3 Numerische Integration

In vielen Fällen möchte das bestimmte Integral

$$I(f) = \int_{a}^{b} f(x) \,\mathrm{d}x \tag{3.1}$$

näherungsweise bestimmen. Dies kann notwendig werden, wenn die Berechnung der exakten Lösung zu aufwendig oder die exakte Lösung nicht in geschlossener Form darstellbar ist. Ein Beispiel ist

$$\int_0^{\pi} \cos(4x) \cos\left[3\sin(x)\right] \, \mathrm{d}x = \pi \left(\frac{3}{2}\right)^4 \sum_{i=0}^{\infty} \frac{(-9/4)^i}{i!(i+4)!}.$$
(3.2)

Eine Näherung des exakten Ergebnisses erhält man, wenn man die unendliche Reihe beii = n abbricht.

Typischerweise sucht man Näherungen der Form

$$\int_{a}^{b} f(x) \,\mathrm{d}x \approx \sum_{i=0}^{n} a_{i} f(x_{i}), \qquad (3.3)$$

Roger Cotes 1682–1716 wobei $x_i \in [a, b]$ Stützpunkte innerhalb des abgeschlossenen Intervalls sind und a_i zugehörige Gewichtskoeffizienten. Damit hat man das kontinuierliche Problem (3.1) in ein diskretes Problem (3.3) überführt (diskretisiert). Diese Art der Approximation wird *Quadratur* genannt.

Zur Bestimmung der Koeffizienten a_i wird die Funktion f(x)typischerweise durch eine andere Funktion p(x) ersetzt, die an den vorab gewählten Stützstellen x_i mit der Funktion f identisch ist $(p(x_i) = f(x_i))$, aber wesentlich leichter zwischen den Stütz-

1682–1716 stellen integriert werden kann. Das exakte Integral läßt sich dann als Summe $\int_a^b f(x) dx \approx \int_a^b p(x) dx = \sum_{i=0}^n a_i f(x_i)$ schreiben. Zur Approximation verwendet man oft Polynome oder Exponentialfunktionen.

3.1 Newton-Cotes-Formeln

Die einfachste Möglichkeit besteht darin, die Funktion f durch eine Konstante zu ersetzen, die mit dem Funktionswert am linken Rand f(a) übereinstimmt (man

kann auch f(b) nehmen). Dann erhält man die *Rechteck-Regel*

$$\int_{a}^{b} f(x) \,\mathrm{d}x \approx (b-a)f(a). \tag{3.4}$$

Man kann für die Konstante auch einen Werte aus dem Innern des Intervalls nehmen. Meist wird der Mittelpunkt (a + b)/2 genommen. Man gewinnt dann die *Mittelpunktsregel (mid-point rule)*

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx (b-a) f\left(\frac{b+a}{2}\right). \tag{3.5}$$

Ein besseres Ergebnis erhält man, wenn man die Funktion nicht durch eine Konstante, sondern durch eine lineare Funktion approximiert, die durch die beiden Punkte f(a) und f(b) geht. Man erhält dann die *Trapez-Regel*

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{(b-a)}{2} \left[f(a) + f(b) \right]. \tag{3.6}$$

Hierbei wird das Integral durch eine Fläche in Trapez-Form ersetzt.

Als weitere Verbesserung ist es naheliegend, ein interpolierendes Polynom zweiten Grades zu verwenden, das mit den Funktionswerten von f an den Stellen a, b und dem Mittelpunkt (a+b)/2 übereinstimmt. Man findet dann die Simpson-Regel¹

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]. \tag{3.7}$$

Thomas Simpson Die genannten Approximationen sind in Abb. 3.1 graphisch dargestellt.

^{1710–1761} Man kann nun so weitermachen und das Integral [a, b] in näquidistante Teilintervalle (inklusive a und b) unterteilen. Um die n+1 unbekannten Koeffizienten a_i in der *Newton-Cotes-Formel* zu bestimmen, kann man verlangen, daß die Näherung (3.3) exakt erfüllt ist, wenn f(x) ein beliebiges Polynom vom maximalen Grade n ist. Am einfachsten erscheint die Forderung, daß die Approximation für $f = x^j$ mit $j = 0, \ldots, n$ exakt ist. Diese Bedingungen lauten dann

$$\int_{a}^{b} x^{j} \, \mathrm{d}x = \frac{b^{j+1} - a^{j+1}}{j+1} \stackrel{!}{=} \sum_{i=0}^{n} a_{i} x_{i}^{j}, \qquad j = 0, 1, \dots, n$$
(3.8)

Diese n + 1 Bedingungen führen auf das lineare Problem

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_0 & x_1 & x_2 & & x_n \\ \vdots & & \vdots & \\ x_0^n & x_1^n & x_2^n & \dots & x_n^n \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b-a \\ (b^2-a^2)/2 \\ \vdots \\ (b^{n+1}-a^{n+1})/(n+1) \end{pmatrix}, \quad (3.9)$$

¹Thomas Simpson (1710–1761): Englischer Mathematiker. Neben der nach ihm benannten Quadraturformel gehen die heutzutage üblichen Bezeichnungen Sinus, Cosinus, Tangens und Cotangens auf ihn zurück sowie auch die differentielle Form des Newton-Verfahrens.

