Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 5: Explicit Schemes

May 31, 2017

In this exercise we propose to use different spatial and temporal schemes to solve the following $1^{\text {st }}$ order problem in 1D.

$$
\left\{\begin{array}{l}
\partial_{t} u=c \partial_{x} u \quad, \text { with } t \in \mathbb{R}^{+}, x \in[0,1], c \in \mathbb{R}^{*} \tag{1}\\
u(t=0, x)=e^{-\frac{(x-0.5)^{2}}{0.02}} \\
u(t, x=0)=u(t, x=1)
\end{array}\right.
$$

Note: for every question of this exercise, one needs to create a function that solves one iteration. This function will then be called in a provided code template.
5.1) Implement a function creating the matrix associated to the Explicit Euler scheme in time and backward in space, with periodic boundary conditions.

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=c \frac{U_{i}^{n}-U_{i-1}^{n}}{\Delta x} \tag{2}
\end{equation*}
$$

5.2) Implement a function creating the matrix associated to the Explicit Euler scheme in time and forward in space, with periodic boundary conditions.

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=c \frac{U_{i+1}^{n}-U_{i}^{n}}{\Delta x} \tag{3}
\end{equation*}
$$

5.3) Implement a function creating the matrix associated to the Explicit Euler scheme in time and centered in space, with periodic boundary conditions.

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=c \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \tag{4}
\end{equation*}
$$

5.4) Implement a function creating the matrix associated to the Leap-Frog scheme, with periodic boundary conditions.

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n-1}}{2 \Delta t}=c \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \tag{5}
\end{equation*}
$$

Caution : one has to store one more time step. Therefore the template has to be changed.
5.5) Compare the stability condition of all this different schemes (cf. exercise 3)

