
Home Assignment : Numerical 1D Resolution of

an Ice Flow Problem
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Figure 1: Satellite measurement of the ice velocity in the Uppernavik Isstroem
from Sentinel-1 SAR data acquired from 2014-10 to 2016-06. Available at
http://products.esa-icesheets-cci.org/
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Figure 2: Cross section of a glacier

Motivation

One of the major challenges mankind will have to face in the forthcoming cen-
turies, is the sea level rise. The sea level rise is due to mainly two factors : the
water dilatation of the oceans due to the increase of the temperature, and the
melting of the glaciers, and the ice sheets at the northern and southern poles.
It is then of primal importance for knowing of how many meters the sea level
will rise to be able to predict how the ice behave on the pole.

Glaciers and ice sheets can be interpreted as super viscous flows, and many
models to describe them have been derived from the classical equations of fluid
dynamics. Among them is the Shallow Shelf Approximation (SSA).

The SSA model is particularly well suited for high velocity streams of ice,
near the coast, where the ice velocity at the surface can reach up to 5 km/year.
This model considers that the ice thickness is really small compared to the
domain’s size (hence the term ”shallow”) and that the shear stress is more or
less constant along the ice thickness.

Variables of interest are showed in the figure 2
The SSA model, in 1D is given by two equations : one linear transport

equation, and a non-linear diffusion-reaction equation. The idea of the proposed
work is, step by step, to solve these equations.

This project is divided in four parts: the two first parts can be treated
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separately, to treat the third part, one will need the codes produced in the
second, and to do the last part, the codes from the first and third parts will be
required.
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1 A transport problem.

1.1 Theoretical prerequisites.

In a first time we will focus on the equation modelling the transport of the ice
thickness H by the velocity u, and where a source term is added (It models the
effect of the wind on the ice thickness, the accumulation due to the snow, or the
melting of the ice, ...).

∂tH = −∂x(u H) +M (1)

a) • Time discretization - We want to apply the Euler explicit method :

Hn+1 −Hn

∆t
= −∂x(unHn) +M (2)

• Spatial discretization - Using a constant discretization (∆x = cte),
write the discretization in space, using a centered scheme. Show that

Hn+1
i = Hn

i −
∆t

2∆x
(uni+1H

n
i+1 − uni−1H

n
i−1) + ∆tMi (3)

b) Let us assume that u is constant, and positive. Is there a condition on
∆t and ∆x that must be satisfied to ensure the stability of the scheme ?
(One can use the results of the exercise, or the course).

c) Under the same assumptions (u = cte > 0), which simple spatial scheme
would have been stable under a certain CFL condition ? (results of the
course, exercises can be used).

d) An other technique to ensure stability is to add a small diffusion term in
the equation. This corresponds to an uncentering of the scheme.

The equation that one wants to solve now is :

∂tH = −∂x(u H) + ε∂x2(u H) +M (4)

Bonus Show that with u constant and ε = ∆x
2 , this is exactly the uncentered

scheme (backward).

e) Show that, using explicit Euler in time, centered scheme for both spatial
first and second derivative, one has :

Hn+1
i = a Hn

i−1 + b Hn
i + c Hn

i+1 + ∆tMi (5)

where a, b, c have to be explicited in function of ui, ε, ∆t, ∆x . Write
this equation in term of matrix and vectors.
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f) • Dirichlet Boundary condition at x = xmin - Having a Dirichlet
boundary condition there means that

Hn+1
1 = Hdir (6)

Modify the first line of the matrix accordingly.

• Neumann Boundary condition at x = xmax - To create a homo-
geneous Neumann Boundary condition, for an explicit time scheme,
one can consider a so called ”ghost point”, of index N + 1. Then
numerical BC that has to be satified is then

Hn
N+1 −Hn

N

∆x
= 0 (7)

Injecting this new equation in equation (5), show that the boundary
condition that one has to implement is

Hn+1
N = a?Hn

N−1 + b?Hn
N + ∆tMN

where a?, b? have to be explicited.

Modify the last line of the matrix accordingly.

1.2 Numerical implementation.

a) Implement the code in Matlab/SciLab, using the skeletton script that is
provided.

• In the file transport_build_matrix.m , implement the matrix whose
coefficients are described in eq.(5).

• In the file transport_apply_BC.m modify the matrix, and vectors
such that the boundary conditions are respected.

• In the file solve_transport_time_step.m solve eq.(5).

b) Describe what happens in the file transport.m .

2 A steady diffusion-reaction equation.

2.1 Theoretical prerequisites

In the SSA model, the velocity satisfies the equation :

∂x(µ∂xu)−B u− f = 0 (8)

In which µ is the viscosity of the ice sheet, averaged on the ice thickness, B
is depending on properties of the bedrock on which the ice is lying, and f is a
function of the ice thickness of the surface slopes. In this part, it is assumed
that µ,B and f are known functions of x.
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Figure 3: Scheme of the staggered grid

a) Spatial discretization - To solve this problem, one needs to introduce a
so-called staggered grid for the parameter µ .

• Show, by applying two Taylor expansions of u at x = xi + ∆x
2 that

the approximation (9) is of order 2.

∂xu(xi +
∆x

2
) ≈ ui+1 − ui

∆x
(9)

• Show, using a similar technique that

∂x(µ∂(u)) =
µi+ 1

2

ui+1−ui

∆x − µi− 1
2

ui−ui−1

∆x

∆x
+ o(∆x) (10)

b) Linear problem formulation : The discrete problem that one wants to
solve is then :

µi+ 1
2
(ui+1 − ui)− µi− 1

2
(ui − ui−1)

∆x2
−B ui = fi (11)

• To have a Dirichlet BC at x = xmin, one must force u1 = udir, with
udir a prescribed velocity.