Abbildung 3.1: Approximation des bestimmten Integrals durch Approximation des Integranden mittels verschiedener Interpolationen. Die quadratische Interpolation in (d) ist nur schematisch gezeigt.

wobei die Matrix die schon bekannte Vandermondesche Gestalt (2.6) (transponiert) hat. Sie ist regulär, wenn die Punkte x_i paarweise verschieden sind. Wenn man die Punkte darüber hinaus auch noch äquidistant wählt, erhält man genau (3.3) und nennt die Formel *Newton-Cotes-Formel*.

Dieselbe Lösung erhält man, wenn man f(x) durch das Lagrangesche Interpolationspolynom (2.11) vom Grade n approximiert

$$f(x) \approx p(x) = \sum_{i=0}^{n} f(x_i) L_i^{(n)}(x)$$
(3.10)

mit

$$L_i^{(n)}(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x - x_k}{x_i - x_k}, \qquad i = 0, 1, \dots, n,$$
(3.11)

wobei das Lagrangesche Interpolationspolynom an den Stützstellen x_i mit $f(x_i)$

übereinstimmt. Das Integral wird dann approximiert als

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \int_{a}^{b} p(x) \, \mathrm{d}x = \int_{a}^{b} \sum_{i=0}^{n} f(x_i) \, L_{i}^{(n)}(x) \, \mathrm{d}x = \sum_{i=0}^{n} f(x_i) \underbrace{\int_{a}^{b} L_{i}^{(n)}(x) \, \mathrm{d}x}_{a_i}.$$
(3.12)

Hieran kann man die Gewichte a_i ablesen.

Als Beispiel betrachten wir n = 1 mit $x_0 = a$ und $x_1 = b$ und den zugehörigen Funktionswerten $f_0 = f(a)$ und $f_1 = f(b)$. Die beiden Lagrangeschen Polynome sind

$$L_0^{(1)} = \frac{x-b}{a-b}$$
 und $L_1^{(1)} = \frac{x-a}{a-b}$. (3.13)

Damit erhalten wir die Approximation von f(x)

$$p(x) = L_0^{(1)}(x)f_0 + L_1^{(1)}(x)f_1.$$
(3.14)

Für die Gewichte erhält man dann nach (3.12)

$$a_0 = \int_a^b L_0^{(1)}(x) \, \mathrm{d}x = \int_a^b \frac{x-b}{a-b} \, \mathrm{d}x = \left[\frac{1}{2}\frac{(x-b)^2}{a-b}\right]_a^b = \frac{b-a}{2}.$$
 (3.15)

Analog erhält man $a_1 = a_0 = (b - a)/2$. Dies liefert genau die Trapezregel (3.6).

3.2 Summierte Formeln

An Abb. 3.1 ist ersichtlich, daß die Newton-Cotes-Formeln für Polynome niedriger Ordnung sehr fehlerbehaftet sein können. Daher könnte man versuchen, bessere Approximationen dadurch zu erhalten, daß man den Grad der Polynome sukzessive erhöht. Dieses Verfahren ist aber nicht praktikabel, da bei Polynomen mit Grad $n \geq 8$ auch negative Koeffizienten a_i auftreten. Damit können jedoch Auslöschungseffekte auftreten (siehe Kap. 1.2). Außerdem ist nicht sichergestellt, daß die Folge der Approximationen für $n \to \infty$ tatsächlich gegen das gesuchte Integral konvergiert.²

Aus diesem Grund ist es meist wesentlich besser, das Integral in viele Teilintervalle $[x_{i-1}, x_i]$ mit $x_0 = a$ und $x_n = b$ zu zerlegen und eine Polynom-Approximation stückweise zu verwenden, wobei die Ordnung der Polynome relativ niedrig sein kann. Dazu schreibt man

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) \, \mathrm{d}x.$$
(3.16)

²Siehe die Problematik der Punkteverteilung innerhalb des Intervalls bei der Lagrange-Interpolation; Kap. 2.2.1.

Wenn man nun die Rechteck-Regel anwendet, erhält man die *summierte Rechteck-Regel* (SR)

$$I_{\rm SR}(f) = \sum_{i=1}^{n} h_i f(x_{i-1}), \qquad (3.17a)$$

wobei $h_i = x_i - x_{i-1}$ die Länge der Teilintervalle ist. In analoger Weise erhält man die summierten Mittelpunkts- (SM), Trapez- (ST) und Simpson-Regeln (SS)

$$I_{\rm SM}(f) = \sum_{i=1}^{n} h_i f\left(\frac{x_i + x_{i-1}}{2}\right), \qquad (3.17b)$$

$$I_{\rm ST}(f) = \sum_{i=1}^{n} \frac{h_i}{2} \left[f(x_{i-1}) + f(x_i) \right], \qquad (3.17c)$$

$$I_{\rm SS}(f) = \sum_{i=1}^{n} \frac{h_i}{6} \left[f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_i) \right].$$
 (3.17d)

Bei diesen Approximationen wurde der Integrand durch stückweise konstante (SR,SM), lineare (ST) oder quadratische Polynome (SS) approximiert.

