

Rechenübung Strömungslehre 322.040

Institut für Strömungsmechanik und Wärme
übertragung $$\rm E322$$

Christian Hauser

12. November 2010

Π

Inhaltsverzeichnis

1 Potentialtheorie							
	1.1	Rankine Körper.	1				
	1.2	Potentialwirbel über Ebene.	2				
	1.3	Unsymmetrisches, angestelltes Parabelbogenzweieck.	3				
	1.4	Doppelquellenanordnung (ebenes Problem).	4				
	1.5	Quelle vor einer Wand (ebenes Problem)	5				
	1.6	Senke vor einer Wand mit Anströmung	6				
	1.7	Halbkörper.	7				
	1.8	Ebene Parabelumströmung.	8				
	1.9	Unsymmetrische, ebene Parabelumströmung	9				
	1.10	Rauchring	10				
	1.11	Zylinderumströmung	11				
	1.12	Profiltheorie – Tragflügel ohne Anstellwinkel	12				
	1.13	Profiltheorie – Tragflügel ohne Auftrieb	13				
	1.14	Elliptische Zirkulationsverteilung	15				
	1.15	Einfacher Flugzeugentwurf	16				
2	Ebe	ne, kompressible Strömung	19				
	2.1	Wellige Wand. \ldots	19^{-1}				
	2.2	Kanal-Überschallströmung (lineare Theorie).	20				
	2.3	Angestelltes Rautenprofil	21				
	2.4	Bucklige Wand.	22				
	2.5	Überschallströmung – Lineare Theorie (Ackeret)	23				
	2.6	Kanal-Überschallströmung (lineare Theorie).	24				
3	Nicł	ntlineare Theorie f. Überschallströmung	25				
	3.1	Rautenprofil in Überschallströmung.	25				
	3.2	Umlenkung eines Überschallfreistrahls.	26				
	3.3	Schwingender Freistrahl.	27				
	3.4	Kanaleinlauf.	28				
	3.5	Rampen	29				
4	Dün	ne Reibungsschichten	31				
	4.1	Laminare selbstähnliche Grenzschichten	31				
	4.2	Grenzschichttheorie Keilströmung	31				
		~					

INHALTSVERZEICHNIS

	4.3	Lokale, ebene Staupunktströmung.	32
	4.4	Schmierspalttheorie.	32
	4.5	Laminare Plattengrenzschicht	34
5	Anł	nang	37
	5.1	Colebrook-Diagramm.	38
	5.2	Isentropentabelle	39
	5.3	Charakteristikendiagramm	40
	5.4	Tabelle zum Charakteristikendiagramm für Luft ($\kappa = 1, 4$)	41
	5.5	Stoßpolarendiagramm	42

IV

Kapitel 1

Potentialtheorie

1.1 Rankine Körper.

Man untersuche die ebene, stationäre und inkompressible Umströmung eines Rankine-Körpers durch Überlagerung einer Quelle im Ursprung und einer Parallelströmung in *x*-Richtung.

Gesucht sind:

- 1. Potential funktion ϕ und Stromfunktion $\psi,$
- 2. die Geschwindigkeitskomponenten u und v,
- 3. die Koordinaten des Staupunkts S,
- 4. die Gleichung der Stromlinie durch den Staupunkt S,
- 5. die Dicke *b* des Körpers für $x \to +\infty$,
- 6. die Druckverteilung am Rankine-Körper in Form des Druckbeiwertes c_p ,
- 7. die Kraft \vec{F}_Q , mit der die Quelle gehalten werden müßte,
- 8. die Kraft $\vec{F}_{H},$ mit der ein materiell ausgeführter Körper zu halten wäre.

$$\Phi(r,\varphi) = u_{\infty}r\cos\varphi + \frac{q}{2\pi}\ln r \qquad \Psi(r,\varphi) = u_{\infty}r\sin\varphi + \frac{q}{2\pi}(\varphi + 2\pi n)$$

$$u(r,\varphi) = u_{\infty} + \frac{q}{2\pi r}\cos\varphi \qquad v(r,\varphi) = \frac{q}{2\pi r}\sin\varphi$$

$$x_{S} = -\frac{q}{2\pi u_{\infty}} \quad y_{S} = 0 \qquad r_{K}(\varphi) = \frac{q}{2\pi u_{\infty}}\frac{\pi - \varphi}{\sin\varphi} = r_{S}\frac{\pi - \varphi}{\sin\varphi}$$

$$b = \frac{q}{u_{\infty}} \qquad c_{pK} = -\frac{\sin\left(2\varphi\right)}{\pi - \varphi} - \left(\frac{\sin\varphi}{\pi - \varphi}\right)^{2}$$

$$\frac{\vec{F}_{Q}}{t} = \rho u_{\infty}^{2}b\binom{1}{0} \qquad \frac{F_{Hx}}{t} = p_{\infty}b$$

1.2 Potentialwirbel über Ebene.

Ein zweidimensionaler Potentialwirbel der Stärke Γ befindet sich im Abstand h oberhalb einer Ebene. Im Unendlichen sei der Druck p_{∞} und die Geschwindigkeit u_{∞} parallel zur Ebene. Die Flüssigkeit sei inkompressibel und reibungsfrei. (Anwendung des Spiegelungsprinzipes)

Gesucht sind:

- 1. Stromfunktion und Geschwindigkeitspotential für diese Anordnung,
- 2. die Geschwindigkeitskomponenten,
- 3. der Druckbeiwert $c_p(x, 0)$ an der Ebene,
- 4. die Kraft pro Tiefeneinheit, die auf die Ebene wirkt, wenn auf der Unterseite der Druck p_{∞} herrscht zu welcher Beziehung vereinfacht sich der Ausdruck für die Kraft für $h \gg 1$?
- 5. Diskussion des Stromlinienbildes.
- 6. Wie schnell müssen sich zwei gleichstarke, gegendrehende parallele Wirbelfäden bewegen, damit sie auf zur *x*-Achse parallelen Bahnen laufen?

1.3 Unsymmetrisches, angestelltes Parabelbogenzweieck.

Gegeben sei ein dünnes Profil mit den Koordinatenfunktionen $y_o(x) = 16\tau x (1-x)/3$ und $y_u(x) = -8\tau x (1-x)/3$ für die Ober- und Unterseite, der Dickenparameter τ sei $\ll 1$. Das Profil wird mit der Geschwindigkeit \vec{v}_{∞} unter dem Winkel $\varepsilon \ll 1$ angeströmt.

Gesucht sind die Geschwindigkeitsstörungen und der Druckbeiwert c_p an der Profilober- und -unterseite, sowie der Auftriebsbeiwert c_A .

Hinweise:

$$\oint_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} \, \mathrm{d}\xi = \frac{\pi}{2} \qquad \qquad \oint_{0}^{1} \xi \sqrt{\frac{\xi}{1-\xi}} \, \mathrm{d}\xi = \frac{3\pi}{8}$$
$$\int_{0}^{1} \sqrt{x(1-x)}x = \frac{\pi}{8} \qquad \qquad \int_{0}^{1} \sqrt{\frac{1-x}{x}}x = \frac{\pi}{2}$$

$$\oint_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-x} d\xi = -\frac{\pi}{2} (2x-1)$$
$$\oint_{0}^{1} \frac{\xi\sqrt{\xi(1-\xi)}}{\xi-x} d\xi = -\frac{3\pi}{8} \left[1 - 4 (1-x) + \frac{8}{3} (1-x)^{2} \right]$$

$$\frac{u-u_{\infty}}{u_{\infty}}(x,0^{\pm}) = \frac{4\tau}{\pi} \left(2 + (2x-1)\ln\left|\frac{x-1}{x}\right| \right) \pm \frac{8\tau}{3}\sqrt{x(1-x)} \pm \varepsilon \sqrt{\frac{1-x}{x}}$$
$$c_p(x,0^{\pm}) = -2\frac{u-u_{\infty}}{u_{\infty}}(x,0^{\pm})$$
$$c_A = \frac{4\pi\tau}{3} + 2\pi\varepsilon$$

1.4 Doppelquellenanordnung (ebenes Problem).

Man betrachte zwei Quellen im Abstand L mit den Quellstärken q_1 und q_2 ($q_1 > q_2$).

