Fundamentals of Numerical Thermo-Fluid Dynamics 322.061

Exercise 6: Burger’s Equation

To be presented on June 26, 2019

In examples 6.1, 6.2, 6.3 we propose to use different techniques to solve the following
non linear problem:

O+ udyu — vOyu =0 ,on Q= 10,1]

_ (z—0.5)2

u(t=0,2) =e 002 (1)

u(t,z =0)=0 %u(t,le):(J

where the diffusivity v = 1072

6.1) Solve the problem with second-order centered finite differences in space and Euler
method in time. Treat explicitly the non linear term, and implicitly the linear term
(semi-implicit approach):
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Write a MatLab code to compute the evolution of u on a grid of N = 1000 points
with time-step At = 0.001.

6.2) We propose here to solve this problem by treating the non-linear term implicitly
through a fixed point algorithm.
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e Put this problem in a fixed point function i.e. V1 = f(V¥).

e Write a MatLab code to compute the evolution of u on a grid of N = 1000
points with time-step At = 0.001.

e See what happens for different relaxation factor 6 (usually 6 ~ 0.01).
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Algorithm 1 My fixed point
1: procedure GETSTEPFIXEDPOINT(u" tol,kyas,0 )
2: Vieu" k<« 0

3: while tol > ¢ and k < k,,,,, doO

4: VL o f(Vk,un)

5: § < norm (VL —V*) /norm(VF)
6: VEFL « gVFFL 4 (1 — 9)VE

7 k+—k+1

8: end do

9:

return V5!

6.3) We propose in the following part to solve the Burger equation using the Newton
method. The non-linear function that one consider is then:

Vimup Vi -2
F(Vour) = = -y

Vigr = Viaa
. 4
2Azx (4)

e Differentiate (@) with respect to V;_1,V; and V;;;. Find that the jacobian J is a
tridiagonal matrix. We recall that

o Fi Op Py --- OuFr - Oy I
J(‘/’u”): aVle 8VQFZ aVZE aVNFz
8V1FN 6V2FN al/iFN OVNFN

e Solve the problem numerically with Newton method (Algorithm [2]) on a grid of
N = 1000 points with time-step At = 0.001.

Algorithm 2 My Newton

1: procedure GETSTEPNEWTON(u" tol,kpmaz )
2 Vi+u"

3 k<1

4: while tol > 0 and k < k,,q, do

5: F « createVectorp(V* um)

6 J < createJacobian(V*, u")

7 Vk-i—l — Vlc _ J—lF

8 § « norm (VL —V*) /norm(VF)
9: k<« k+1

10: end do

11: oyt YR

12:  return u"!
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6.4)

6.5)

Solve the two-dimensional Burger’s equation

O+ w0y — V(O + Oyy)u =0 ,on Q= 1[0,1] x [01]

02 02
u(t=0,2,y) = 1072~ oo e*(yo%j) (5)

u(t, 002) = u(t = 0,00)

with diffusivity v = 1 on a grid of 50 x 50 points with time-step At = 10~ using the
semi-implicit Euler scheme in time and centered finite differences in space. You may
use the enclosed template.

Find numerically the elliptic fixed point (= center of vortex) of the following steady

flow: 5
u(z,y) =y

v(z,y) = —2° on Q=10,1] x [0,1]
(=) "
()-(s) ®

Use the fixed-point algorithm with relaxation factor # = 0.1 and the Newton-Raphson
method. Then vary ¢ and compare the convergence of the two methods. You may
use the enclosed template.

(6)

such that

starting from the initial guess

Bonus examples

B.1)

B.2)

Compute the streamline from example 4.3 with 2nd order Adams-Moulton scheme

—n —n 1 £rn —n Fran —n
g =g+ A (f(t LT+ (g )) (9)
Compare the accuracy to the second order Runge-Kutta method.

Recall the convection-diffusion equation from example 5.3

T = —ud, T+ D 0,, T ,onQ=10,1]
oT 10
(ﬁ-ﬁ)T—D% =0 on 09 (10
which models the transport of a passive scalar T" by a flow u. Now assume that the
flow velocity varies in space as

u(z) =z(1 —x) (11)

Solve the transport of 7' starting from the initial condition

_ (2—0.5)2

T(t=0,z)=e 00 (12)

using second-order central finite differences with Az = 0.01 and Crank-Nicolson
scheme with At = 0.01. Take a lower diffusivity D = 0.01 and show that the total
amount of 7" in the domain is no longer conserved. Explain.