3.3 Fehlerbetrachtungen

3.3.1 Diskretisierungsfehler

Bei der Approximation der Integrale treten zwei Fehlerquellen auf. Einerseits ist dies der Fehler, den man bei der Approximation der Funktion durch ein Polynom macht (Diskretisierungsfehler). Hinzu kommt andererseits der Rundungsfehler, der durch die diskrete Darstellung der Zahlen und die diskreten Rechenoperationen entsteht.

Der Diskretisierungsfehler lautet

$$E = \int_{a}^{b} [f(x) - p(x)] \, \mathrm{d}x.$$
 (3.18)

Diesen Fehler können wir mit Hilfe des Fehler der Polynom-Approximation (2.22) weiter abschätzen als

$$E = \frac{1}{(n+1)!} \int_{a}^{b} (x - x_0) \dots (x - x_n) f^{(n+1)} [z(x)] dx, \qquad (3.19)$$

wobei x_0, \ldots, x_n die Interpolationspunkte sind und $z(x) \in [a, b]$ eine von x abhängige Zwischenstelle ist.

Für die Rechteck-Regel (R) können wir den Diskretisierungsfehler betragsmäßig abschätzen

$$|E_{\rm R}| = \left| \int_{a}^{b} (x-a)f'[z(x)] \, \mathrm{d}x \right| \le \underbrace{\max_{z} |f'(z)|}_{M_{1}} \left| \int_{a}^{b} (x-a) \, \mathrm{d}x \right| = \frac{M_{1}}{2} (b-a)^{2}.$$
(3.20)

Für die Mittelpunktsregel (M) erhält man mit $x_0 = (a+b)/2$

$$|E_{\rm M}| = \left| \int_a^b \left(x - \frac{a+b}{2} \right) f'[z(x)] \, \mathrm{d}x \right| \le M_1 \left| \int_a^b \left(x - \frac{a+b}{2} \right) \, \mathrm{d}x \right| = \frac{M_1}{4} \left(b - a \right)^2.$$
(3.21)

ähnlich wie für die Rechteck-Regel. Bei der Mittelpunktsregel ist diese Abschätzung allerdings zu grob. Man kann ihn zu $M_2 (b-a)^3/24$ abschätzen.³

Für die Trapez-Regel (T) sind die Interpolationspunkte x = a und x = b und wir erhalten die Abschätzung

$$|E_{\rm T}| = \left| \int_a^b (x-a)(x-b)f''[z(x)] \, \mathrm{d}x \right| \le M_2 \left| \int_a^b (x-a)(x-b) \, \mathrm{d}x \right| = \frac{M_2}{12} \left(b-a\right)^3,$$
(3.22)

wobei $M_2 = \max_z |f''(z)|.$

Für die Simpson-Regel erhält man aus der Standard-Abschätzung (3.19) in analoger Art

$$|E_{\rm S}| \le \frac{M_4}{2880} \left(b - a\right)^5.$$
(3.23)

Bei all diesen Abschätzungen geht eine Potenz der Intervallänge $(b-a)^k$ ein. Wenn b-a = O(1) groß ist, wird auch der Fehler groß sein. Wenn aber $b-a \ll 1$ klein ist gegenüber 1, dann wird der Fehler umso kleiner, je höher die Potenz kist. Dies ist der Fall bei den summierten Formeln, für welche ja eine sehr feine Intervallunterteilung angestrebt wird. Jedoch addieren sich bei der Summenbildung

$$-p(x) + f(x) = \underbrace{-f(x_m) + f(x_m)}_{-} + (x - x_m)f'(x_m) + \frac{1}{2}(x - x_m)^2 f''(x_m) + \dots$$

Damit erhalten wir den Betrag des Diskretisierungsfehlers

$$\begin{aligned} |E_{\rm M}| &= \left| \int_{a}^{b} \left[(x - x_m) f'(x_m) + \frac{1}{2} (x - x_m)^2 f''(x_m) + \dots \right] \, \mathrm{d}x \right| \\ &\leq \left| \int_{a}^{b} (x - x_m) f'(x_m) \, \mathrm{d}x \right| + \frac{1}{2} \left| \int_{a}^{b} (x - x_m)^2 f''(x_m) \, \mathrm{d}x \right| + \dots \\ &\leq \left| f'(x_m) \underbrace{\int_{a}^{b} (x - x_m) \, \mathrm{d}x}_{=0} \right| + \frac{1}{2} \left| f''(x_m) \right| \int_{a}^{b} (x - x_m)^2 \, \mathrm{d}x + \dots \\ &\leq \frac{M_2}{24} \left(b - a \right)^3 + \dots \end{aligned}$$

Die durch ... angegebenen Terme sind für $b-a \ll 1$ zu vernachlässigen. Man sieht durch diese Abschätzung, daß der Fehler geringer ist (höhere Potenz von (b-a)), als derjenige, den man durch die einfache Abschätzung (3.21) erhält.