- 1. Ermitteln Sie Strom- und Potentialfunktion und daraus die Geschwindigkeitskomponenten für dieses Problem (inkompressibel, reibungsfrei).
- 2. Wo liegt der Staupunkt, wie lautet die Gleichung für die Trennstromlinie (Polarkoordinaten r, φ)?
- 3. Man gebe die Parameterdarstellung $r(\varphi)$ der Trennstromlinie an und bestimme den Öffnungswinkel des entstehenden Halbkörpers für $r \to \infty$.

$$\begin{split} \Phi(r,\varphi) &= \frac{q_1}{2\pi} \ln r_1 + \frac{q_2}{2\pi} \ln r_2 \\ \Psi(r,\varphi) &= \frac{q_1}{2\pi} \left(\varphi_1 + 2\pi n\right) + \frac{q_2}{2\pi} \left(\varphi_2 + 2\pi n\right) \\ u &= \frac{q_1}{2\pi} \frac{x}{x^2 + y^2} + \frac{q_2}{2\pi} \frac{x - L}{\left(x - L\right)^2 + y^2} \\ v &= \frac{q_1}{2\pi} \frac{y}{x^2 + y^2} + \frac{q_2}{2\pi} \frac{y}{\left(x - L\right)^2 + y^2} \\ x_S &= \frac{Lq_1}{q_1 + q_2} \quad y_S = 0 \\ q_2\pi &= q_1 \arctan \frac{y}{x} + q_2 \arctan \frac{y}{x - L} \\ r &= \frac{L \sin \left(\frac{q_1}{q_2}\varphi\right)}{\sin \left(\left(\frac{q_1}{q_2} + 1\right)\varphi\right)} \\ \varphi_\infty &= \frac{\pi}{1 + q_1/q_2} \end{split}$$

1.5 Quelle vor einer Wand (ebenes Problem).

Gegeben ist eine Quelle der Quellstärke q im Abstand a vor einer Wand. Man bestimme mit Hilfe der Spiegelungsmethode die Potential- und Stromfunktion für diese Anordnung und daraus die Geschwindigkeits- und Druckverteilung im gesamten Halbraum (die Strömung sei inkompressibel und reibungsfrei). Wie sieht die Geschwindigkeitsund Druckverteilung an der Wand bzw. im Unendlichen aus? Weiters ermittle man die Haltekraft der Quelle durch geeignete Wahl eines Kontrollvolumens.

Hinweis:

$$\Phi(r,\varphi) = \frac{q}{4\pi} \left\{ \ln\left[(x+a)^2 + y^2 \right] + \ln\left[(x-a)^2 + y^2 \right] \right\}$$

$$\Psi(r,\varphi) = \frac{q}{2\pi} \left(\arctan\frac{y}{x+a} + \arctan\frac{y}{x-a} \right)$$

$$u(x \ge 0, y) = \frac{q}{2\pi} \left[\frac{x+a}{(x+a)^2 + y^2} + \frac{x-a}{(x-a)^2 + y^2} \right]$$

$$v(x \ge 0, y) = \frac{qy}{2\pi} \left[\frac{1}{(x+a)^2 + y^2} + \frac{1}{(x-a)^2 + y^2} \right]$$

$$p(x \ge 0, y) = p_{\infty} - \frac{\varrho}{2} \frac{q^2}{4\pi^2} \left\{ \left[\frac{x+a}{(x+a)^2 + y^2} + \frac{x-a}{(x-a)^2 + y^2} \right]^2 + \left[\frac{y}{(x+a)^2 + y^2} + \frac{y}{(x-a)^2 + y^2} \right]^2 \right\}$$

$$u(0,y) = 0 \qquad v(0,y) = \frac{q}{\pi} \frac{y}{a^2 + y^2} \qquad p(0,y) = p_{\infty} - \frac{\varrho}{2} \frac{q^2}{\pi^2} \left(\frac{y}{a^2 + y^2}\right)^2$$
$$u(r \to \infty) = 0 \qquad v(r \to \infty) = 0 \qquad p(r \to \infty) = p_{\infty}$$
$$\vec{F} = \frac{\varrho \pi}{4a} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

1.6 Senke vor einer Wand mit Anströmung

Eine Senke der Stärke -q ist mit dem Abstand h über einer waagrechten Wand angebracht. Diese Senke wird waagrecht mit der Geschwindigkeit u_{∞} bei dem Druck p_{∞} angeströmt.

Gesucht sind:

- 1. Das komplexe Potential F(z).
- 2. Die Potential- und Stromfunktion Φ und Ψ .
- 3. Die Geschwindigkeitskomponenten u und v in x- und y-Richtung.
- 4. Die Staupunkte S_1 und S_2 auf der x-Achse.
- 5. Das Stromlinienbild mit Staupunkten, Trennstromlinie, ...
- 6. Die Breite *b über* der Wand des entstehenden Halbkörpers für $x \to \infty$. Hinweis: Benutzen Sie die Massenbilanz!
- 7. Bestimmen Sie den c_p -Wert entlang der Wand.

Hinweis: Ausdrücke müssen nicht vereinfacht werden.

8. Bei gegebenen q und u_{∞} gibt es ab einem bestimmten Wert von h keine physikalisch sinnvollen Lösungen für die Staupunkte auf der x-Achse. Wie groß ist dieser kritische Wert hat h_c ? Was bedeutet das physikalisch, d.h. wie wird das Stromlinienbild ausschauen.

$$F(z) = u_{\infty}z - \frac{q}{2\pi}\ln(z - ih) - \frac{q}{2\pi}\ln(z + ih)$$

$$\Phi = u_{\infty}r\cos\varphi - \frac{q}{2\pi}\ln r_{1}r_{2}$$

$$u = u_{\infty} - \frac{q}{2\pi}\left[\frac{\cos\varphi_{1}}{r_{1}} + \frac{\cos\varphi_{2}}{r_{2}}\right]$$

$$v = -\frac{q}{2\pi}\left[\frac{\sin\varphi_{1}}{r_{1}} + \frac{\sin\varphi_{2}}{r_{2}}\right]$$

$$v = -\frac{q}{2\pi}\left[\frac{\sin\varphi_{1}}{r_{1}} + \frac{\sin\varphi_{2}}{r_{2}}\right]$$

$$k_{S_{1},S_{2}} = \frac{q}{2\pi u_{\infty}} \pm \sqrt{\frac{q^{2}}{4\pi^{2}u_{\infty}^{2}} - h^{2}}$$

$$b = \frac{q}{u_{\infty}}$$

$$c_{p} = 2\frac{q}{\pi u_{\infty}}\frac{x}{x^{2} + h^{2}} - \left(\frac{q}{\pi u_{\infty}}\frac{x}{x^{2} + h^{2}}\right)^{2}$$

$$h_{c} = \frac{q}{2\pi u_{\infty}}$$

Halbkörper. 1.7

Gesucht sind die Geschwindigkeitsstörungen und der Druckbeiwert an den Oberflächen folgender Profile:

- 1. Parabelhalbkörper: $h_d(x) = (0, 2x(1-x), 0.5)$ für $(x < 0, 0 \le x \le 0.5, x > 0.5)$,
- 2. Keilhalbkörper: $h_d(x) = (0, x, 0.5)$ für $(x < 0, 0 \le x \le 0.5, x > 0.5)$.

Skizzieren Sie die Ergebnisse!

zur Kontrolle:

Parabelhalbkörper:

$$c_p = -\frac{4\tau}{\pi} \left(1 + (2x - 1) \ln \left| \frac{x - 0.5}{x} \right| \right)$$
$$c_p = \frac{2\tau}{\pi} \ln \left| \frac{x - 0.5}{x} \right|$$

Keilhalbkörper:

$$_{p} = \frac{2\tau}{\pi} \ln \left| \frac{x - 0.5}{x} \right|$$

1.8 Ebene Parabelumströmung.

Man zeige, daß das komplexe Potential

$$F(z) = u_{\infty} \left(z \mp i \sqrt{2R} \sqrt{z} \right) , \quad y_{>}^{<} 0$$

die symmetrische Umströmung einer Parabel beschreibt, deren Scheitelkrümmungskreis den Radius R hat. (Körperkontur, Geschwindigkeitskomponenten, Geschwindigkeit und Druckverteilung an der Kontur, Staupunkt,...)

Hinweis: Zur Bestimmung der Stromfunktion benutze man die Exponentialdarstellung von $\sqrt{z} = \sqrt{r} e^{i\gamma/2}$ und Halbwinkelsätze der trigonometrischen Funktionen.

1.9 Unsymmetrische, ebene Parabelumströmung.

Man zeige, daß die Superposition des komplexen Potentials

$$F(z) = u_{\infty} \left(z \mp i \sqrt{2R} \sqrt{z} \right) , \quad y_{>}^{<} 0$$

und einer Kantenumströmung der Form

$$F(z) = u_{\infty}\sqrt{2C\sqrt{z}}$$

eine unsymetrische Umströmung einer Parabel beschreibt. (Körperkontur, Geschwindigkeitskomponenten, Geschwindigkeit und Druckverteilung an der Kontur, Staupunkt,...)

1.10 Rauchring.

Man betrachte die vereinfachte Darstellung eines Rauchringes mit dem Durchmesser d (Skizze). Die geschlossene Wirbellinie habe die Zirkulation $\Gamma < 0$. Gesucht ist die auf der z-Achse im Abstand -b vom Ursprung induzierte Geschwindigkeit \vec{v} (Richtung und Betrag).

Hinweis: Anwendung des Gesetzes von Biot-Savart.

1.11 Zylinderumströmung

Durch das komplexe Potential $F(z) = u_{\infty} (z + R^2/z)$ wird die stationäre, inkompressible und reibungsfreie Umströmung eines Zylinders mit dem Radius R beschrieben. Die ungestörte Anströmgeschwindigkeit ist u_{∞} .

