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June 14, 2017

We are interested in the Burger, non-Homogeneous Dirichlet and Homogeneous Neu-
mann Boundary conditions.

∂tu+ u ∂xu− ν∂xxu = 0 ,with t ∈ R+, x ∈ [0, 1], ν ∈ R+

u(t = 0, x) = 1− x+ e−
(x−0.5)2

0.02

u(t, x = 0) = 1
∂

∂x
u(t, x = 1) = 0

(1)

To treat this problem, different time marching strategy are possible. We will focus here
on the case where Euler Implicit is applied to the problem.

We consider the following discretization of the problem (centered scheme for 1st and
2nd spatial derivatives):
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2∆x
= 0 (2)

One can clearly see that the equation (2) is non-linear in Un+1 (convection term).
Therefore, at each time step, one has to solve a non-linear problem. To solve a non-linear
problem different approaches are feasible (e.g. Dichotomy, secant, regula falsi, Newton,
Quasi-Newton, fixed point, etc.).

Here we propose to solve this problem using two commonly used method, namely the
fixed point method, and then with the Newton method. In what follows, in order to simplify
the notations, Un+1 will be noted V . The equation (2) is rewritten in terms of V :
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Fixed Point Method.

Principle of the Method The principle a fixed point method is the following: Let us
consider a function f defined such that f(x) = x .

Then let us define a sequence xk+1 = f(xk). Under certain assumptions (not detailed
here) on f , this sequence should converge toward a x∗ as k increases. Meaning that
x∗ = f(x∗), and equivalently |xk+1 − xk| −−−→

k→∞
0.

The idea of the method is to iterate on xk until |x
k+1−xk|
|xk|| < ε, where ε is a tolerance.

Applying it to equation 3. To apply the fixed point method, we need to reformulate
our problem such that it looks like f(x) = x. There is plenty of ways to do it (depending
on which Vi one choose to isolate). Let us consider this version :

V k+1
i − Un

i

∆t
− ν

V k
i−1 − 2Vi + V k

i+1

∆x2
+ V k
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V k
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i−1

2∆x
= 0. (4)

which is looking like a time marching step. (Note that the first step - when V = Un- is
actually Explicit Euler).

One can then isolate V k+1 and obtain a function in the form xk+1 = f(xk).

Relaxation factor In reality to get this method to converge, one needs a to introduce
a relaxation factor θ. Especially at the beginning of the iterations, V k might vary a lot
and diverge. This relaxation factor is introduced such that the new iterate sticks to the
previous one.

Vintermediary =f(xk)

V k+1 =θVintermediary + (1− θ)V k

The algorithm 1 sums up the method.

Algorithm 1 My fixed point

1: procedure getStepFixedPoint(Un,tol,kmax,θ )
2: V1 ← Un; k ← 0
3: while tol < δ and k < kmax do
4: V k+1 ← f(V k, Un)
5: δ ← norm(V k+1 − V k)/norm(V k)
6: V k+1 ← θV k+1 + (1− θ)V k

7: k ← k + 1

8: end do
9: return V k+1
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Newton Method

Principle of the Method. Let us recall the principle of the Newton method. One
consider function F that is non-linear in x, and one wants to find the roots of this function
F . The idea of the method relies on a Taylor expand:

F (xk + δx) = F (xk) + JF (xk)δx+ o(δx)

The only unknown there is the δx, xk is given from the previous iteration. Assuming that
the F (x+ δx) = 0 gives that

0 ≈ F (xk) + JF (xk)δx (5)

δx is then the solution of the linear problem JF (xk)δx = −F (xk). (Our non linear problem
has been linearized, and one search for the solution of the linearized problem.) Once the
linear problem is solved one can find the new iterate by simply adding

xk+1 = xk + δx (6)

.
As for the fixed point iteration, one repeats this until a convergence criteria is fulfilled

(e.g.‖V
k+1−V k‖
‖V k‖ ) < ε, where ε is a given tolerance).

Applying it to Eq. 3 Let us first define our function F .

Fi(V ) =
Vi − Un

i

∆t
− ν Vi−1 − 2Vi + Vi+1

∆x2
+ Vi

Vi+1 − Vi−1
2∆x

In our case : F : RN → RN . We notice that Fi depends only on Vi−1, Vi, Vi+1. Therefore
only the partial derivatives of Fi with respect to Vi−1, Vi, V i+ 1 will be non zero. Then
the Jacobian matrix JF (x) should be a tridiagonal matrix, with

∂Vi−1
Fi(V ), ∂Vi

Fi(V ), ∂Vi+1
Fi(V )

as coefficients for the first lower diagonal, main diagonal, and first upper diagonal.

Boundary Conditions The boundary conditions of the linear problem defined by Eq.
(5) still have to be defined.

Dirichlet Boundary condition The step defined by Eq. (6) in our case reads:

V k+1 = V k + δV (7)

Assuming that V k
1 = VDirichlet, ensuring that V k+1 = VDirichlet as well is equivalent to

say that one must have δV1 = 0. The linear problem defined by Eq. (5) has then an
homogenenous Dirichlet boundary condition.

Neumann Boundary condition If we introduce a ghost point outside of the do-
main, a Neumann boundary condition can be written for instance as

V k+1
N+1 − V

k+1
N−1

2∆x
= β (8)
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where β ∈ R is the imposed flux. We could have chosen an other approximation of the
first derivative, but this one is already the one used for the first derivative approximation
in (2).

Injecting Eq. (7) in (8) gives

V k+1
N+1 − V

k+1
N−1

2∆x
=
V k
N+1 − V k

N−1

2∆x
+
δVN+1 − δVN−1

2∆x
= β (9)

Assuming that a condition similar to Eq(8) is also valid at the previous iteration (for V k),
then we obtain the boundary condition for δx :

δVN+1 − δVN−1
2∆x

= 0 (10)

The linear problem defined by Eq. (5) has then a homogenenous Neumann boundary
condition.

The Algorithm 2 sums up the method.

Algorithm 2 My Newton

1: procedure getStepNewton(Un,tol,kmax )
2: V1 ← Un

3: k ← 1
4: while tol < δ and k < kmax do
5: F ← createV ectorF (V k, Un)
6: J ← createJacobian(V k, Un)
7: V k+1 = V k − J−1F
8: δ ← norm(V k+1 − V k)/norm(V k)
9: k ← k + 1

10: end do
11: Un+1 ← V k+1

12: return Un+1

4


