
Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 7: Burger’s Equation

June 20, 2018

In this exercise we propose to use different techniques to solve the following non linear
problem: 

∂tu+ u ∂xu− ν∂xxu = 0 ,with t ∈ R+, x ∈ [0, 1], ν ∈ R+

u(t = 0, x) = 1− x+ e−
(x−0.5)2

0.02

u(t, x = 0) = 1
∂

∂x
u(t, x = 1) = 0

(1)

7.1) Solve numerically the problem by treating explicitly the non linear term, and implic-
itly the linear terms. (Functions from previous exercises can be used ... )

Un+1
i − Un

i

∆t
− ν

Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2
= −Un

i

Un
i+1 − Un

i−1

2∆x
(2)

7.2) We propose here to solve this problem by solving a non-linear problem through a
fixed point algorithm.

V k+1
i − Un

i

∆t
− ν

V k
i−1 − 2V k

i + V k
i+1

∆x2
= −V k

i

V k
i+1 − V k

i−1

2∆x
(3)

• Put this problem in a fixed point function i.e. V k+1 = f(V k).

• Find the solution, implementing Algorithm 1 to solve one time step.

• See what happens for different relaxation factor θ (usually θ ≈ 0.01).

Algorithm 1 My fixed point

1: procedure getStepFixedPoint(Un,tol,kmax,θ )
2: V1 ← Un; k ← 0
3: while tol < δ and k < kmax do
4: V k+1 ← f(V k, Un)
5: δ ← norm(V k+1 − V k)/norm(V k)
6: V k+1 ← θV k+1 + (1− θ)V k

7: k ← k + 1

8: end do
9: return V k+1

1



Exercise 7 322.061: Fundamentals of Numerical Thermo-Fluid Dynamics

7.3) We propose in the following part to solve the Burger equation using the Newton
method. The non-linear function that one consider is then:

Fi(V, U
n) =

Vi − Un
i

∆t
− ν Vi−1 − 2V +

i Vi+1

∆x2
+ Vi

Vi+1 − Vi−1

2∆x
. (4)

• Differentiate (4) with respect to Vi−1,Vi and Vi+1. Find that the jacobian J is a
tridiagonal matrix. We recall that

J(V, Un) =


∂V1F1 ∂V2F1 · · · ∂Vi

F1 · · · ∂VN
F1

...
...

...
∂V1Fi ∂V2Fi · · · ∂Vi

Fi · · · ∂VN
Fi

...
...

...
∂V1FN ∂V2FN · · · ∂Vi

FN · · · ∂VN
FN

 .

• Solve numerically the problem, by implement a Newton method solving U for a
time step (cf. Algorithm 2).

Algorithm 2 My Newton

1: procedure getStepNewton(Un,tol,kmax )
2: V1 ← Un

3: k ← 1
4: while tol > δ and k < kmax do
5: F ← createV ectorF (V k, Un)
6: J ← createJacobian(V k, Un)
7: V k+1 = V k − J−1F
8: δ ← norm(V k+1 − V k)/norm(V k)
9: k ← k + 1

10: end do
11: Un+1 ← V k+1

12: return Un+1

7.4) What can you conclude concerning the convergence of each method, and how fast
each method converges to a solution ? Can you think of a case in which the Newton
method cannot be applied ?

2