Man bestimme die *Strom- und Teilchenbahnlinien* für den Fall der stationären Zy-linderumströmung.

1.12 Profiltheorie – Tragflügel ohne Anstellwinkel

Ein Parabelbogenzweick mit $y_{o,u} = \pm \tau (x - x^2)$ soll als symmetrisches Tragflügelprofil Verwendung finden. Es arbeitet in einer Strömung parallel zur *x*-Achse mit einer Anströmgeschwindigkeit u_{∞} .

Berechnen Sie:

- 1. Welche Effekte werden Sie berücksichtigen? (+Begründung)
- 2. Den Profildickenanteil h_d und Profilwölbanteil h_w .
- 3. Die Geschwindigkeitsstörung $v(x, 0^{\pm})$ an der Profilober- und -unterseite in der Form v/u_{∞} .
- 4. Das Störpotential für den Dickeneffekt $\varphi_{1d,x}(x, 0^{\pm})$.
- 5. Die Geschwindigkeitsstörung $(u u_{\infty})/u_{\infty}$ an der Profilober- und -unterseite.
- 6. Die Auftriebs- und Widerstandsbeiwerte c_A und c_W ? Begründen Sie diese Werte.

zur Kontrolle: Nur den Dickeneffekt. Kein Wölbeffekt, da symmetrisch. Kein Anstelleffekt, da $\varepsilon = 0$.

$$h_d(x) = x - x^2 \qquad h_w(x) = 0$$

$$c_A = 0 \qquad c_W = 0$$

$$\frac{v}{u_{\infty}}(x,0^{\pm}) = \pm \tau (1-2x)$$
$$\varphi_{1d,x}(x,0^{\pm}) = \frac{1}{\pi} \left[2 + (2x-1) \ln \left| \frac{x-1}{x} \right| \right]$$
$$\frac{u-u_{\infty}}{u_{\infty}}(x,0^{\pm}) = \frac{\tau}{\pi} \left[2 + (2x-1) \ln \left| \frac{x-1}{x} \right| \right]$$

1.13 Profiltheorie – Tragflügel ohne Auftrieb

Ein unsymmetrisches Parabelbogenzweieck der Dicke $\tau \ll 1$ und den Koordinatenfunktionen der Oberseite, $y_o = \tau C_o x(1-x)$, und Unterseite, $y_u = -\tau C_u x(1-x)$, wird unter dem Anstellwinkel $\varepsilon \ll 1$ mit $\vec{v}_{\infty} = (u_{\infty}, v_{\infty})$ angeströmt (siehe Skizze).

Gesucht sind:

- 1. Welche Effekte kommen bei der Berechnung des Auftriebsbeiwertes c_A zum Tragen? Welchen Einfluß hat insbesonders der Dickeneffekt? (+Begründung)
- 2. Der Profildickenanteil h_d und der Profilwölbanteil h_w .
- 3. Die Geschwindigkeitsstörung $v(x, 0^{\pm})/u_{\infty}$ an der Profilober- und -unterseite.
- 4. Das Störpotential für den Dickeneffekt $\varphi_{1d,x}(x, 0^{\pm})$.
- 5. Die Geschwindigkeitsstörung $(u u_{\infty})/u_{\infty}$ an der Profilober- und -unterseite, die für den Auftrieb verantwortlich ist.
- 6. Den Auftriebsbeiwert c_A .
- 7. Wie muß das Profil geformt sein $(C_o, C_u = ?)$, damit auf das Profil kein Nettoauftrieb (d.h. $c_A = 0$) wirkt.

Hinweis:

$$DE: \quad \varphi_{1d,x}(x,0^{\pm}) = \frac{1}{\pi} \oint_{0}^{1} \frac{h'_{d}(\xi)}{x-\xi} \,\mathrm{d}\xi \qquad AE: \quad \varphi_{2,x}(x,0^{\pm}) = \pm \sqrt{\frac{1-x}{x}}$$

$$WE: \quad \varphi_{1w,x}(x,0^{\pm}) = \mp \frac{1}{\pi\sqrt{x(1-x)}} \left[\oint_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} h'_{w}(\xi) \,\mathrm{d}\xi + \oint_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-x} h'_{w}(\xi) \,\mathrm{d}\xi \right]$$

$$\oint_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} (1-2\xi) \,\mathrm{d}\xi = -\frac{\pi}{4} \qquad \oint_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-x} (1-2\xi) \,\mathrm{d}\xi = 2\pi \left(\frac{1}{8} - x + x^{2}\right)$$

KAPITEL 1. POTENTIALTHEORIE

$$\int_{0}^{1} \sqrt{\frac{1-x}{x}} \, \mathrm{d}x = \frac{\pi}{2} \qquad \qquad \int_{0}^{1} \sqrt{x(1-x)} \, \mathrm{d}x = \frac{\pi}{8}$$

zur Kontrolle:

Kein Dickeneffekt, da auftriebsunwirksam. Wölbeffekt, da asymmetrisch. Anstelleffekt, da $\varepsilon \neq 0.$

$$h_d(x) = \frac{C_o + C_u}{2} x (1 - x) \qquad h_w(x) = \frac{C_o - C_u}{2} x (1 - x)$$
$$\frac{v}{u_\infty}(x, 0^+) = +C_o \tau (1 - 2x) \qquad \qquad \frac{v}{u_\infty}(x, 0^-) = -C_u \tau (1 - 2x)$$

$$\varphi_{1d,x}(x,0^{\pm}) = \frac{C_o - C_u}{2\pi} \left[2 + (2x - 1) \ln \left| \frac{x - 1}{x} \right| \right]$$
$$\frac{u - u_\infty}{u_\infty}(x,0^{\pm}) = \frac{\tau}{\pi} \left[2 + (2x - 1) \ln \left| \frac{x - 1}{x} \right| \right] \pm \tau (C_o - C_u) \sqrt{x(1 - x)} \pm \varepsilon \sqrt{\frac{1 - x}{x}}$$
$$c_A = \tau \pi \frac{C_o - C_u}{2} + 2\pi \varepsilon$$
$$C_o = 2 - \frac{2\varepsilon}{\tau} \qquad C_u = 2 + \frac{2\varepsilon}{\tau}$$

1.14 Elliptische Zirkulationsverteilung

Man betrachte einen Tragflügel endlicher Streckung. Dieser weise die elliptische Zirkulationsverteilung $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$ auf.

- 1. Berechnen Sie die von der Zirkulationsverteilung induzierte Abwärtsgeschwindigkeit $w_i(y)$
- 2. geben Sie den induzierten Anstellwinkel an sowie seinen Zusammenhang mit dem geometrischen bzw. effektiven Anstellwinkel.
- 3. Berechnen Sie Auftrieb und induzierten Widerstand für diese Zirkulationsverteilung.

Hinweis:
$$\int_{0}^{\pi} \frac{\cos n\phi}{\cos \phi - \cos \phi_0} = \pi \frac{\sin n\phi_0}{\sin \phi_0}$$

$$\alpha_i = \frac{\Gamma_0}{2bU_{\infty}} \quad \text{wobei} \quad \alpha_g = \alpha_{eff} + \alpha_i$$
$$w_i(y) = -\frac{\Gamma_0}{2b} \quad A = \frac{\pi}{4}\varrho U_{\infty}\Gamma_0 b \quad W = \frac{\varrho\pi}{8}\Gamma_0^2$$

1.15 Einfacher Flugzeugentwurf

Es ist ein Modellflugzeug zu entwerfen. Es ist für eine Durchschnittsgeschwindigkeit im Horizontalflug von $90kmh^{-1}$ auszulegen bei einem Gewicht von 5kg. Das Profil der Tragflächen soll vereinfacht mit den Funktionen $y_u = 0$ und $y_o = \tau x(1-x)$ beschrieben werden, der Dickenparameter ist dabei $\tau = 0.1$, der Anstellwinkel soll $\varepsilon = 0.1rad$ betragen. Das gesamte Gewicht soll von den Tragflächen mit einer Spannweite von 1.8mgetragen werden. (Die Tragflächen können zur einfacherern Rechnung als durchgehend angenommen werden) Die Dichte der Luft möge $1.23kgm^{-3}$ sein.

- 1. Bestimmen Sie gemäß der Theorie für dünne Profile die nötige Flügeltiefe.
- 2. Geben sie da die zugehörige Zirkulationsverteilung $\Gamma(y)$ an.
- 3. Gegen Sie nun von einem Tragflügel endlicher Streckung aus. Bei gleicher Spannweite soll die Zirkulationsverteilung nun elliptisch sein, also der Struktur $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$ folgen. Bestimmen Sie nun die Konstante Γ_0 .
- 4. Geben Sie den nun vorliegenden effektiven Anstellwinkel an.
- 5. Bestimmen Sie für diesen Tragflügel endlicher Streckung nun die Profiltiefe L(y), um diese Zirkulationsverteilung zu erhalten.
- 6. Welche Antriebsleistung ist nötig um die geforderte Durchschnittsgeschwindigkeit trotz des induzierten Widerstandes zu halten?