³Eine bessere Abschätzung für die Mittelpunktsregel erhält man, wenn man den Integranden in dem Fehler (3.18) in eine Taylor-Reihe um den Mittelpunkt $x_m(a+b)/2$ des Intervalls entwickelt. Mit $p(x) = f(x_m)$ erhalten wir

auch die Fehler, so daß wir für die summierte Rechteck-Regel beispielsweise den Fehler

$$|E_{\rm SR}| \le \frac{M_1}{2} \sum_{i=1}^n h_i^2$$
 (3.24)

erhalten, wobei $h_i = x_i - x_{i-1}$ die *i*-te Intervallänge ist. Hierbei haben wir M_1 über das gesamte Intervall [a, b] maximiert, obwohl es eine günstigere Abschätzung gäbe, wenn wir die Abschätzung intervallweise durchgeführt hätten. Für die Fehlerordnung spielt dies aber keine Rolle.

Im wichtigen Spezialfall einer homogenen Unterteilung $h_i = h = (b - a)/n$ des Gesamtintervalls erhalten wir

$$|E_{\rm SR}| \le \frac{M_1}{2}(b-a)h = O(h).$$
 (3.25a)

Der Fehler der summierten Rechteck-Regel ist von erster Ordnung. Man sagt auch: Die *Fehlerordnung* ist $O(h^1)$. Dies bedeutet, daß der Fehler bei einer Verringerung der Intervallänge linear mit h kleiner wird.

Für äquidistante Intervallunterteilungen erhält man in analoger Art die Fehler der summierten Mittelpunkts-, Trapez- und Simpson-Regeln zu

$$|E_{\rm SM}| \le \frac{M_2}{24}(b-a)h^2 = O(h^2),$$
 (3.25b)

$$|E_{\rm ST}| \le \frac{M_2}{12}(b-a)h^2 = O(h^2),$$
 (3.25c)

$$|E_{\rm SS}| \le \frac{M_4}{2880} (b-a)h^4 = O(h^4).$$
 (3.25d)

Die Simpson-Formel ist noch relativ einfach, aber trotzdem schon von vierter Ordnung. Daher wird sie häufig verwendet.

Die konstante Sub-Intervallänge h stellt eine gewisse Einschränkung dar. Denn es gibt Integranden, die in einem Gebiet stark variieren und in anderen Gebieten nur langsam. Dann kann es sinnvoll sein, die Intervallänge adaptiv zu wählen. Eine mögliche Strategie besteht darin, die Intervallänge zu halbieren und das Integral über h mit demjenigen über die zwei Intervalle mit jeweils h/2 zu vergleichen. Falls der Unterschied kleiner ist als der tolerierte Fehler, dann werden die beiden Intervalle nicht weiter verfeinert, während die anderen Intervalle auf jeweils h/4verkleinert werden. Dieser Prozeß wird fortgesetzt, bis man überall die gewünschte lokale Genauigkeit erreicht hat.

3.3.2 Rundungsfehler

Falls wir eine exakten Zahlendarstellung hätten, könnten wir ein Integral beliebig genau berechnen. Die Computer-Arithmetik stellt die Zahlen jedoch mit einer endlichen Genauigkeit dar. Wenn wir den Rundungsfehler von x_i mit ϵ_i bezeichnen und

Abbildung 3.2: Qualitatives Verhalten des gesamten Fehlerbetrags |E| (Diskretisierungsfehler und Rundungsfehler) als Funktion der Intervallänge h.

den Fehler der kombinierten numerischen Addition und Multiplikation (mit h/2) mit η , dann gilt zum Beispiel für die summierte Trapez-Regel

$$I_{\rm ST}^{\rm num} = \sum_{i=1}^{n} \frac{h}{2} \left[f(x_{i-1}) + \epsilon_{i-1} + f(x_i) + \epsilon_i \right] + \eta.$$
(3.26)

Während der Diskretisierungsfehler für $h \to 0$ gegen Null geht, steigt der Fehler durch Rundungen für $h \to 0$. Wenn wir die Summen separat nehmen, können wir schreiben

$$I_{\rm ST}^{\rm num} = \underbrace{\sum_{i=1}^{n} \frac{h}{2} \left[f\left(x_{i-1}\right) + f\left(x_{i}\right) \right]}_{I_{\rm ST}} + \sum_{i=1}^{n} \frac{h}{2} \left(\epsilon_{i-1} + \epsilon_{i}\right) + \sum_{i=1}^{n} \eta.$$
(3.27)

Damit können wir den Betrag des Fehlers |E| folgendermaßen abschätzen (ungünstigster Fall)

$$|E| = |I_{\rm ST}^{\rm num} - I_{\rm ST}| \le \sum_{i=1}^{n} h \max |\epsilon_i| + \sum_{i=1}^{n} \max |\eta|.$$
 (3.28)

