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Mathematical formulation

Our aim is to model an outbreak of zombie epidemy. In particular, we want to
resolve the spatio-temporal evolution of the population of humans and zombies
to investigate the ability of humans to survive. Following the arguments of
Woolley et. al. [1], we formulate the mathematical problem with the transport
equations of two reacting species - humans (H) and zombies (Z):

∂H

∂t
=DH △H − ~v · (~∇H)−H(~∇ · ~v)− αHZ on Ω (1)

∂Z

∂t
=DZ △ Z + βHZ on Ω (2)

∂H

∂~n
=0 on ∂Ω (3)

∂Z

∂~n
=0 on ∂Ω (4)

where the diffusive terms DH △ H , DZ △ Z model the chaotic, disorganized
motion of individuals, the convective terms −~v · (~∇H) − H(~∇ · ~v) model the
collective migration and the reaction terms −αHZ, βHZ represent the inter-
action between the two species. Adopting the reasoning of Woolley et. al. [1]
we use the following assumptions:

• Humans are more organized than zombies, and the diffusivity of zombies
is therefore higher than that of humans. We neglect the variation of
diffusivity of both species in space and time.

• We assume that zombies suffer a significant decay of intellect and thus
they move completely randomly without any collective migration. There
is therefore no convective term in the transport equation for zombies (2).

• We neglect the diffusive flux of humans and zombies through domain
boundaries ∂Ω by imposing homogeneous Neumann conditions (3, 4). Al-
though such conditions do not hold in general, it allows us to investigate
the interaction of the species in an isolated environment.

The coupling terms −αHZ and βHZ represent interaction between Humans
and Zombies. The interaction is modelled as a system of chemical reactions
where the speed of reaction is proportional to the product of reactants. We
consider the same interaction as Wooley et. al [1], i.e.:

• H + Z
a
→ H (humans kill zombies at the average rate a)

• H + Z
b
→ Z (zombies kill humans at the average rate b)

• H + Z
c
→ Z + Z (zombies infect humans by biting or scratching at the

average rate c)

which defines the net removal rate of humans α = b+c and the net creation rate
of zombies β = c − a. For the estimate of these parameters we further assume
that

• The time-scale of the epidemy is so short that the natality of humans is
negligible.
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• The deadliness of zombies b is higher than that of humans a.

• Humans can run faster than zombies, so they can survive the interaction.
However, there is a high likelihood that zombie injures human by biting
or scratching before the human manages to escape. The injury then leads
to infection and subsequent zombification. The infectiousness of zombies
c is therefore similar to the deadliness of zombies.

• There exists a safety zone where humans collect all available vapons.
Inside this safety zone the deadliness of humans is higher than the infec-
tiousness and deadliness of zombies.

1 Classification of the problem

Assuming only one spatial coordinate x and a constant migration velocity v =
const., convert the problem into an equivalent system of first order equations.
Show that this system is parabolic

[5 Points]

2 Discretization

2.1 Discretize equation (1) with Crank-Nicholson method in time and second-
order centered finite differences in one spatial dimension on a grid with
uniform spacing ∆x. Assume that v, div(v), α, β are known values at ev-
ery grid point. Using von Neumann stability analysis, show that the local
amplification factor of the dicretization is given by

GH =
1− ∆tDH

∆x2 (1− cos θ)− ∆t v
2∆x

i sin θ − ∆t
2
div(v)− ∆t

2
αZn

1 + ∆tDH

∆x2 (1− cosθ) + ∆t v
2∆x

i sin θ + ∆t
2
div(v) + ∆t

2
αZn+1

(5)

[3 Points]

2.2 Compute the order of accuracy of this discretization in space and time using
Taylor expansion. Does the spatial discretization create artificial diffusivity?

[2 Points]

2.3 Discretize the system (1, 2) with the same methods, now assuming a two-
dimensional Cartesian grid of I × J nodes with uniform spacings ∆y,∆x.
The position of a grid node is described by two indices i, j such that

φi,j := φ(xj , yi) for i = 1 . . . I, j = 1 . . . J

where
xj := x0 + (j − 1)∆x and yi := yI − (i − 1)∆y

[4 Points]

2.4 Define a mapping from two-index notation to single-index notation

ui,j → uk for k = 1 . . .K ≡ I J
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such that the discrete problem is written in single-index notation as

Hn+1
k −

∆t

2

(

DH

(

Hn+1

k+I − 2Hn+1

k +Hn+1

k−I

∆x2
+

Hn+1

k+1
− 2Hn+1

k +Hn+1

k−1

∆y2

)

− vxk
Hn+1

k+I −Hn+1
k−I

2∆x
− v

y
k

Hn+1
k−1

−Hn+1
k+1

2∆y

− div(v)kH
n+1

k − αkH
n+1

k Zn+1

k

)

= Hn
k +

∆t

2

(

DH

(

Hn
k+I − 2Hn

k +Hn
k−I

∆x2
+

Hn
k+1 − 2Hn

k +Hn
k−1

∆y2

)