Hinweis:

$$DE: \quad \varphi_{1d,x}(x,0^{\pm}) = \frac{1}{\pi} \oint_{0}^{1} \frac{h'_{d}(\xi)}{x-\xi} \,\mathrm{d}\xi \qquad AE: \quad \varphi_{2,x}(x,0^{\pm}) = \pm \sqrt{\frac{1-x}{x}}$$
$$WE: \quad \varphi_{1w,x}(x,0^{\pm}) = \mp \frac{1}{\pi\sqrt{x(1-x)}} \left[\oint_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} h'_{w}(\xi) \,\mathrm{d}\xi + \oint_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-x} h'_{w}(\xi) \,\mathrm{d}\xi \right]$$
$$\int_{0}^{\pi} \frac{\cos n\phi}{\cos \phi - \cos \phi_{0}} = \pi \frac{\sin n\phi_{0}}{\sin \phi_{0}}$$
$$\int_{0}^{1} \sqrt{\frac{\xi}{1-\xi}} (1-2\xi) \,\mathrm{d}\xi = -\frac{\pi}{4} \qquad \int_{0}^{1} \frac{\sqrt{\xi(1-\xi)}}{\xi-x} (1-2\xi) \,\mathrm{d}\xi = 2\pi \left(\frac{1}{8} - x + x^{2}\right)$$
$$\int_{0}^{1} \sqrt{\frac{1-x}{x}} \,\mathrm{d}x = \frac{\pi}{2} \qquad \int_{0}^{1} \sqrt{x(1-x)} \,\mathrm{d}x = \frac{\pi}{8}$$

$$L = \frac{4mg}{\varrho u_{\infty}^2 b\pi} \frac{1}{\tau + 4\varepsilon} = 0.09m$$

$$\Gamma(y) = \frac{mg}{\varrho u_{\infty} b} = 0.886m^2 s^{-1}$$

$$\Gamma_0 = \frac{4mg}{\pi \varrho u_{\infty} b} = 1.128$$

$$\varepsilon_{eff} = \varepsilon - \frac{2mg}{\pi b^2 \varrho u_{\infty}^2} = 0.00886rad = 5.011^{\circ}$$

$$L(y) = \frac{16mg}{b\pi^2 \varrho u_{\infty}^2} \frac{\sqrt{1 - \frac{4y^2}{b^2}}}{\tau + 4(\varepsilon - \frac{2mg}{\pi b^2 \varrho u_{\infty}^2})}$$

$$P = \frac{2m^2 g^2}{\pi \varrho u_{\infty} b^2} = 15.373W.$$

KAPITEL 1. POTENTIALTHEORIE

Kapitel 2

Ebene, kompressible Strömung

2.1 Wellige Wand.

Es sind die Geschwindigkeitsstörungen in einer Strömung über einer welligen Wand für $y \ge 0$ zu bestimmen. Die Wand sei durch die Funktion $y_w(x) = \tau \sin(2\pi x)$ gegeben, der "Dickenparameter" τ ist klein gegen 1.

Man löse das gegebene Problem für

1. inkompressible Strömung, d.h. $M_{\infty} \ll 1$, durch direkte Lösung der Laplacegleichung und mit Hilfe der Profiltheorie (Singularitätenbelegung), Hinweise:

$$\int_{0}^{\infty} \frac{x^{\beta-1} \sin(ax - \beta\pi/2)}{\gamma^2 + x^2} \, \mathrm{d}x = -\frac{\pi}{2} \gamma^{\beta-2} \mathrm{e}^{-a\gamma} \,, \quad a > 0, \ \mathrm{Re}(\gamma) > 0, \ 0 < \mathrm{Re}(\beta) < 2,$$
$$\int_{0}^{\infty} \frac{x^{\beta} \cos(ax - \beta\pi/2)}{\gamma^2 + x^2} \, \mathrm{d}x = \frac{\pi}{2} \gamma^{\beta-1} \mathrm{e}^{-a\gamma} \,, \quad a > 0, \ \mathrm{Re}(\gamma) > 0, \ |\mathrm{Re}(\beta)| < 1 \,.$$

- 2. Unterschallströmung mit Kompressibilitätseinfluß, $M_{\infty} < 1$ (Prandtl-Glauert-Transformation),
- 3. Überschallströmung $M_{\infty} > 1$,

und diskutiere die Ergebnisse.

2.2 Kanal-Überschallströmung (lineare Theorie).

Gegeben ist die Situation laut Skizze. Man bestimme die Geschwindigkeits- und Druckstörungen im entstehenden Wellenmuster stromabwärts der Kanalverengung für

- 1. $1/\sqrt{\mathbf{M}_\infty^2-1} < 2h/L$ und
- 2. $1/\sqrt{\mathbf{M}_{\infty}^2 1} = 2h/L$ für $\tau \ll 1$.
- 3. Wie müßte die obere Kanalwand modifiziert werden, damit stromabwärts keine Druckstörungen auftreten?

2.3 Angestelltes Rautenprofil in Überschallströmung (lineare Theorie).

Ein dünnes Rautenprofil der Dicke $\tau \ll 1$ wird unter dem Anstellwinkel $\varepsilon \ll 1$ einer Überschallströmung $M_{\infty} > 1$ ausgesetzt (siehe Skizze).

Man berechne mit Hilfe der *linearen Theorie* die Geschwindigkeitsstörungen oberhalb und unterhalb des Profils sowie den Widerstand und den Auftrieb in Form von c_w und c_a .

Bei welchem Wert von a wird der Widerstand bei gegebener Anstellung ε und Dicke τ minimal?

2.4 Bucklige Wand.

Es sind die Geschwindigkeitsstörungen in einer Strömung über einer buckligen Wand für $y \ge 0$ zu bestimmen. Die Wand sei durch die Funktion

$$y_w(x) = \begin{cases} 0 & x < 0\\ \tau x(1 - \frac{1}{4}x) & 0 < x < 4\\ 0 & x > 4 \end{cases}$$

bestimmt.

Man löse das gegebene Problem für

- 1. inkompressible Strömung, d.h. $M_{\infty} \ll 1$, mit Hilfe der Profiltheorie (Singularitätenbelegung),
- 2. Unterschallströmung mit Kompressibilitätseinfluß, $M_\infty < 1$ (Prandtl-Glauert-Transformation),
- 3. Überschallströmung $M_{\infty} > 1$,

und diskutiere die Ergebnisse.

$$\begin{split} \left(\frac{u-u_{\infty}}{u_{\infty}}(x,y)\right)_{i} &= -\frac{1}{2\pi} \left[4 + \frac{2-x}{2} \ln \frac{(x-4)^{2} + y^{2}}{x^{2} + y^{2}} - y \arctan \frac{x-4}{y} + y \arctan \frac{x}{y}\right] \\ & \left(\frac{v}{u_{\infty}}(x,y)\right)_{i} &= -\frac{y}{2\pi} \left[\frac{2-x}{y} \left(\arctan \frac{x-4}{y} - \arctan \frac{x}{y}\right) + \frac{1}{2} \ln \frac{(x-4)^{2} + y^{2}}{x^{2} + y^{2}}\right] \\ & \left(\frac{u-u_{\infty}}{u_{\infty}}(x,y)\right)_{k} &= -\frac{\tau}{2\pi\beta} \left[4 + \frac{2-x}{2} \ln \frac{(x-4)^{2} + \beta^{2}y^{2}}{x^{2} + \beta^{2}y^{2}} - \beta y \arctan \frac{-4\beta y}{\beta^{2}y^{2} - x(x-4)}\right] \\ & \left(\frac{v}{u_{\infty}}(x,y)\right)_{k} &= -\frac{\beta y\tau}{2\pi} \left[\frac{2-x}{\beta y} \arctan \frac{-4\beta y}{\beta^{2}y^{2} - x(x-4)} + \frac{1}{2} \ln \frac{(x-4)^{2} + \beta^{2}y^{2}}{x^{2} + \beta^{2}y^{2}}\right] \\ & \left(\frac{u-u_{\infty}}{u_{\infty}}(x,y)\right)_{M>1} = \begin{cases} 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 0 \\ -\frac{\tau}{\sqrt{M_{\infty}^{2} - 1}} \left(1 - \frac{x-y\sqrt{M_{\infty}^{2} - 1}}{2}\right) & 0 < x - y\sqrt{M_{\infty}^{2} - 1} < 4 \\ 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \\ 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \end{cases} \\ & \left(\frac{v}{u_{\infty}}(x,y)\right)_{M>1} = \begin{cases} 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \\ 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \\ 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \\ 0 & x - y\sqrt{M_{\infty}^{2} - 1} < 4 \end{cases} \end{split}$$

2.5 Überschallströmung – Lineare Theorie (Ackeret)

Die unten dargestellte Platte $(D/L \ll 1)$ wird mit einer Machzahl $M_{\infty} = \sqrt{5}$ angeströmt.

