows:  

𝜕𝜙1
𝜕𝑌

=

{
 

 
𝜕𝜉

𝜕𝑌

d𝑓

d𝜉
= −√𝑀∞

2 − 1 𝑓′    for  𝑌 > 0

𝜕𝜂

𝜕𝑌

d𝑔

d𝜂
=  √𝑀∞

2 − 1 𝑔′     for  𝑌 < 0

  . (5.10) 

With the transformation (5.1) we can determine the positions of the leading and the trailing edges in the new coordinate 

system as 

(𝑋, 𝑌) = (−1 2⁄ , 0)   ⟹   (𝜉, 𝜂) = (−1 2⁄ , −1 2⁄ ), 

(𝑋, 𝑌) = (    1 2⁄ , 0)   ⟹   (𝜉, 𝜂) = (    1 2⁄ ,     1 2⁄ ), 
(5.11) 

respectively. Thus, the transformed symmetry condition (4.26) reads 

𝑓′ = 0    for 𝜉 < −1 2⁄   ⋁   𝜉 > 1/2 , 

𝑔′ = 0    for 𝜂 < −1 2⁄   ∨   𝜂 > 1/2 . 
(5.12) 

Integrating the symmetry condition (5.12) we obtain 

𝑓(𝜉 < −1 2⁄ ) = 𝑎, 𝑓(𝜉 > 1 2⁄ ) = 𝑏, 𝑔(𝜂 < −1 2⁄ ) = 𝑐, 𝑔(𝜂 > 1 2⁄ ) = 𝑑 . (5.13) 

From the far-field condition (5.9) we can determine 

 𝑎 = 𝑐 = 0. (5.14) 
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Furthermore, the velocity potential must be continuous at the symmetry plane 𝑌 = 0 behind the airfoil (𝑋 > 1/2). Thus, 

 𝑏 = 𝑑. (5.15) 

Kinematic condition 

Finally, we transform the flow-tangency condition at the airfoil, Eqs. (4.30) and (4.32), using Eq. (5.10) to obtain 

−√𝑀∞
2 − 1 𝑓′(𝜉) =    𝐻′(𝜉)    for − 1 2⁄ < 𝜉 < 1 2⁄ , 

   √𝑀∞
2 − 1 𝑔′(𝜂) = −𝐻′(𝜂)    for − 1 2⁄ < 𝜂 < 1 2⁄ . 

(5.16) 

Integration of Eq. (5.16) leads to 

𝑓(𝜉) = −(𝑀∞
2 − 1)−

1
2 𝐻(𝜉) + 𝑗    for  − 1 2⁄ < 𝜉 < 1 2⁄ , 

𝑔(𝜂) = −(𝑀∞
2 − 1)−

1
2 𝐻(𝜂) + 𝑘   for  − 1 2⁄ < 𝜂 < 1 2⁄ . 

(5.17) 

Again, we must ensure a continuous velocity potential at the boundaries between different intervals by matching the inte-

gration constants. With sufficient generality we can assume that the normalized thickness function 𝐻 of the profile is zero 

at the leading and the trailing edges, that is, 𝐻(−1 2⁄ ) = 𝐻(1 2⁄ ) = 0. Requiring the velocity potential �̃� defined by Eqs. 

(5.13), (5.14) and (5.17) to be continuous across the characteristics 𝜉 = −1/2 and 𝜂 = −1/2 passing through the leading 

edge we have, respectively, 

𝑓(−1 2⁄ ) = 𝑗 = 𝑎 = 0, 

𝑔(−1 2⁄ ) = 𝑘 = 𝑐 = 0. 
(5.18) 

Analogously, at 𝜉 = 1/2 and 𝜂 = 1/2 we match the constants 

 𝑏 = 𝑑 = 0. (5.19) 

5.3 Result: Analytical velocity potential as a piecewise function 

The expression for the analytical velocity potential reads 

�̃� = {
−(𝑀∞

2 − 1)−
1
2 𝐻(𝜉), 𝑌 > 0 ∧  − 1 2⁄ < 𝜉 < 1 2⁄

−(𝑀∞
2 − 1)−

1
2 𝐻(𝜂), 𝑌 < 0 ∧  − 1 2⁄ < 𝜂 < 1 2⁄

0, otherwise

  . (5.20) 
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Figure 5: Example of the analytical solution for a given profile shape. Color shows the pressure field and black solid lines 

are the streamlines of the flow. Dashed lines show the characteristics originating from the leading and trailing edges.  

5.4 Exercise 

Plot the velocity vectors of the supersonic flow at 𝑀∞ = 2 over a slender airfoil with the shape defined by  

𝐻(𝑋) = 1 2⁄ − 2𝑋2    for −1 2⁄ < 𝑋 < 1/2 (5.21) 

and 𝜖 = 0.1. 

5.5 Literature 

◼ For more details about the D’Alembert solutions of the wave equation, see Lebl (2025). 

𝑋 

𝑌 
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