Mit h = (b - a)/n ist dann

$$|E| \le \underbrace{(b-a)\max_{|\epsilon_i|}}_{\text{beschränkt}} + \underbrace{\frac{b-a}{h}\max_{|\eta|}}_{\substack{\text{für } h \to 0}} (3.29)$$

Der Fehler, der von den diskreten Operationen (Multiplikation und Addition) herrührt, kann für $h \to 0$ im ungünstigsten Fall $\sim h^{-1}$ akkumulieren. Daher kann man den gesamten Fehler (Diskretisierungsfehler und Rundungsfehler) schematisch wie in Abb. 3.2 darstellen. Das Optimum (Minimum des Fehlers) liegt meist bei sehr viel kleineren Werten von h, als sie in der Praxis verwendet werden.

3.4 Romberg-Verfahren

Mit Hilfe des *Romberg-Verfahrens* lassen sich Integrale genauer berechnen als mit den Newton-Cotes-Formeln. Die Idee besteht darin, das Intervall sukzessive äquidistant zu verfeinern und dabei nicht nur das Ergebnis auf dem feinsten Gitter zu verwenden sondern auch noch zusätzliche Informationen aus den Ergebnissen, die man auf den gröberen Gittern erhalten hat. Die Nutzung dieser Zusatzinformation beruht auf der *Richardson-Extrapolation*.

> Wir nehmen an, daß wir das gesuchte Integral auf einem groben Gitter der Weite H und einem feiner Gitter der Weite hberechnet haben. Weiter sei der Fehler der in beiden Fällen verwendeten Approximation von m-ter Ordnung. Dann gilt

$$I(f) = I_H + c_H H^m,$$
 (3.30a)

$$I(f) = I_h + c_h h^m. aga{3.30b}$$

Lewis Fry Richardson 1881–1953

Dies Gleichungen enthalten die drei Unbekannten I, c_H und c_h . Die beiden Koeffizienten c_H und c_h sind verschieden, aber fast identisch. Wenn wir nun näherungsweise $c_H = c_h$ annehmen, dann können wir (3.30) lösen und I(f) berechnen. Durch Bilden

der Differenz erhalten wir mit $c_H = c_h = c$

$$0 = I_H - I_h + c \left(H^m - h^m \right), \tag{3.31}$$

woraus

$$c = \frac{I_h - I_H}{H^m - h^m} \tag{3.32}$$

folgt. Eingesetzt erhalten wir so

$$I(f) = I_h + \frac{I_h - I_H}{H^m - h^m} h^m = I_h + \frac{I_h - I_H}{(H/h)^m - 1}.$$
(3.33)

Dies gilt natürlich nicht exakt, weil wir nur näherungsweise $c_H = c_h$ gesetzt haben. Aber man kann erwarten, daß (3.33) ein besseres Ergebnis liefert als I_h allein.

Als Beispiel betrachten wir nun die Trapezregel und wenden die Richardson-Extrapolation auf zwei Intervallteilung an mit

$$h = \frac{b-a}{n}$$
 und $H = 2h = 2\frac{b-a}{n}$. (3.34)

Der Fehler der summierten Trapezregel ist nach (3.25c) von zweiter Ordnung m = 2. Aus (3.33) folgt dann

$$I(f) = I_h + \frac{I_h - I_H}{(H/h)^2 - 1} = I_n + \frac{I_n - I_{n/2}}{2^2 - 1}.$$
(3.35)

3. C. Kuhlmann Numerische Methoden der Ingenieurwissenschaften

Abbildung 3.3: Schematische Darstellung des Romberg-Verfahrens.

Abbildung 3.4: Zur Berechnung des Fehlers der Richardson-Extrapolierten bei Verwendung der Trapezregel.

Hierbei haben wir nun die Anzahl der Intervalle als Index verwendet. Da diese Lösung nur approximativ gilt, schreiben wir

$$I^{(2)} = I_n^{(1)} + \frac{I_n^{(1)} - I_{n/2}^{(1)}}{2^2 - 1},$$
(3.36)

wobei der oben geklammerte Index die Ausgangsnäherung (1) und die erste Richardson-Extrapolation (2) kennzeichnet.