− vxk
Hn

k+I −Hn
k−I

2∆x
− v

y
k

Hn
k−1 −Hn

k+1

2∆y

− div(v)kH
n
k − αkH

n
kZ

n
k

)

(6)

Zn+1

k −
∆t

2

(

DZ

(

Zn+1
k+I − 2Zn+1

k + Zn+1
k−I

∆x2
+

Zn+1
k+1

− 2Zn+1
k + Zn+1

k−1

∆y2

)

+ βkH
n+1

k Zn+1

k

)

= Zn
k +

∆t

2

(

DZ

(

Zn
k+I − 2Zn

k + Zn
k−I

∆x2
+

Zn
k+1 − 2Zn

k + Zn
k−1

∆y2

)

+ βkH
n
kZ

n
k

)

(7)

[1 Point]

3 Implementation

3.1 Write a MatLab function to create discretization matricesDx1,Dy1 approxi-
mating first derivatives, and Dx2,Dy2 approximating second derivatives of a
discrete function φk with second order centered finite differences. Apply the
ghost-point method to enforce the homogeneous Neumann boundary condi-
tions (3, 4) and to approximate the second normal derivatives on boundary
nodes. Use the template FDMatrices.m.

[5 Points]

3.2 The discretized equations (6, 7) can be written in matrix-vector form as

AHH · ~Hn+1 +AHZ · ~Zn+1 = BHH · ~Hn +BHZ · ~Zn (8)

AZZ · ~Zn+1 +AZH · ~Zn+1 = BZZ · ~Zn +BZH · ~Hn (9)
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Each matrix (AHH,AHZ,BHH,BHZ, ...) can be written in terms of an

identity matrix Id, the solution vectors ~Hn, ~Zn, ~Hn+1, ~Zn+1, the discretiza-
tion matrices Dx1,Dy1,Dx2,Dy2 and the parameters of the problem. For
example,

AHH := I−
∆t

2

(

DH (Dx2 +Dy2)− ~vx ⊙Dx1 − ~vy ⊙Dy1 −
~div(v)⊙ Id

)

AHZ( ~Hn+1) :=
∆t

2
α⊙ ~Hn+1 ⊙ Id

where ⊙ is the element-wise product (.* in MatLab). Express the matrices
AZZ,AZH,BHH,BHZ,BZZ,BZH in the same way.

[2 Points]

3.3 Since our mathematical formulation is a system of equations, let us define a
global solution vector by appending our vectors of unknowns one after the
other

~U :=

(

~H
~Z

)

One can then express the discrete problem (6, 7) as

M1( ~Un+1) · ~Un+1 = M2( ~Un) · ~Un (10)

where

M1( ~Un+1) :=

(

AHH AHZ( ~Hn+1)

AZH( ~Zn+1) AZZ

)

M2( ~Un) :=

(

BHH BHZ( ~Hn)

BZH( ~Zn) BZZ

)

(11)

Write two MatLab functions, one to compute the matrixM2 from the known
solution ~Un, and the other to compute the matrix M1 from some estimate

of ~Un+1. Use the templates DiscreteRHS.m, DiscreteLHS.m.

[3 Points]

4 Newton-Raphson iteration

4.1 We choose to solve the non-linear problem (10) with Newton-Raphson method.
We define a non-linear function

~F (~V ) := M1
~V −M2

~Un !
= 0 (12)

where
~V := ~Un+1

One iteration of the Newton algorithm is then given by

~V m+1 = ~V m − J−1( ~V m) · ~Fm( ~V m) (13)

where J is the Jacobian matrix of the function ~F (~V )

Ji,j :=
∂Fi

∂Vj
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Implement a code to compute the Jacobian matrix using the template
ComputeJac.m.

[5 Points]

4.2 Implement the Newton algorithm in the template function Newton.m.

[5 Points]

4.3 Run the script epidemy.m to check your implementation. How much time
do you have to reach the safety zone before zombies spread over the rest of
the domain (i.e. there is more than 1 zombie per km2 everywhere except
the neighbourhood of the safety zone)? Vary the parameters of the problem
and describe which of them mostly affect the ability of humans to survive.
You may define the ability to survive as the time after which the maximum
concentration of humans drops below a certain threshold.

[5 Points]

5 Bonus

5.1 Note that the code at every time-step re-computes some matrices which
are not changing if the migration velocity and diffusivity are constant in
time. Optimize the code to only re-compute matrices which depend on the
solution and measure the time savings per time step. You might want to
increase the number of grid points and skip plotting of graphs to see the
effect.

[0 Points]

5.2 The code becomes unstable when the reaction term forces the density of
human population to negative values. The time step ∆t must then be
decreased, although the von Neumann’s growth factor G is in the stable
region. Try to adjust the Newton-Raphson algorithm such that it does not
force populations to negative values.

[0 Points]

5.3 Compute the total number of humans and zombies in the domain by nu-
merical integration and plot the evolution of the system in a phase-space of
these two parameters. Implement a criterion to stop the time-stepping loop
if one of the populations dies out.

[0 Points]

5.4 Compute the von Neumann growth rate (5) at every P -th time step to check
that the discretization is in stable region. Use some educated guess for P .
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