• To have a homogeneous Newton BC at x = xmax, one must force
uN − uN−1 = 0.

• write this problem with a matrix A(µ,B,∆x) and vectors F and U .

2.2 Numerical implementation

a) Implement the code to solve this equation. One may want to use the
provided templates.

b) To check whether the code is valid or not, the following procedure will be
done.

• Show that if u(x) = sin(πx), µ(x) = 1 + x, B(x) = x, then to have
equation (8) satisfied, f should be

f(x) = −
[
π2(1 + x) + x

]
cos(πx)− π sin(πx) (12)
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• Compute the error between uth = sin(πx) and ucomputed (the output
of your program), using the function norm of Matlab.

• Compute the error for different ∆x (∆x = [0.1, 0.01, 0.001, 0.0001]),
and describe how it evolves with respect to ∆x (plotting can help).
Could you have expected this behaviour ?
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3 A non-linear steady diffusion-reaction equa-
tion.

Warning : To do this section, you need the codes from the previous section !
In this section, one considers the equation

∂x(µ(u) ∂xu)−B(u)u− f = 0 (13)

The viscosity µ is now depending on the velocity u (The fluid is non-newtonian),
and the coefficient B that is due to ice/bedrock interactions is now also depend-
ing on the velocity. These term are defined as follows :

µ(u) = µ0 |∂xu|p

B(u) = B0 |u|q

To solve this non-linear problem, several approaches exist ; Among them are
the Newton method, fixed-point algorithm. Here, the non-linear problem will
be solved with a fixed-point algorithm (Newton’s algorithm is left as a bonus).

3.1 Fixed-point algorithm.

Principle of the fixed point iteration. One need s to have a continuous
function g such that g(u) = u. Then, starting from an initial guess u0, one
iterates g(un) = un+1 until one reaches a convergence criterion.

Usually a convergence criterion that one can take is

δ =‖ un − nn−1 ‖< tolerance (14)

Fixed point iteration applied to Eq (13). In our case, one will just solve
the equation, with µ(u) and B(u) computed with the velocity of the previous
iteration i.e.

∂x(µ(un) ∂xu
n+1)−B(un)un+1 − f = 0 (15)

a) Without developping µ(un) and B(un), discretize the problem using the
same methods as in the previous part (use Eq:(11). Express the problem
in terms of matrix and vectors.

b) Show that after discretisation, the problem can be rewritten in the follow-
ing form :

Un+1 = G(Un) (16)

where U is the vector containing the ui, and G(U) has to be explicited.
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Relaxation. In practice, one needs to add a so-called relaxation to have con-
vergence of this method. This is done by doing the following steps :

U∗ = F (Un) Compute an intermediate velocity

Un+1 = θU∗ + (1− θ)Un Compute the new velocity

where θ has typically values of the order of the percent (θ ≈ 0.05).

3.2 Numerical implementation.

a) Implement a function compute_reac_coeff in which one computes B.

b) Implement a function compute_diff_coeff in which one computes µ (still
on a staggered grid, cf. previous part, eq.(9)).

c) Implement the function NL_get_velocity in which one applies the fixed
point algorithm, with relaxation. One will have to use the function imple-
mented in the previous part.

d) Make θ vary and describe what happens if it is very small (≈ 10−3) / large
(≈ 0.7)

e) Show that if u(x) = cos(πx), p = q = 2, B0 = µ = 1, then to have eq(13)
satisfied, one needs to have

f = −3π4 cos(πx) sin(πx)2 − cos(πx)3 (17)

f) Check if your algorithm is correct by using the above theoretical solution.

4 The SSA system of equation.

You have developped, in the previous part, all the tools that are required to
solve the SSA system of equation that we recall here :{

∂tH =− ∂x(H u)

∂x(µ0H|∂xu|p ∂xu)−B0|u|q − ρgH∂xh = 0
(18)

The problem that one wants to solve is the set of equation (18), with Dirichlet
boundary conditions for both H and u at x = xmin, and homogeneous Neumann
boundary conditions at x = xmax, for both H and u.

The method that will be used to solve this problem is called a splitting
method, because each equation will be solved one after one other, and not both
at the same time.

In the first section, one saw how to solve the first equation, if one has the
velocity, and in the third part, one almost saw how to solve the second equation
if one has the ice thickness H.
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4.1 Treatment of the gravity driven term.

The only part of the second equation that has not been implemented yet is
the gravity driven part ρgH∂xh, where h is the surface elevation (cf. figure 2).
The relation between h and H is naturally h = b + H, where b is the bedrock
elevation.

Note that the diffusion term is now ∂x(µ0H|∂xu|p ∂xu) and not ∂x(µ0|∂xu|p ∂xu)
as in the non-linear case.

• Implement the function build_source_term that computes this gravity
driven term ρgH∂xh.

One should estimate ∂xh as follow :

– at x = x1, ∂xh ≈ h2−h1

∆x

– at x = xi, ∂xh ≈ hi−1−hi−1

2∆x , ∀i, 1 < i < N

– at x = xN , ∂xh ≈ hN−hN−1

∆x

Building a matrix is not necessary, but can be done.

4.2 Numerical resolution of the SSA system of equation.

a) Describe what is the script SSA.m doing.

b) After how many year would the flow (whose initial settings are in the
SSA.m file) would reach a steady state ?

c) On which criteria can you say whether a steady state has been reached or
not ?

d) Play with the differents parameters and enjoy !
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