Man kann nun diese erste Richardson-Extrapolation für die Paare mit folgenden Intervallängen berechnen: (1, 2), (2, 4), (4, 8), und so weiter. Dies ist in Abb. 3.3 skizziert. Dann erhält man die verbesserten Näherungen $I_n^{(2)}$. Jetzt kann man einen Schritt weiter gehen und aus den ersten Extrapolationen $I_n^{(2)}$ wiederum in der gleichen Art den Fehler eliminieren. Dazu benötigen wir aber die Fehlerordnung der Näherungen $I^{(2)}$. Dazu betrachten wir zunächst nur ein Intervall der Länge H mit den beiden Teilintervallen der Länge h = H/2 (Abb. 3.4). Nach (3.6) gilt dann

T T

Werner Romberg 1909–2003

$$I_{n/2}^{(1)} = \frac{H}{2}(f_1 + f_2), \qquad (3.37a)$$

$$I_n^{(1)} = \frac{h}{2}(f_1 + f_0) + \frac{h}{2}(f_0 + f_1) = \frac{H}{4}(f_1 + 2f_0 + f_2).$$
(3.37b)

خ. C. Suhlmann Numerische Methoden der Ingenieurwissenschaften Eingesetzt in (3.36) erhalten wir

$$I^{(2)} = \frac{H}{4}(f_1 + 2f_0 + f_2) + \frac{\frac{H}{4}(f_1 + 2f_0 + f_2) - \frac{H}{2}(f_1 + f_2)}{3}$$
$$= \frac{H}{4}\left(f_1 + 2f_0 + f_2 + \frac{(f_1 + 2f_0 + f_2) - 2(f_1 + f_2)}{3}\right)$$
$$= \frac{H}{4}\left(\frac{2f_1}{3} + \frac{8f_0}{3} + \frac{2f_2}{3}\right) = \frac{H}{6}(f_1 + 4f_0 + f_2).$$
(3.38)

Dies ist gerade die Simpson-Formel (3.7) und deren Fehler ist, wie wir in (3.23) gesehen hatten, von fünfter Ordnung. Wir benötigen hier aber die summierte Formel und diese ist nach (3.25c) von vierter Ordnung. Damit gilt für den Fehler

$$E_n^{(2)} = MH^4 \sim \left(\frac{1}{n}\right)^4.$$
 (3.39)

In Analogie zu (3.36) würde dann die zweite Richardson-Extrapolation (nun mit m = 4) lauten

$$I^{(3)} = I_n^{(2)} + \frac{I_n^{(2)} - I_{n/2}^{(2)}}{2^4 - 1}.$$
(3.40)

Dieses Verfahren führt man nun bis zu einer maximalen Anzahl von Intervallteilungen fort. Dabei nutzt man aus, daß für den Fehler in der (k - 1)-ten Richardson-Extrapolierten gilt (ohne Beweis)

$$E_n^{(k)} \sim \left(\frac{1}{n}\right)^{2k},\tag{3.41}$$

und konstruierte die Interpolationen gemäß

$$I^{(k+1)} = I_n^{(k)} + \frac{I_n^{(k)} - I_{n/2}^{(k)}}{2^{2k} - 1}.$$
(3.42)

In Abb. 3.3 ist dies bis zur dritten Intervallteilung (k = 3) dargestellt.

Als Beispiel betrachten wir die Romberg-Intergation von x^4 auf [0, 1]

$$I(f) = \int_0^1 x^4 \, \mathrm{d}x = \left[\frac{x^5}{5}\right]_0^1 = 0.2. \tag{3.43}$$

Wir werden die Intergation bis n = 4 bzw. k = 2 durchführen. Mit Hilfe der Trapezregel (3.6) verschaffen wir uns zunächst die Ausgangsintegrale

$$I_1^{(1)} = \frac{1}{2} \left[f(0) + f(1) \right] = 0.5, \tag{3.44a}$$

$$I_2^{(1)} = \frac{1}{4} \left[f(0) + 2f(0.5) + f(1) \right] = \frac{1}{4} \left[0 + 2 \times 0.5^4 + 1 \right] = 0.28125, \quad (3.44b)$$

$$I_4^{(1)} = \frac{1}{8} \left[f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1) \right]$$

= $\frac{1}{8} \left[0 + 2 \times 0.25^4 + 2 \times 0.5^4 + 2 \times 0.75^4 + 1 \right] = 0.220703125$ (3.44c)

ら. C. Kuhlmann Numerische Methoden der Ingenieurwissenschaften Richardson-Extrapolation liefert dann

$$I_2^{(2)} = 0.28125 + \frac{0.28125 - 0.5}{3} = 0.208333333, \tag{3.45a}$$

$$I_4^{(2)} = 0.220703125 + \frac{0.220703125 - 0.28125}{3} = 0.200520833.$$
(3.45b)

Die zweite Richardson-Interpolation liefert dann

$$I_4^{(3)} = 0.200520833 + \frac{0.200520833 - 0.208333333}{2^4 - 1} = 0.200000000.$$
(3.46)

Dieses Ergebnis stimmt mit mindestens 9 Dezimalstellen mit dem exakten Ergebnis überein.

3.5 Gauß-Quadratur

Bei den Quadraturen nach Newton-Cotes sind wir von fest vorgegebene Stützstellen x_i ausgegegangen. Das Problem bestand darin, die n + 1 Gewichtsfaktoren a_i geeignet zu bestimmen. Sie wurden so festgelegt, daß Polynome bis zum Höchstgrade $n \ exakt$ integriert werden.