gesucht ist gemäß der linearen Theorie:

- 1. Die dimensionslose Beschreibung des Problems.
- 2. Die Geschwindigkeitsstörungen an den Stellen $P_1(L, L/4)$ und $P_2(L, -L/4)$. Es gilt L/4 > D.
- 3. Den Auftriebsbeiwert c_A .
- 4. Den Widerstandsbeiwert c_W .

$$\tau = \frac{D}{L} \qquad \alpha, \varepsilon = -\frac{D}{L}$$

$$h_o = x \qquad h_u = -x$$

$$c_A = -2\tau \qquad c_W = 2\tau^2$$

$$P_1(L, \frac{L}{4}): \qquad \frac{u - u_{\infty}}{u_{\infty}} = -\frac{\tau}{2} \qquad \frac{v}{u_{\infty}} = \tau$$

$$P_2(L, -\frac{L}{4}): \qquad \frac{u - u_{\infty}}{u_{\infty}} = \frac{\tau}{2} \qquad \frac{v}{u_{\infty}} = \tau$$

2.6 Kanal-Überschallströmung (lineare Theorie).

Durch einen Kanal der Höhe h strömt ein Medium mit Überschallgeschwindigkeit $(M_{\infty} > 1)$. Gegeben sind die Höhe h, die Machzahl M_{∞} , der Parameter $\tau \ll 1$, der Isentropenexponent κ und der Druck p_{∞} .

- 1. Welchen Wert muss die Länge L nach der linearen Theorie annehmen, damit die linkslaufende Machlinie genau von B nach C bzw. die rechtslaufende Machlinie genau von A nach D führt.
- Wie groß sind die Geschwindigkeits- und Druckstörungen in jedem Bereich des sich ergebenden Wellenmusters. Überprüfen Sie Ihre Ergebnisse in den Bereichen (2) und (3) mittels der Beziehung von Ackeret.
- 3. Wie groß ist die relative Druckdifferenz $\frac{\Delta p}{p_{\infty}}$ zwischen den Bereichen ① und ④? Hinweis: Setzen Sie $u_{\infty} = M_{\infty}c_{\infty}$, wobei $c_{\infty} = \sqrt{\kappa p_{\infty}/\varrho_{\infty}}$.

$$L = h\sqrt{M_{\infty}^{2} - 1}$$

$$\frac{u_{1} - u_{\infty}}{u_{\infty}} = 0 \qquad \frac{v_{1}}{u_{\infty}} = 0 \qquad c_{p,1} = 0$$

$$\frac{u_{2} - u_{\infty}}{u_{\infty}} = \frac{\tau}{\cot \alpha_{\infty}} \qquad \frac{v}{u_{\infty}} = -\tau \qquad c_{p,2} = -\frac{2\tau}{\cot \alpha_{\infty}}$$

$$\frac{u_{3} - u_{\infty}}{u_{\infty}} = \frac{\tau}{\cot \alpha_{\infty}} \qquad \frac{v_{3}}{u_{\infty}} = \tau \qquad c_{p,3} = -\frac{2\tau}{\cot \alpha_{\infty}}$$

$$\frac{u_{4} - u_{\infty}}{u_{\infty}} = \frac{2\tau}{\cot \alpha_{\infty}} \qquad \frac{v_{4}}{u_{\infty}} = 0 \qquad c_{p,4} = -\frac{4\tau}{\cot \alpha_{\infty}}$$

$$\frac{\Delta p}{p_{\infty}} = -\frac{2\tau}{\cot \alpha_{\infty}} M_{\infty}^{2} \kappa$$

Kapitel 3

Nichtlineare Effekte bei Überschallströmungen

3.1 Rautenprofil in Überschallströmung.

Ermittle den Widerstandsbeiwert eines nichtangestellten, spiegelsymmetrischen Rautenprofils für $M_{\infty} = 1, 6, p_{\infty} = 1$ bar, $T_{\infty} = 288$ K, $\kappa = 1, 4$ und $c_p = 1005$ J/kg K

- 1. mit Hilfe der *linearen* Theorie,
- 2. unter Berücksichtigung nichtlinearer Effekte.
- 3. Man diskutiere das sich ergebende Strömungsbild.

$$\underbrace{M_{\infty}}_{0} \underbrace{\begin{array}{c}y\\20^{\circ}\\1\end{array}}_{1}x$$

3.2 Umlenkung eines Überschallfreistrahls.

Ein Überschallparallelstrahl eines idealen Gases mit $\kappa = 1, 4$ und $c_p = 1005$ J/kg K mit $M_{\infty} = 2$ und $T_{\infty} = 293$ K trifft auf eine unter einem Winkel $\vartheta = 10^{\circ}$ geneigte Platte. Der nach dem schiefen Verdichtungsstoß entstehende Überdruck muß am Strahlaußenrand durch eine Prandtl-Meyer Expansion auf Umgebungsdruck $p_u = 1$ bar entspannt werden (am Strahlaußenrand ist immer $p = p_u$). Man bestimme

- 1. den Druck p_{∞} , die Geschwindigkeit u_{∞} und die Schallgeschwindigkeit c_{∞} im ungestörten Parallelstrahl,
- 2. die sich ergebenden Strömungsverhältnisse im reflektierten Strahl nach der *linearen* Theorie (Drücke und Geschwindigkeiten im entstehenden Wellenmuster),
- 3. das sich nach der *nichtlinearen* Theorie ergebende Strömungsbild und den Druck p_1 , die Machzahl M₁ und die Geschwindigkeit u_1 nach dem schiefen Verdichtungsstoß sowie
- 4. den Druck p_2 , die Machzahl M₂, die Geschwindigkeit u_2 und den Umlenkwinkel ε am Strahlaußenrand nach der Expansion.

 p_u

3.3 Schwingender Freistrahl.

Ein ideales Gas mit $\kappa = 1, 4$ und $c_p = 1005$ J/kg K strömt als Überschallparallelstrahl aus einer Düse gegen den Umgebungsdruck $p_u = 1$ bar aus. Der Ruhedruck im Kessel ist $p_0 = 10$ bar, die Ruhetemperatur $T_0 = 560$ K und die Machzahl im Mündungsquerschnitt $H \cdot t$ ($t \dots$ Tiefeneinheit) ist mit $M_1 = 2$ gegeben. Man bestimme

- 1. den Druck p_1 , die Geschwindigkeit u_1 und die Schallgeschwindigkeit c_1 im Gebiet 1,
- 2. mit Hilfe der *linearen* Theorie den Expansionswinkel ε , die Geschwindigkeit u_2 und die Machzahl M_2 im Gebiet (2), *Hinweis*: Am Strahlrand muß jeweils Umgebungsdruck herrschen.
- 3. die Werte von ε , u_2 und M_2 aus der *nichtlinearen* Theorie.
- 4. Man vervollständige das Wellenmuster des Freistrahles weiter stromab und gebe die Wellenlänge des periodischen Musters bei gegebenem H und kleinem ε an. (lineare Theorie rechnen, nichtlineare nur zeichnen).
- 5. Wie ändern sich die Strömungsverhältnisse, wenn der Überschallstrahl gegen Überdruck austritt? $(p_1 < p_u)$. (Skizze)

3.4 Kanaleinlauf.

Am Einlauf eines ebenen, symmetrischen Kanals entsteht das skizzierte Strömungsmuster, wenn der Kanal mit Luft (ideales Gas $\kappa = 1, 4, R = 287 \text{ J/kg K}$) unter $M_{\infty} = 3$ und $p_{\infty} = 1$ bar, $T_{\infty} = 288 \text{ K}$ angeströmt wird. Die schiefen Verdichtungsstöße sollen nach dem Auftreffen auf das Ende des konvergenten Teiles des Kanals nicht reflektiert werden. Man berechne

- die Machzahlen, Drücke, Ruhedrücke, Dichten, Temperaturen, Schallgeschwindigkeiten und Winkeln in den Gebieten (1) und (2),
- 2. die Gesamtentropieerhöhung,
- 3. das Verhältnis L/H, damit das skizzierte Strömungsbild realisiert werden kann.
- *Hinweis*: Trifft der zweite Verdichtungsstoß nicht auf die Kanalkante, so ist eine Skizze des entstehenden Wellenmusters nach der *linearen* Theorie für die Berechnung hilfreich.

3.5 Rampen.

Gegeben sind 2 Rampen, die von einer Strömung mit der Machzahl $M_{\infty} = 2$ beim Druck $p_{\infty} = 1bar$ und der Temperatur $T_{\infty} = -10^{\circ}C$ angeströmt werden.

- Bestimmen Sie für beide Rampen die Geschwindigkeiten, sowie Drücke und Temperaturen über den Rampen.
- Lösen Sie beide Problemstellungen sowohl rechnerisch als auch grafisch!
- Zeichnen sie jeweils eine Stromline über der Rampe ein.
- Erklären Sie die unterschiedlichen Ergebnisse für beide Rampenformen.

