
Home Assignment : Numerical 1D resolution of a

flood wave propagation through an open-channel

2018

1



(a) Profile of the channel (b) Channel cross-section

Figure 1: Schema of an open channel

Introduction

Floods on rivers can be caused many factors including heavy rainfall, accelerated
snow melting, failure of dams and other. It is of crucial importance to predict the
effects of these factors on the probability and extent of a flood, in order to ensure
safety measures are applied when needed. At the same time, modelling of the
performance of different flood prevention systems makes their design process
more efficient. These tasks can with good accuracy be approached using the
Saint-Venant equations.

The Saint-Venant equations were developed to model one-dimensional flows
in channels with various altitude profiles and cross-sections. In this project we
will use their simplified version, applicable for rectangular cross-section of the
channel. Schema of such channel is provided in figure 1.

The system of 1D Saint-Venant equations consists of one linear transport
equation (continuity) and one non-linear transport equation (streamwise mo-
mentum):

∂th+ u∂xh+ h∂xu = 0

∂tu+ u∂xu = −g
(
∂xh+ ∂xb+

u2n2

R4/3

)
(1)

where

R(h,w) =
A(h,w)

P (h,w)
=

hw

w + 2h
(2)

is the hydraulic radius of the channel. The idea of the proposed work is, step
by step, to solve these equations.

This project is divided into three parts: the two first parts can be treated
separately, while for the third part, one will need the codes produced in the first
two parts.

2



1 Water depth transport (continuity equation)

At first we will focus on the equation modelling the transport of the water depth
h by the velocity u:

∂th+ u∂xh+ h∂xu = 0 (3)

1.1 Discretization & stability assessment

Let us assume that u is a positive constant (u = const. > 0), thus simplifying
equation (3) to:

∂th+ u∂xh = 0 (4)

a) Discretize equation (4) with finite difference method using the explicit Eu-
ler scheme for temporal derivative and the second-order centered scheme
for spatial derivative. Assume a uniform spatial distribution of computa-
tional nodes (∆x = const.). Show that the value of h at position i and
time step n+ 1 can be approximated as

hn+1
i ≈ hni −

u∆t

2∆x
(hni+1 − hni−1) (5)

Prove that the centered scheme for first spatial derivative has accuracy of
O((∆x)2).

[2 point]

b) Assess the stability of the discretization (5) using von Neumann method.
Is there a condition on u,∆t and ∆x that must be satisfied to avoid error
amplification? (One can use the results of the exercise, or the course).

[2 points]

c) Prove that Lax scheme:

hn+1
i − 1

2 (hni−1 + hni+1)

∆t
≈ −u

(hni+1 − hni−1)

2∆x
(6)

is conditionally stable and provide the condition of stability.

[2 points]

d) Using Taylor expansion, show that:

hni =
1

2
(hni−1 + hni+1)− (∆x)2

2

∂2h

∂x2
+O((∆x)4) (7)

[2 points]

3



e) Name at least one unconditionally stable scheme.

[1 point]

f) Another technique to ensure stability is to add a small diffusion term to
the equation that one wants to solve:

∂th ≈ −u∂xh+ εh∂
2
xh, (8)

where the artificial difusivity εh needs to satisfy the condition

∆x→ 0 =⇒ εh → 0 (9)

in order to maintain consistency.

Show that Lax scheme also adds diffusion to the original equation, corre-

sponding to εh = (∆x)2

2∆t .

Hint: Consider the semi-discrete equation

hn+1
i − 1

2 (hni−1 + hni+1)

∆t
= −u∂xh (10)

and the result of example 1.1 d).

[2 points]

1.2 Staggered grid arrangement

Adding an artificial diffusion term to equation (3) leads to:

∂th+ u∂xh+ h∂xu− εh∂x2h = 0 (11)

From this point onward we will assume velocity is stored in a so called
”staggered grid” as follows:

hi+1hi−1 hih1 h2 hN−1 hN

ui+ 1
2

ui− 1
2

u 3
2

uN− 1
2

Figure 2: Scheme of the staggered grid

a) Show, using Taylor expansion, that the second order centered difference
approximations of ∂xu, ∂xh and ∂2

xh in equation 11 are given by:

∂xu =
ui+1/2 − ui−1/2

∆x
+O

(
(∆x/2)

2
)

∂xh =
hi+1 − hi−1

2∆x
+O

(
(∆x)

2
)

∂2
xh =

hi+1 − 2hi + hi−1

(∆x)2
+O

(
(∆x)

2
) (12)

4



[2 points]

b) Show that velocity at position xi can be approximated by interpolation
as:

ui =
ui+1/2 + ui−1/2

2
+O

(
(∆x/2)

2
)

(13)

[1 point]

1.3 Numerical implementation

a) Using the results of section 1.2, discretize equation (11) applying explicit
Euler scheme to temporal derivative and second order centered schemes
for spatial derivatives. Assume that the values of u are known and present
the result in the form:

hn+1
i = a hni−1 + b hni + c hni+1 (14)

where a, b and c have to be explicited in function of un
i+ 1

2

, un
i− 1

2

, ∆t, ∆x

and εh.