Wir betrachten wieder eine Approximation des Integrals in der Form⁴

$$I_{\rm G}(f) = \sum_{i=1}^{n} a_i f(x_i) \,. \tag{3.47}$$

Die Idee der Gauß-Quadratur ist es, neben den n Gewichten a_i auch die n Stützstellen x_i als Unbekannte aufzufassen und diese so zu bestimmen, daß das resultierende Ergebnis möglichst genau ist. Damit hat man dann doppelt so viele freie Parameter wie bei dem Newton-Cotes-Ansatz. Ähnlich wie in (3.8) kann man nun x_i und a_i so wählen, daß Polynome bis zum Grade 2n -

1 exakt integriert werden. Daher wird eine wesentlich höhere Genauigkeit erwartet. Allgemein bezeichnet man alle Integrationsformeln, bei denen alle Gewichte und alle Stützstellen variiert werden, als *Gauß-Quadratur*.

Um die Gauß-Methode zu nutzen, ist es sinnvoll, das Integrations
intervall[a,b]mit Hilfe von

$$x = \frac{b+a}{2} + \frac{b-a}{2}\xi$$
(3.48)

auf das Intervall [-1, 1] abzubilden. Dies ist keine Einschränkung, denn mit d $x = (b-a)d\xi/2$ gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \frac{b-a}{2} \int_{-1}^{1} f\left[x(\xi)\right] \, \mathrm{d}\xi.$$
(3.49)

Johann Carl Friedrich Gauß 1777–1855

⁴Die Summe beginnt hier bei 1 und nicht bei 0 wie in (3.3).

3.5.1 2-Punkt-Gauß-Quadratur

Bevor wir uns dem allgemeinen Fall zuwenden, betrachten wir n = 2. Die 2-Punkt-Näherung des Integrals lautet

$$I_2(f) = a_1 f(x_1) + a_2 f(x_2).$$
(3.50)

Mit dieser Formel sollten wir Polynome bis zur Ordnung (2n-1) exakt integrieren können. Für n = 2 hat das allgemeine Polynom die Form

$$f(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3.$$
(3.51)

Das exakte Integral über [-1, 1] lautet

$$I(f) = \int_{-1}^{1} f(x) \, \mathrm{d}x = \left[c_1 x + \frac{c_3}{3} x^3\right]_{-1}^{1} = 2c_1 + \frac{2}{3}c_3. \tag{3.52}$$

Dies Ergebnis soll nun identisch sein mit $I_2(f)$. Wenn wir jeden Summanden von f mittels (3.50) integrieren erhalten wir

$$c_1 I_2(1) + c_2 I_2(x) + c_3 I_2(x^2) + c_4 I_2(x^3) \stackrel{!}{=} 2c_1 + \frac{2}{3}c_3.$$
 (3.53)

Die Quadraturformeln für die einzelnen Potenzen lauten

$$I_2(1) = a_1 + a_2, (3.54a)$$

$$I_2(x) = a_1 x_1 + a_2 x_2, (3.54b)$$

$$I_2(x^2) = a_1 x_1^2 + a_2 x_2^2, (3.54c)$$

$$I_2(x^3) = a_1 x_1^3 + a_2 x_2^3. aga{3.54d}$$

Ein Koeffizientenvergleich in (3.53) ergibt das *nichtlineare* Gleichungssystem für die Unbekannten a_1 , a_2 , x_1 und x_2

$$a_1 + a_2 = 2,$$
 (3.55a)

$$a_1 x_1 + a_2 x_2 = 0, (3.55b)$$

$$a_1 x_1^2 + a_2 x_2^2 = \frac{2}{3}, (3.55c)$$

$$a_1 x_1^3 + a_2 x_2^3 = 0. aga{3.55d}$$

Das System kann man lösen und erhält

$$a_1 = 1$$
 $a_2 = 1,$ (3.56a)

$$x_1 = -\frac{1}{\sqrt{3}}$$
 $x_2 = \frac{1}{\sqrt{3}}$ (3.56b)

Damit lautet die 2-Punkt-Gauß-Quadratur

$$I_2(f) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right).$$
(3.57)

3.5.2 *n*-Punkt-Gauß-Quadratur

Für $n \geq 2$ kann man das resultierende *nichtlineare* Gleichungssystem nicht mehr so einfach lösen. Dann benötigt man einen anderen Zugang. Man kann nun zeigen, daß die *n*-Punkt-Gauß-Quadratur (3.47) ein beliebiges Polynom (2n - 1)-ter Ordnung exakt integriert, wenn die Stützstellen x_i die Nullstellen eines Polynoms *n*-ter Ordnung

$$P_n(x) = (x - x_1)(x - x_2)\dots(x - x_n)$$
(3.58)

sind, welches orthogonal ist zu jedem beliebigen Polynom Q(x) von höchstens (n-1)-ter Ordnung. Orthogonalität bedeutet in diesem Zusammenhang, daß

$$\langle P_n | Q \rangle := \int_{-1}^{1} P_n(x) Q(x) \, \mathrm{d}x = 0.$$
 (3.59)

Wenn wir jetzt das Polynom höchstens (2n - 1)-ter Ordnung $f(x) = P_n(x)Q(x)$ betrachten, so gilt offenbar

$$0 \stackrel{\text{(3.59)}}{=} \int_{-1}^{1} \underbrace{P_n(x)Q(x)}_{f(x)} \, \mathrm{d}x \stackrel{\text{Gauss-Quadr.}}{=} \sum_{i=1}^n a_i \underbrace{P_n(x_i)Q(x_i)}_{f(x_i)} \stackrel{\text{(3.58)}}{=} 0, \tag{3.60}$$

da $P_n(x_i) = 0$ für i = 1, ..., n. Im Anhang B wird gezeigt, daß alle Polynome der Ordnung $m \leq 2n - 1$ exakt integriert werden.