30 KAPITEL 3. NICHTLINEARE THEORIE F. ÜBERSCHALLSTRÖMUNG

Kapitel 4

Dünne Reibungsschichten

4.1 Laminare, selbstähnliche Grenzschichten (ebenes Problem).

Ausgehend von der reibungsfreien Potentialströmung soll durch Übergang auf reale, reibungsbehaftete Strömungen, welche die Haftbedingung an einer Körperoberfläche erfüllen, die Größenordnung der sich ausbildenden Reibungsgrenzschicht ermittelt werden. Durch Einführung geeigneter dimensionsloser Größen ermittle man aus den Grund-gleichungen (inkompressibel) im Grenzfall Re $\rightarrow \infty$ die Grenzschichtgleichungen mit dementsprechenden Randbedingungen. Unter welchen Bedingungen sind die Grenzschichtprofile selbstähnlich? Für selbstähnliche Grenzschichten bestimme man die Verdrängungsdicke δ^* und den lokalen Reibungsbeiwert c'_f und spezialisiere die Ergebnisse für die einseitige Plattenströmung.

4.2 Reibungsbehaftete, ebene Keilumströmung hoher Re-Zahl.

Ein Keil mit dem Keilwinkel von 36° wird parallel zur Symmetrieachse angeströmt. Das unschraffierte, reibungsfrei gelagerte Gleitstück (Bezugslänge \tilde{L}_B) wird in der gezeichneten Lage (Haltekraft \tilde{F}) gehalten (kennzeichnet dimensionsbehaftete Größen).

Man bestimme

- 1. die Wandgeschwindigkeit $U_w(x)$ der reibungsfreien Außenströmung,
- 2. die dimensionsbehaftete Dicke der sich ausbildenden Reibungsgrenzschicht $\delta(x)$,
- 3. den Reibungsbeiwert $c'_f(x)$ und den Anteil der Haltekraft \tilde{F}_R , der sich aufgrund der Wandreibung am Gleitstück (Breite \tilde{b}) ergibt (die Bezugsgeschwindigkeit sei \tilde{U}_B),
- 4. den Anteil \tilde{F}_p der Haltekraft \tilde{F} , der sich aufgrund der Druckverteilung am Gleitstück ergibt. Auf der Hinterseite des Gleitstückes herrscht der Druck \tilde{p}_0 , an der Keilvorderkante der Staudruck $\tilde{p}_w(0)$.

4.3 Lokale, ebene Staupunktströmung.

Die Strömung in der Nähe eines Staupunkts kann im reibungsfreien Fall durch das komplexe Potential $F(z) = z^2/2$ beschrieben werden. Daraus berechne man die Geschwindigkeit an der Körperwand und prüfe, ob die Voraussetzung für die Einfügung einer selbstähnlichen Grenzschicht gegeben ist. Ist das der Fall, gebe man mit Hilfe der Ergebnisse von Einführungsbeispiels die Verdrängungsdicke und den lokalen Reibungsbeiwert an.

4.4 Schmierspalttheorie.

Man betrachte die skizzierte Situation einer Kunststoffplattenherstellung: Zwei Endlosmetallbänder werden über Reibrollen mit der Umlaufgeschwindigkeit u_0 angetrieben. Über eine entsprechende Anordnung wird von links flüssiger Kunststoff in den Spalt (=,,Schmierspalt") zwischen den Bändern zugeführt. Durch die ensprechende Formgebung des Spaltes (Höhe 2h(x)) wird der Kunststoff verdichtet. Am Ende des Spaltes ist das Material durch Wärmeentzug so weit abgekühlt, daß es "erstarrt" ist und in Form einer Endlosplatte mit der Umfangsgeschwindigkeit der Metallbänder, u_0 , gegen den Umgebungsdruck p_0 abgezogen wird.

- 1. Für den stationären Betrieb und der Annahme konstanter Stoffwerte bestimme man unter Beachtung der Randbedingungen für Geschwindigkeit und Druck mit Hilfe der Schmierspalttheorie den Geschwindigkeitsverlauf u(x, y) und den Volumenstrom \dot{V} sowie den Druckverlauf p(x) in Abhängigkeit der halben Spalthöhe h(x).
- 2. Man werte die erhaltenen Ergebnisse für folgenden (linearen) Spalthöhenverlauf (s. Skizze) aus:

$$h(x) = \begin{cases} h_0 - \frac{x}{L_1}(h_0 - h_1) & 0 \le x \le L_1 ,\\ \frac{h_L - h_1}{L - L_1}(x - L) + h_L & L_1 \le x \le L . \end{cases}$$

Vergleichen Sie Ihre Ergebnisse mit dem Diagramm für den Druckverlauf unter den gegebenen Größen: L = 50 m, $L_1 = 40$ m, $h_0 = 5$ mm, $h_1 = 1, 5$ mm und $h_L = 2, 5$ mm. (Die eingezeichneten Geschwindigkeitsprofile sind auf die jeweilige Spalthöhe bezogen.)

4.5 Laminare Plattengrenzschicht

Eine dünne Platte mit der masse \tilde{m} , der Länge \tilde{L} und Breite \tilde{B} fällt stabil unter Einfluss der Schwerkraft (Erdbeschleunigung \tilde{g}) mit einer stationären Geschwindigkeit \tilde{u}_{∞} in der gezeichneten Lage durch ein Medium der Dichte $\tilde{\varrho}$ und der kinematischen Zähigkeit $\tilde{\nu}$. Dimensionsbehaftete Größen sind jeweils mit ~ bezeichnet.

Bestimmen Sie unter Annahme hoher Re-Zahlen

- 1. den lokalen Reibungsbeiwert $c'_f(x)$
- 2. die lokale Wandschubspannung $\tilde{\tau}(\tilde{x})$
- 3. die dimensionsbehaftete Verdrängungsdicke $\tilde{\delta}^*(\tilde{x})$
- 4. die an der Platte angreifende Gesamtwiderstandskraft $\vec{\tilde{F}}$ (2 Plattenseiten!)
- 5. und die Fallgeschwindigkeit \tilde{u}_{∞}
- *Hinweis*: Beachten Sie den Unterschied zwischen dimensionslosen und dimensionsbehafteten Größen, sowie die Skalierung der Grenzschichtkoordinaten.

$$c'_{f} = \frac{2f''(0)}{\sqrt{2x\text{Re}}} = 2 \cdot f''(0)\sqrt{\frac{\tilde{\nu}}{2x\tilde{U}_{\infty}\tilde{L}}}$$
$$\tilde{\tau}(\tilde{x}) = \varrho_{\infty}\tilde{U}_{\infty}^{2}f''(0)\sqrt{\frac{\tilde{\nu}}{2\frac{\tilde{x}}{\tilde{L}}\tilde{U}_{\infty}\tilde{L}}} = \varrho_{\infty}\tilde{U}_{\infty}^{\frac{3}{2}}f''(0)\sqrt{\frac{\tilde{\nu}}{2\tilde{x}}}$$
$$\tilde{\delta}^{*}(\tilde{x}) = \beta_{1}\sqrt{\frac{2\tilde{x}\tilde{\nu}}{\tilde{U}_{\infty}}}$$
$$\tilde{F} = \sqrt{8\tilde{\nu}\tilde{L}}\varrho_{\infty}\tilde{U}_{\infty}^{\frac{3}{2}}f''(0)$$

$$U_{\infty} = \left(\frac{\tilde{m}\tilde{g}}{\sqrt{8\tilde{\nu}\tilde{L}}\tilde{\varrho}_{\infty}f''(0)}\right)^{\frac{2}{3}}$$

