1 Hands on

Vectors

- Create a row vector a using command a = [$\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$
- Create a column vector b using command $\mathrm{b}=[1 ; 2 ; 3 ; 4]$
- You can transpose a vector using tranpose(b) or b'
- Scalar product can be done with a*b
- Term by term product can be done with $\mathrm{a} . * \mathrm{~b}$
- Term by term dividing can be done with $\mathrm{a} . / \mathrm{b}$
- Compute the norm-2 of a vector
- what does a(2:end)-a(1:end-1) does?

Matrices

- Type $A=\left[\begin{array}{lll}1 & 2 ; 3\end{array}\right]$ to create the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

- One can change to 17 the element on the second row, third column of that matrix with $\mathrm{A}(2,3)=17$
- Use the function eye to create an identity matrix
- Look at the functions diag,ones, and create an identity matrix by using these two functions.
- By adding three matrices created with the diag function, create a tridiagonal matrix
- Use the command inv to invert a matrix
- To solve the linear problem $A x=b$ with matlab, one option is $\mathrm{b}=\mathrm{A} \backslash \mathrm{b}$ (backslash is important : $\mathrm{A} \backslash \mathrm{b} \neq \mathrm{b} / \mathrm{A}$).

Solving your first numerical problem

We want to solve the stationary 1D heat equation on the domain $\Omega=[0,1]$ with a source term $f(x)=\sin (2 \pi x)$.
The problem we want to solve is : find T such that

$$
\left\{\begin{array}{c}
\frac{\partial^{2} T}{\partial x^{2}}=f \text { on } \Omega \tag{1}\\
T(0)=T(1)=0
\end{array}\right.
$$

- Create a script that you will call heat1D.m.
- Create the space variables : $\mathrm{N}=11$; $\mathrm{dx}=1 /(\mathrm{N}-1)$; $\mathrm{x}=[0: \mathrm{dx}: 1]$ '; This will create a column vector with the spatial coordinates.
- Create the source term with $f=\sin (2 * p i * x)$;
- Create the following tridiagonal matrix

$$
A=\left(\begin{array}{cccccc}
1 & 0 & \cdots & & \cdots & 0 \\
\frac{1}{\Delta x^{2}} & \frac{-2}{\Delta x^{2}} & \frac{1}{\Delta x^{2}} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
0 & \cdots & 0 & \frac{1}{\Delta x^{2}} & \frac{-2}{\Delta x^{2}} & \frac{1}{\Delta x^{2}} \\
0 & \cdots & & \cdots & 0 & 1
\end{array}\right)
$$

with the command lines

```
A = eye(N,N);
for i=2:N-1
    A(i,i-1)= 1/dx^2;
    A(i,i) = -2/dx^2;
    A(i,i+1)= 1/dx^2;
end
```

- Solve the linear problem $A T=f$ as indicated in the previous section.
- Using the commands tic and toc, find the time needed to solve the linear problem for different N , e.g. $\mathrm{N}=100, \mathrm{~N}=1000, \mathrm{~N}=10000$.
- Change $A=\operatorname{eye}(N, N)$; into $A=\operatorname{speye}(N, N)$; . How much time does it take to solve the linear problem? What are the advantages of a sparse matrix ?
- One can plot the solution with $\mathrm{plot}(\mathrm{x}, \mathrm{T})$, if T is the solution vector.
- Bonus : Find an other way to build the matrix, using diag or spdiag.

