
Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 7: Burger’s Equation

June 20, 2018

In this exercise we propose to use different techniques to solve the following non linear
problem: 

∂tu+ u ∂xu− ν∂xxu = 0 ,with t ∈ R+, x ∈ [0, 1], ν ∈ R+

u(t = 0, x) = 1− x+ e−
(x−0.5)2
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u(t, x = 0) = 1
∂
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u(t, x = 1) = 0

(1)

7.1) Solve numerically the problem by treating explicitly the non linear term, and implic-
itly the linear terms. (Functions from previous exercises can be used ... )
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7.2) We propose here to solve this problem by solving a non-linear problem through a
fixed point algorithm.
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• Put this problem in a fixed point function i.e. V k+1 = f(V k).

• Find the solution, implementing Algorithm 1 to solve one time step.

• See what happens for different relaxation factor θ (usually θ ≈ 0.01).

Algorithm 1 My fixed point

1: procedure getStepFixedPoint(Un,tol,kmax,θ )
2: V1 ← Un; k ← 0
3: while tol < δ and k < kmax do
4: V k+1 ← f(V k, Un)
5: δ ← norm(V k+1 − V k)/norm(V k)
6: V k+1 ← θV k+1 + (1− θ)V k

7: k ← k + 1

8: end do
9: return V k+1
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7.3) We propose in the following part to solve the Burger equation using the Newton
method. The non-linear function that one consider is then:
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• Differentiate (4) with respect to Vi−1,Vi and Vi+1. Find that the jacobian J is a
tridiagonal matrix. We recall that

J(V, Un) =
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• Solve numerically the problem, by implement a Newton method solving U for a
time step (cf. Algorithm 2).

Algorithm 2 My Newton

1: procedure getStepNewton(Un,tol,kmax )
2: V1 ← Un

3: k ← 1
4: while tol > δ and k < kmax do
5: F ← createV ectorF (V k, Un)
6: J ← createJacobian(V k, Un)
7: V k+1 = V k − J−1F
8: δ ← norm(V k+1 − V k)/norm(V k)
9: k ← k + 1

10: end do
11: Un+1 ← V k+1

12: return Un+1

7.4) What can you conclude concerning the convergence of each method, and how fast
each method converges to a solution ? Can you think of a case in which the Newton
method cannot be applied ?
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