Writing equation (14) in matrix and vector form:

hn+1 = Mhh
n , (15)

describe the generic structure of the matrix Mh.

[2 points]

b) Note that solving the equation (14) for hn+1
1 and hn+1

N requires the knowl-
edge of u1/2 and uN+1/2 respectively, while these values are not stored
in the vector u (see figure 2). We therefore have to use the boundary
conditions of velocity. Here we take homogeneous Neumann condition at
both boundaries:

u 3
2
− u 1

2

∆x
= 0

uN+ 1
2
− uN− 1

2

∆x
= 0 (16)

How would you prescribe the values u1/2 and uN+1/2 to satisfy (16)?

[1 point]

c) Write a MATLAB function to build the matrix Mh from given ∆x,∆t,u,
now taking εh = ui∆x

2 .Use the skeleton function continuity_build_matrix.m .

Note: The vector u is one element shorter than the vector h (see figure
2). Use the boundary conditions (16) if needed.

[2 points]

Bonus: Show that εh = ui
∆x
2 corresponds to applying backward uncen-

tered scheme to ∂xh in equation (3). [1 point]

5



d) Implement the following boundary conditions for h:

• Dirichlet boundary condition at x = xmin - Having a Dirichlet bound-
ary condition there means that

hn+1
1 = hn1 = hDir (17)

Modify the first line of the matrix Mh accordingly, using the skeleton
function continuity_apply_bc.m .

[1 point]

• homogeneous Neumann Boundary condition at x = xmax - As in
example 1.2b), one can consider a so called ”ghost point” of index
N + 1 to create a homogeneous Neumann Boundary condition:

hnN+1 − hnN
∆x

= 0 (18)

Injecting this relation in equation (14), show that the boundary con-
dition that one has to implement is

hn+1
N = a?hnN−1 + b?hnN

where a?, b? have to be explicited in terms of ui+ 1
2
, ui− 1

2
, ∆x, ∆t,

εh.

Modify the last line of the matrix Mh accordingly, using the skeleton
function continuity_apply_bc.m . Use the same εh as in 1.2 c) if
needed.

[1 points]

e) Describe what happens in the script water_depth_transport.m. To ver-
ify your implementation, compare the numerical and analytical solution.
Comment on any disagreements you observe.

[2 points]

2 Momentum transport

2.1 Theoretical prerequisities

In the Saint-Venant model, the velocity satisfies the equation:

∂tu+ u∂xu = −g
(
∂xh+ ∂xb+ Sf (u2, h)

)
(19)

Sf = u2 n
2

R
4
3

(20)

where g is the gravitational acceleration, b(x) is the channel bed profile, R(h) =
wh

w+2h is the hydraulic radius, while n = const. > 0 is the Manning’s friction

6



coefficient. Adding an artificial diffusivity to ensure numerical stability leads
to:

∂tu+ u∂xu− ε∂2
xu = −g

(
∂xh+ ∂xb+ Sf (u2, h)

)
(21)

Discretization of (21) with Euler implicit scheme, assuming the staggered grid
arrangement (Fig. 2), yields:

Ui+ 1
2
− un

i+ 1
2

∆t
+ Ui+ 1

2

Ui+ 3
2
− Ui− 1

2

2∆x
− εn+1

i+ 1
2

Ui+ 3
2
− 2Ui+ 1

2
+ Ui− 1

2

(∆x)2

= −g
(
Hi+1 −Hi

∆x
+
bi+1 − bi

∆x
+ (Sf )n+1

i+ 1
2

) (22)

where un+1 ≡ U, hn+1 ≡ H for readability.
To solve this non-linear system, several approaches exist. Among them are

the Newton method, the fixed-point algorithm etc. Here, the fixed-point algo-
rithm will be used.

2.2 Fixed-point algorithm

Principle: The method is based on finding a fixed point of a continuous func-
tion F , defined as

U = F (U) . (23)

One therefore has to reformulate the non-linear problem to identify such function
F . Then, starting from an initial guess U0, one iterates Uk+1 = F (Uk) until
one reaches convergence. Usually a convergence criterion that one can take is

δ =‖ Uk − Uk−1 ‖< tolerance (24)

Application to eq. (22):

• Identify a function F from equation (22) such that

Uk+1
i+ 1

2

= F (Uk
i− 1

2
, Uk

i+ 1
2
, Uk

i+ 3
2
) , (25)

There are several ways to obtain the required form (25), depending on
which Ui+ 1

2
in equation (22) one chooses to isolate.