KAPITEL 4. DÜNNE REIBUNGSSCHICHTEN

Kapitel 5

Anhang

5.1 Colebrook-Diagramm.

5.2 Zustands- und Geschwindigkeitsgrößen im Stromfaden bei isentroper, stationärer Strömung ($\kappa = 1, 4$)

		n	0	T	ov	
Μ	M^*	$\frac{P}{n_0}$	$\frac{P}{\rho_0}$	$\frac{1}{T_0}$	$\frac{pc}{o^*c^*}$	$\beta = \sqrt{1 - M^2}$
		p_0	ρ_0	10	ρc	
0.05	0.055	0.008	0.000	1 000	0.086	0.000
0,00	0,000	0,993	0,995	0.998	0,030 0.172	0,995
0.15	0,163	0,984	0,989	0,996	0.256	0,989
0.2	0.218	0.973	0,980	0,992	0,200	0,980
0.25	0.272	0.958	0.969	0.988	0.416	0.968
0,20	0.326	0,930	0,956	0.982	0,410	0,908
0,35	0,320	0,959	0,950	0,982	0,431	0,934
0.4	0.431	0,896	0.924	0,969	0,629	0,917
0.45	0.483	0,870	0,906	0.961	0,620	0.893
0.5	0,535	0.843	0,885	0.952	0,030	0,855
0.55	0.585	0.814	0,863	0.943	0,740	0,835
0,00	0,635	0 784	0.840	0.933	0.842	0,800
0.65	0.684	0.753	0.816	0.922	0.881	0,800
0,00	0,004 0.732	0,735	0,792	0.911	0.914	0.714
0.75	0,732	0,689	0,766	0.899	0.941	0.661
0.8	0.825	0,656	0,740	0.887	0,941	0,600
0.85	0,820	0,623	0,740	0.874	0,980	0,500 0.527
0.9	0.915	0,591	0.687	0.861	0,991	0.436
0.95	0.958	0,559	0,660	0.847	0.998	0.312
1.0	1,000	0.528	0.634	0.833	1,000	0.000
,	,	,	,	,	,	,
			**** · · · · ·			
			Uberschallta	belle		
		n	0	T	011	$\hat{n_0}$
Μ	M^*	$\frac{P}{n_{e}}$	$\frac{P}{Q_{0}}$	$\frac{1}{T_{e}}$	$\frac{pc}{c^*c^*}$	$\frac{P0}{n_0}$
		p_0	ρ_0	10	ρc	p_0
1.0	1.000	0.528	0.634	0.833	1.000	1 000
1,0	1,000	0,328	0,034	0,835	1,000	1,000
1,00	1,041	0,498	0,008	0,819	0,998	1,000
1,1	1,082	0,408	0,582	0,805	0,992	0,999
1,2 1.3	1,100	0,412	0,031	0,770	0,970	0,995
1,0	1,231 1 300	0,301	0,435 0.437	0,747	0,938	0,979
1,4	1,365	0,314	0,407	0,710	0,850	0,330
1,0	1,505	0,272	0,356	0,090	0,850	0,950
1,0 17	1 483	0,203	0,320	0.634	0,800	0,856
1.8	1,405	0,203 0.174	0.287	0,054 0.607	0,748	0,813
1.0	1,550	0,174	0,257	0,581	0,035	0,815
2.0	1.7831	0.143	11.2011	())	0.040	0.101
2,0	1 633	0 128	0.230	0,556	0 593	0 721
2.5	1,633	0,128 0.059	0,230	0,556 0.444	0,593	0,721
2,5 3.0	1,633 1,826 1.964	$0,128 \\ 0,059 \\ 0,027$	0,230 0,132 0,0762	0,556 0,444 0.357	$0,593 \\ 0,379 \\ 0,236$	0,721 0,499 0.328
2,5 3,0 3,5	1,633 1,826 1,964 2,064	$0,128 \\ 0,059 \\ 0,027 \\ 0.0131$	0,230 0,132 0,0762 0.0452	0,556 0,444 0,357 0,290	$0,593 \\ 0,379 \\ 0,236 \\ 0,147$	$\begin{array}{c} 0,721 \\ 0,499 \\ 0,328 \\ 0,213 \end{array}$
2,5 3,0 3,5 4.0	1,633 1,826 1,964 2,064 2,138	0,128 0,059 0,027 0,0131 0,00659	0,230 0,132 0,0762 0,0452 0.0277	0,556 0,444 0,357 0,290 0.238	$\begin{array}{c} 0,593\\ 0,379\\ 0,236\\ 0,147\\ 0.0933\end{array}$	0,721 0,499 0,328 0,213 0,139
2,5 3,0 3,5 4,0 4.5	1,633 1,826 1,964 2,064 2,138 2,194	0,128 0,059 0,027 0,0131 0,00659 0,00346	0,230 0,132 0,0762 0,0452 0,0277 0,0174	0,556 0,444 0,357 0,290 0,238 0,198	0,593 0,379 0,236 0,147 0,0933 0,0604	0,721 0,499 0,328 0,213 0,139 0,0917
2,5 3,0 3,5 4,0 4,5 5,0	1,633 1,826 1,964 2,064 2,138 2,194 2,236	0,128 0,059 0,027 0,0131 0,00659 0,00346 0,00189	$\begin{array}{c} 0,230\\ 0,132\\ 0,0762\\ 0,0452\\ 0,0277\\ 0,0174\\ 0,0113\\ \end{array}$	0,556 0,444 0,357 0,290 0,238 0,198 0,167	0,593 0,379 0,236 0,147 0,0933 0,0604 0,0400	0,721 0,499 0,328 0,213 0,139 0,0917 0,0618
2,5 3,0 3,5 4,0 4,5 5,0 6,0	1,633 1,826 1,964 2,064 2,138 2,194 2,236 2,295	0,128 0,059 0,027 0,0131 0,00659 0,00346 0,00189 0,000633	$\begin{array}{c} 0,230\\ 0,230\\ 0,132\\ 0,0762\\ 0,0452\\ 0,0277\\ 0,0174\\ 0,0113\\ 0,00519 \end{array}$	0,556 0,444 0,357 0,290 0,238 0,198 0,167 0,122	0,593 0,379 0,236 0,147 0,0933 0,0604 0,0400 0,0188	0,721 0,499 0,328 0,213 0,139 0,0917 0,0618 0,0297
2,5 3,0 3,5 4,0 4,5 5,0 6,0 7,0	$1,633 \\ 1,826 \\ 1,964 \\ 2,064 \\ 2,138 \\ 2,194 \\ 2,236 \\ 2,295 \\ 2,333$	0,128 0,059 0,027 0,0131 0,00659 0,00346 0,00189 0,000633 0,000242	$\begin{array}{c} 0,230\\ 0,230\\ 0,132\\ 0,0762\\ 0,0452\\ 0,0277\\ 0,0174\\ 0,0113\\ 0,00519\\ 0,00261\\ \end{array}$	0,556 0,444 0,357 0,290 0,238 0,198 0,167 0,122 0,0926	0,593 0,379 0,236 0,147 0,0933 0,0604 0,0400 0,0188 0,00960	0,721 0,499 0,328 0,213 0,139 0,0917 0,0618 0,0297 0,0153
2,5 3,0 3,5 4,0 4,5 5,0 6,0 7,0 8,0	1,633 1,826 1,964 2,064 2,138 2,194 2,236 2,295 2,333 2,359	0,128 0,059 0,027 0,0131 0,00659 0,00346 0,00189 0,000633 0,000242 0,000102	0,230 0,132 0,0762 0,0452 0,0277 0,0174 0,0113 0,00519 0,00261 0,00141	0,556 0,444 0,357 0,290 0,238 0,198 0,167 0,122 0,0926 0,0725	0,593 0,379 0,236 0,147 0,0933 0,0604 0,0400 0,0188 0,00960 0,00526	0,721 0,499 0,328 0,213 0,139 0,0917 0,0618 0,0297 0,0153 0,00849
$\begin{array}{c} 2,5\\ 3,0\\ 3,5\\ 4,0\\ 4,5\\ 5,0\\ 6,0\\ 7,0\\ 8,0\\ 9,0 \end{array}$	$1,633 \\ 1,826 \\ 1,964 \\ 2,064 \\ 2,138 \\ 2,194 \\ 2,236 \\ 2,295 \\ 2,333 \\ 2,359 \\ 2,377 \\$	$\begin{array}{c} 0,128\\ 0,059\\ 0,027\\ 0,0131\\ 0,00659\\ 0,00346\\ 0,00189\\ 0,000633\\ 0,000242\\ 0,000102\\ 0,000102\\ 0,0000474\end{array}$	0,230 0,132 0,0762 0,0452 0,0277 0,0174 0,0113 0,00519 0,00261 0,00141 0,000815	$\begin{array}{c} 0,556\\ 0,444\\ 0,357\\ 0,290\\ 0,238\\ 0,198\\ 0,167\\ 0,122\\ 0,0926\\ 0,0725\\ 0,0581\end{array}$	$\begin{array}{c} 0,593\\ 0,379\\ 0,236\\ 0,147\\ 0,0933\\ 0,0604\\ 0,0400\\ 0,0188\\ 0,00960\\ 0,00526\\ 0,00306\end{array}$	0,721 0,499 0,328 0,213 0,139 0,0917 0,0618 0,0297 0,0153 0,00849 0,00496
$\begin{array}{c} 2,5\\ 3,0\\ 3,5\\ 4,0\\ 4,5\\ 5,0\\ 6,0\\ 7,0\\ 8,0\\ 9,0\\ 10\\ \end{array}$	$1,633 \\ 1,826 \\ 1,964 \\ 2,064 \\ 2,138 \\ 2,194 \\ 2,236 \\ 2,295 \\ 2,333 \\ 2,359 \\ 2,377 \\ 2,391 \\ 1,826 \\ 1,82$	0,128 0,059 0,027 0,0131 0,00659 0,00346 0,00189 0,000633 0,000242 0,000102 0,0000474 0,0000236	0,230 0,132 0,0762 0,0452 0,0277 0,0174 0,0113 0,00519 0,00261 0,00141 0,000815 0,000495	0,556 0,444 0,357 0,290 0,238 0,198 0,167 0,122 0,0926 0,0725 0,0581 0,0476	$\begin{array}{c} 0,593\\ 0,379\\ 0,236\\ 0,147\\ 0,0933\\ 0,0604\\ 0,0400\\ 0,0188\\ 0,00960\\ 0,00526\\ 0,00306\\ 0,00187\end{array}$	0,721 0,499 0,328 0,213 0,0917 0,0618 0,0297 0,0153 0,00849 0,00496 0,00304
$\begin{array}{c} 2,5\\ 3,0\\ 3,5\\ 4,0\\ 4,5\\ 5,0\\ 6,0\\ 7,0\\ 8,0\\ 9,0\\ 10\\ 20 \end{array}$	$1,633 \\ 1,826 \\ 1,964 \\ 2,064 \\ 2,138 \\ 2,194 \\ 2,236 \\ 2,295 \\ 2,333 \\ 2,359 \\ 2,377 \\ 2,391 \\ 2,435$	$\begin{array}{c} 0,128\\ 0,059\\ 0,027\\ 0,0131\\ 0,00659\\ 0,00346\\ 0,00189\\ 0,000633\\ 0,000242\\ 0,000102\\ 0,000102\\ 0,0000474\\ 0,0000236\\ 0,00000209\end{array}$	0,230 0,132 0,0762 0,0452 0,0277 0,0174 0,0113 0,00519 0,00261 0,00141 0,000815 0,000495 0,0000170	0,556 0,444 0,357 0,290 0,238 0,198 0,167 0,122 0,0926 0,0725 0,0581 0,0476 0,0123	0,593 0,379 0,236 0,147 0,0933 0,0604 0,0400 0,0188 0,00960 0,00526 0,00306 0,00187 0,000651	0,721 0,499 0,328 0,213 0,0917 0,0618 0,0297 0,0153 0,00849 0,00496 0,00304 0,000108

