Fundamentals of Numerical Thermo-Fluid Dynamics 322.061 Examples for home preparation

Exercise 4: Explicit time-stepping schemes

To be presented on June 12, 2019
4.1 We want to solve the advection of passive scalar by time dependent velocity

$$
\left\{\begin{array}{l}
\partial_{t} u=-\cos (2 \pi t) \partial_{x} u \quad, \text { on } \Omega=[0,1] \tag{1}\\
u(t=0, x)=e^{-\frac{(x-0.5)^{2}}{0.04}} \\
u(t, x=0)=u(t, x=1)
\end{array}\right.
$$

in one spatial dimension on a grid with uniform spacing Δx. Semi-discretization with second order central differences in space leads to an initial value problem

$$
\begin{equation*}
\partial_{t} \vec{u}=-\cos (2 \pi t) \mathbf{A} \vec{u} \tag{2}
\end{equation*}
$$

where \mathbf{A} is the matrix form of the discrete first derivative.
Compute the solution at $t=0.5$ in MatlLab, using the leap-frog scheme

$$
\begin{equation*}
\frac{u^{\overrightarrow{n+1}}-u^{\overrightarrow{n-1}}}{2 \Delta t}=-\cos \left(2 \pi t^{n}\right) \mathbf{A} \vec{u}^{n} \tag{3}
\end{equation*}
$$

with $\Delta x=0.01, \Delta t=0.01$. Compare the result with the exact analytical solution and to the result of the first-order implicit Euler scheme. You may implement your code in the enclosed template function.
4.2 Solve the problem from the previous question with predictor-corrector scheme

$$
\begin{align*}
\overrightarrow{u^{\prime}} & =\overrightarrow{u^{n}}-\Delta t \cos \left(2 \pi t^{n}\right) \mathbf{A} \overrightarrow{u^{n}} \tag{4}\\
\overrightarrow{u^{n+1}} & =\overrightarrow{u^{n}}-\frac{1}{2} \Delta t \mathbf{A}\left(\cos \left(2 \pi t^{n}\right) \overrightarrow{u^{n}}+\cos \left(2 \pi t^{n+1}\right) \overrightarrow{u^{\prime}}\right) \tag{5}
\end{align*}
$$

4.3 Compute the streamline of a steady rigid-body vortex

$$
\begin{equation*}
\dot{\vec{x}} \equiv \vec{u}(\vec{x})=\binom{y}{-x} \tag{6}
\end{equation*}
$$

with second-order Runge-Kutta method, starting from the seeding point $\vec{x}=(1,0)^{T}$ with time step $\Delta t=0.5$. Then reduce the time step until you reach physical result.