Hint: Refer to Exercise 7 of the course.

[2 points]

Boundary conditions: Recall that the velocity is only stored at the interior
nodes x3/2 ≤ x ≤ xN−1/2, while the values at the ”ghost nodes” x1/2, xN+1/2

are defined by boundary conditions. In this section we want generic Neumann
conditions to be satisfied at both boundaries:

U 3
2
− U 1

2

∆x
= αN

UN+ 1
2
− UN− 1

2

∆x
= βN (26)

7



One of the ways of enforcing these boundary conditions is to prescribe the values
of u1/2, uN+1/2 at the beginning of every iteration.

Relaxation: In practice, one needs to add a so-called relaxation to have con-
vergence of this method. This is done by doing the following steps :

U∗ = F (Uk) Compute an intermediate velocity

Uk+1 = θU∗ + (1− θ)Uk Compute the new velocity

where the relaxation factor θ is of the order of percent. We will use θ = 0.1.

2.3 Numerical implementation

a) Implement the function solve_momentum_transport.m in which one ap-
plies the fixed-point algorithm to solve (22), including relaxation and en-
forcement of boundary conditions. Take ε = u∆x

2 and apply the boundary
conditions (26) with αN = βN = 0.01.

[6 points]

b) To check whether the implementation is valid or not, we can assess whether
the code reproduces an exact solution of a semi-discrete equation:

U − un

∆t
+ U∂xU = −g

(
∂xH + ∂xb+ U2n2

(
w + 2H

wH

)4/3
)

(27)

• Show that if Uth(x) = 10 + 0.01x, b(x) = 100 − 0.1x, H(x) = 120 −
0.1x, n = 0.01, w = 1, then to have equation (27) satisfied, un(x)
should be:

un(x) = (10 + 0.01x)(1 + 0.01∆t)

+ g∆t

(
−0.2 + 0.012(10 + 0.01x)2

(
1 + 240− 0.2x

120− 0.1x

)4/3
)

(28)

[1 point]

• Take the initial condition (28) and compute the error between Uth(x)
and Ucomputed (the output of your program), using the function norm

of Matlab. The error should be small if the code is working properly.
One may want to use the provided template momentum_transport.m.
[1 point]

Bonus: Vary θ in the range 〈0.00001; 0.9〉 and describe what you
observe. [1 point]

8



3 The Saint-Venant equations

Warning : To do this section, you need the codes from the previous exercises
!

3.1 Theoretical prerequisites

You have developed, in the previous part, all the tools that are required to solve
the Saint-Venant system of equations that we recall here :

∂th+ u∂xh+ h∂xu = 0

∂tu+ u∂xu = −g

(
∂xh+ ∂xb+ u2n2

(
w + 2H

wH

)4/3
)

(29)

The set of equations (1) requires 4 boundary conditions. For the modelling
of our physical conditions we choose:

h(x = xmin) = hDirichlet
L ∂xh(x = xmax) = 0

∂xu(x = xmin) = 0 ∂xu(x = xmax) = 0
(30)

• Show that the system of equations (29) is hyperbolic

[2 points]

3.2 Numerical resolution of Saint-Venant equations

The method that will be used to solve the problem (29) is called a splitting
method, because each equation will be solved one after one other, and not both
at the same time.

In the first section, one saw how to solve the first equation for h, if one has
the velocity u , and in the second part, one saw how to solve the second equation
for u, if one has the water depth h.

First, copy your functions continuity_build_matrix.m, continuity_apply_BC.m
and solve_momentum_transport.m to the folder Saint-Venant. Set θ = 0.1 in
solve_momentum_transport.m. Set εh = ui∆x

2 in continuity_build_matrix.m.

a) Change your boundary conditions of velocity to homogeneous Neumann
conditions at both boundaries. [1 point]

b) Describe the script Saint-Venant.m: the physical problem being modelled
and its parameters; the workflow of the script with brief notes about each
step. [2 points]

c) After what time does the water depth at x = 10 km exceed 9.5 m? (as-
suming the initial conditions provided in Saint-Venant.m) [1 point]

d) Based on which criteria can you say whether a steady state has been
reached or not? [1 point]

9


	Water depth transport (continuity equation)
	Discretization & stability assessment
	Staggered grid arrangement
	Numerical implementation

	Momentum transport
	Theoretical prerequisities
	Fixed-point algorithm
	Numerical implementation

	The Saint-Venant equations
	Theoretical prerequisites
	Numerical resolution of Saint-Venant equations