Unterschalltabelle

5.3 Charakteristikendiagramm

5.4 Tabelle zum Charakteristikendiagramm für Luft $(\kappa = 1, 4)$

Ch	29	м	м*	0	\underline{p}	ρ	T	ρv
OII	U	141	IVI	a	p_0	$ ho_0$	T_0	$\rho^{\star}c^{\star}$
1000	0	1.000	1.000	90.00	0.5283	0.6339	0.8333	1.0000
999	1	1.082	1.067	67.55	0.4789	0.5910	0.8103	0.9947
998	2	1.133	1.107	61.97	0.4496	0.5649	0.7957	0.9864
997	3	1.177	1.141	58.17	0.4249	0.5426	0.7830	0.9765
996	4	1.218	1.171	55.18	0.4028	0.5223	0.7712	0.9654
995	5	1.256	1.200	52.77	0.3830	0.5038	0.7602	0.9534
994	6	1.293	1.227	50.67	0.3644	0.4862	0.7494	0.9404
993	7	1.330	1.252	48.75	0.3464	0.4690	0.7389	0.9263
992	8	1.365	1.276	47.10	0.3300	0.4530	0.7285	0.9120
991	9	1.400	1.300	45.58	0.3142	0.4374	0.7184	0.8970
990	10	1.435	1.323	44.18	0.2990	0.4222	0.7083	0.8811
989	11	1.469	1.341	42.90	0.2847	0.4077	0.6986	0.8651
988	12	1.502	1.366	41.75	0.2711	0.3937	0.6888	0.8487
987	13	1.537	1.387	40.58	0.2580	0.3800	0.6792	0.8318
986	14	1.570	1 409	39.57	0.2456	0.3669	0.6696	0.8148
985	15	1 604	1 429	38.57	0.2337	0.3541	0.6601	0 7975
984	16	1.638	1 448	37.62	0.2221	0.3415	0.6506	0.7797
083	17	1.673	1.440	36.70	0.2221	0.3413	0.6412	0.7621
082	19	1.707	1.407	25.97	0.2111	0.3234	0.6210	0.7021
962	10	1.707	1.480	35.87	0.2008	0.3175	0.0319	0.7441
981	19	1.741	1.505	35.05	0.1905	0.3060	0.6226	0.7262
0.00	00	1 775	1 500	24.00	0.1000	0.0040	0.0194	0 7001
980	20	1.775	1.523	34.28	0.1808	0.2948	0.0134	0.7081
979	21	1.809	1.541	33.57	0.1715	0.2839	0.6043	0.6899
978	22	1.844	1.559	32.83	0.1627	0.2733	0.5951	0.6718
977	23	1.879	1.576	32.15	0.1510	0.2629	0.5860	0.6536
976	24	1.915	1.693	31.48	0.1459	0.2529	0.5769	0.6355
975	25	1.950	1.610	30.85	0.1380	0.2430	0.5679	0.6174
974	26	1.986	1.627	30.23	0.1306	0.2335	0.5590	0.5995
973	27	2.023	1.643	29.62	0.1234	0.2243	0.1499	0.5815
972	28	2.060	1.659	29.03	0.1166	0.2153	0.5411	0.5637
971	29	2.096	1.675	28.50	0.1099	0.2066	0.5322	0.5461
970	30	2.134	1.691	27.95	0.1037	0.1982	0.5233	0.5286
969	31	2.172	1.706	27.42	0.09770	0.1899	0.5146	0.5113
968	32	2.211	1.722	26.88	0.09200	0.1819	0.5058	0.4942
967	33	2.249	1.738	26.40	0.08656	0.1741	0.4971	0.4773
966	34	2.289	1.753	25.90	0.08137	0.1666	0.4884	0.4107
965	35	2.329	1.767	25.43	0.07644	0.1593	0.4798	0.4442
964	36	2.369	1.782	24.97	0.07174	0.1522	0.4711	0.4280
963	37	2.411	1.796	24.50	0.06726	0.1454	0.4626	0.4121
962	38	2.453	1.810	24.07	0.06301	0.1389	0.4640	0.3964
961	39	2.495	1.824	23.63	0.05898	0.1325	0.4455	0.3811
960	40	2.538	1.838	23.20	0.05517	0.1263	0.4370	0.3660
959	41	2.581	1.852	22.78	0.05153	0.1203	0.4286	0.3513
958	42	2.626	1.865	22.38	0.04811	0.1145	0.4203	0.3368
957	43	2.671	1.878	21.98	0.04488	0.1089	0.4121	0.3228
956	44	2.718	1.891	21.58	0.04181	0.1035	0.4038	0.3090
956	45	2.764	1.904	21.22	0.03890	0.09835	0.3955	0.2955
954	46	2.812	1.917	20.83	0.03616	0.09336	0.3873	0.2824
953	47	2.861	1.931	20.45	0.03357	0.08853	0.3792	0.2695
952	48	2 911	1 943	20.08	0.03114	0.08391	0.3712	0.2571
951	49	2.961	1.955	19.73	0.02886	0.07946	0.3632	0.2451
950	50	3.013	1.967	19.38	0.02670	0.07518	0.3552	0.2333
949	51	3.066	1.979	19.03	0.02467	0.07106	0.3472	0.2218
948	52	3 119	1 991	18 70	0.02277	0.06711	0.3394	0.2108
947	53	3 174	2 003	18 37	0.02101	0.06334	0.3317	0.2100
946	54	3 230	2.000	18.03	0.01035	0.05073	0.3240	0.1808
945	55	3 287	2.014	17 72	0.01781	0.05628	0.3240	0.1798
340	55	3.201	2.025	11.12	0.01701	0.05028	0.0100	0.1756
940	60	3 504	2.080	16 15	0.01148	0.04114	0.2700	0.1340
936	65	3 0/1	2.000	14 70	0.007131	0.03114	0.2/25	0.00835
930	70	4 220	2.131	12 22	0.007131	0.02920	0.2435	0.09833
930	70	4.339	2.177	10.00	0.004233	0.02017	0.2098	0.00929
925	75	4.802	2.221	12.02	0.002391	0.01541	0.1782	0.04097
920	80	5 3/8	2 260	10.78	0.001971	0.008541	0 1/88	0.03045
920 015	0U 9E	6.007	2.200	10.10	0.001271	0.15160	0.1400	0.03040
915	60	6.007	2.290	9.08	0.0006291	0.10109	0.1217	0.01079
910	90	7.0520	2.328	0.43	0.0002849	0.002935	0.09700	0.01078
905	95	1.602	2.300	1.32	0.0001100	0.001541	0.07505	0.000732
000	100	0.910	2 200	6.92	0.0004060	0.0007210	0.05566	0.002745
900	100	9.210	2.380	0.23	0.00004069	0.0007310	0.00000	0.002745
895	105	11.095	2.401	0.17	0.00001175	0.0003010	0.03903	0.001140
890	110	13.87	2.4183	4.13	0.000002587	0.0001021	0.02533	0.0003896
885	115	18.435	2.4317	3.10	0.000003670	0.00002531	0.01450	0.00009710
000	100	07.05	0.4410	0.10	0.0000000005	0.000000500	0.002240	0.00001.001
880	120	27.35	2.4413	2.10	0.0000002385	0.000003593	0.006640	0.00001384
875	125	52.48	2.4473	1.10	0.0000000002746	0.000001481	0.001812	0.0000005397
869.55	130.45	∞	2.4495	0.00	0	0	0	0

5.5 Stoßpolarendiagramm

