Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 7: Burger's Equation

June 20, 2018

In this exercise we propose to use different techniques to solve the following non linear problem:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u-\nu \partial_{x x} u=0 \quad, \text { with } t \in \mathbb{R}^{+}, x \in[0,1], \nu \in \mathbb{R}^{+} \tag{1}\\
u(t=0, x)=1-x+e^{-\frac{(x-0.5)^{2}}{0.02}} \\
u(t, x=0)=1 \quad \frac{\partial}{\partial x} u(t, x=1)=0
\end{array}\right.
$$

7.1) Solve numerically the problem by treating explicitly the non linear term, and implicitly the linear terms. (Functions from previous exercises can be used ...)

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}-\nu \frac{U_{i-1}^{n+1}-2 U_{i}^{n+1}+U_{i+1}^{n+1}}{\Delta x^{2}}=-U_{i}^{n} \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \tag{2}
\end{equation*}
$$

7.2) We propose here to solve this problem by solving a non-linear problem through a fixed point algorithm.

$$
\begin{equation*}
\frac{V_{i}^{k+1}-U_{i}^{n}}{\Delta t}-\nu \frac{V_{i-1}^{k}-2 V_{i}^{k}+V_{i+1}^{k}}{\Delta x^{2}}=-V_{i}^{k} \frac{V_{i+1}^{k}-V_{i-1}^{k}}{2 \Delta x} \tag{3}
\end{equation*}
$$

- Put this problem in a fixed point function i.e. $V^{k+1}=f\left(V^{k}\right)$.
- Find the solution, implementing Algorithm 1 to solve one time step.
- See what happens for different relaxation factor θ (usually $\theta \approx 0.01$).

```
Algorithm 1 My fixed point
    procedure GETSTEPFIXEDPOINT \(\left(U^{n}\right.\), tol \(\left., k_{\max }, \theta\right)\)
        \(V_{1} \leftarrow U^{n} ; k \leftarrow 0\)
        while tol \(<\delta\) and \(k<k_{\text {max }}\) do
            \(V^{k+1} \leftarrow f\left(V^{k}, U^{n}\right)\)
            \(\delta \leftarrow \operatorname{norm}\left(V^{k+1}-V^{k}\right) / \operatorname{norm}\left(V^{k}\right)\)
            \(V^{k+1} \leftarrow \theta V^{k+1}+(1-\theta) V^{k}\)
            \(k \leftarrow k+1\)
        end do
        return \(V^{k+1}\)
```

7.3) We propose in the following part to solve the Burger equation using the Newton method. The non-linear function that one consider is then:

$$
\begin{equation*}
F_{i}\left(V, U^{n}\right)=\frac{V_{i}-U_{i}^{n}}{\Delta t}-\nu \frac{V_{i-1}-2 V_{i}^{+} V_{i+1}}{\Delta x^{2}}+V_{i} \frac{V_{i+1}-V_{i-1}}{2 \Delta x} . \tag{4}
\end{equation*}
$$

- Differentiate (4) with respect to V_{i-1}, V_{i} and V_{i+1}. Find that the jacobian J is a tridiagonal matrix. We recall that

$$
J\left(V, U^{n}\right)=\left(\begin{array}{cccccc}
\partial_{V_{1}} F_{1} & \partial_{V_{2}} F_{1} & \cdots & \partial_{V_{i}} F_{1} & \cdots & \partial_{V_{N}} F_{1} \\
\vdots & & & \vdots & & \vdots \\
\partial_{V_{1}} F_{i} & \partial_{V_{2}} F_{i} & \cdots & \partial_{V_{i}} F_{i} & \cdots & \partial_{V_{N}} F_{i} \\
\vdots & & & \vdots & & \vdots \\
\partial_{V_{1}} F_{N} & \partial_{V_{2}} F_{N} & \cdots & \partial_{V_{i}} F_{N} & \cdots & \partial_{V_{N}} F_{N}
\end{array}\right) .
$$

- Solve numerically the problem, by implement a Newton method solving U for a time step (cf. Algorithm 2).

```
Algorithm 2 My Newton
    procedure GETSTEPNEWTON \(\left(U^{n}, t o l, k_{\max }\right)\)
        \(V_{1} \leftarrow U^{n}\)
        \(k \leftarrow 1\)
        while tol \(>\delta\) and \(k<k_{\text {max }}\) do
            \(F \leftarrow \operatorname{createVector}_{F}\left(V^{k}, U^{n}\right)\)
            \(J \leftarrow \operatorname{createJacobian}\left(V^{k}, U^{n}\right)\)
            \(V^{k+1}=V^{k}-J^{-1} F\)
            \(\delta \leftarrow \operatorname{norm}\left(V^{k+1}-V^{k}\right) / \operatorname{norm}\left(V^{k}\right)\)
            \(k \leftarrow k+1\)
        end do
        \(U^{n+1} \leftarrow V^{k+1}\)
        return \(U^{n+1}\)
```

7.4) What can you conclude concerning the convergence of each method, and how fast each method converges to a solution? Can you think of a case in which the Newton method cannot be applied ?

