Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 4: Runge-Kutta Method

May 30, 2017
4.1) The following equation is given:

$$
\left\{\begin{array}{l}
y^{\prime}=y-t^{2}+1 \tag{1}\\
y(0)=0.5
\end{array}\right.
$$

The exact solution of this problem is $y=t^{2}+2 t+1-\frac{1}{2} e^{t}$. Find the value of y for $0 \leq t \leq 2$ using RK2 (step size of $h=0.5$) and compare the results (at each time-step) with the exact solution.
4.2) Considering equation (1), find the value of y for $0 \leq t \leq 2$ using RK4 (step size of $h=0.5$) and compare the results with the exact solution.
4.3) Write a computer code for question (4.1) which computes the value of y for $0 \leq t \leq 2$ using RK2. Use the following step sizes and compare the results at $y(t=2)$ with the exact solution:
$h_{1}=0.5, h_{2}=0.2, h_{3}=0.05$
4.4) Repeat the question (4.3) and apply RK4 with the same time step sizes.

Note: Some guides on this exercise: http://goo.gl/oxFCJz