Von zentraler Bedeutung für die Gauß-Quadratur sind damit orthogonale Polynome. Die Stützstellen der Gauß-Quadratur der Ordnung n sind gerade die Nullstellen des orthogonalen Polynoms der Ordnung n. Wenn die Stützstellen bekannt sind, kann man die Gewichtsfunktionen a_i aus der Lösung eines (dann linearen) Gleichungssystems wie (3.54) erhalten.

Die Gewichte a_i kann man auch anders berechnen. Dazu approximieren wir f(x) durch das Lagrangesche Interpolationspolynom wie in (3.10). Dann erhält man wie in (3.12) für die Quadraturformel der Ordnung n

$$I_n(f) = \int_{-1}^1 \left(\sum_{i=1}^n L_i^{(n)}(x) f(x_i) \right) dx = \sum_{i=1}^n f(x_i) \underbrace{\int_{-1}^1 L_i^{(n)}(x) dx}_{a_i} = \sum_{i=1}^n a_i f(x_i).$$
(3.61)

Die Gewichte a_i ergeben sich demnach als Integrale über die zu den Stützstellen x_i gehörigen Lagrange-Polynome $L_i^{(n)}(x)$

$$a_i = \int_{-1}^{1} L_i^{(n)}(x) \,\mathrm{d}x. \tag{3.62}$$

3.5.3 Orthogonale Polynome

Orthogonale Polynome $\{f_n(x)\}_{n \in \mathbb{N}_0}$ sind charakterisiert durch die Orthogonalitätsrelation

$$\int_{a}^{b} w(x) f_{n}(x) f_{m}(x) \, \mathrm{d}x = h_{n} \delta_{n,m}.$$
(3.63)

Hierbei nennt man $\langle \ldots \rangle := \int_{-1}^{1} \ldots dx$ auch *Skalarprodukt*.⁵ Es gibt verschiedene Systeme von orthogonalen Polynomen. Das jeweilige System wird durch die Gewichtsfunktion w(x) bis auf einen Normierungsfaktor eindeutig festgelegt. Die Polynome sind von der Form

$$f_n(x) = k_n x^n + k'_n x^{n-1} + \dots$$
(3.64)

Sie erfüllen die *Rekursion*

$$f_{n+1} = (a_n + xb_n)f_n - c_n f_{n-1}, \qquad (3.65)$$

mit

$$b_n = \frac{k_{n+1}}{k_n}, \quad a_n = b_n \left(\frac{k'_{n+1}}{k_{n+1}} - \frac{k'_n}{k_n}\right), \quad c_n = \frac{k_{n+1}k_{n-1}h_n}{k_n^2h_{n-1}}.$$
 (3.66)

Legendre-Polynome

Im einfachsten Fall ist [a, b] = [-1, 1] und w(x) = 1. Die resultierenden Polynome heißen Legendre-Polynome und werden mit $P_n(x)$ bezeichnet.⁶ Mit den ersten Polynomen $P_0(x) = 1$ und $P_1(x) = x$ kann man aus der Rekursionsformel

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \qquad n = 1, 2, \dots$$
(3.67)

alle Legendre-Polynome sukzessive konstruieren. Sie sind entsprechend (3.63) orthogonal. Die Legendre-Polynome niedriger Ordnung lauten⁷

$$P_0(x) = 1, (3.68a)$$

$$P_1(x) = x, \tag{3.68b}$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1), \qquad (3.68c)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x), \qquad (3.68d)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), \qquad (3.68e)$$

$$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x). \tag{3.68f}$$

Sie sind in Abb. 3.5 dargestellt. Der Normierungsfaktor ist $h_n = 2/(2n+1)$. Man

⁵Durch Vergleich von (3.63) mit $\vec{e_i} \cdot \vec{e_j} = \delta_{i,j}$ erkennt man die Analogie zwischen der Orthogonalität von Funktionen $\{f(x)\}$ und der Orthogonalität von Einheitsvektoren $\{\vec{e_i}\}$ im \mathbb{R}^N .

 $^{^{6}\}mathrm{Adrien}\text{-}\mathrm{Marie}$ Legendre, 1752–1833, französischer Mathematiker.

⁷Numerisch können die Legendre-Polynome mit Hilfe des Gram-Schmidt'schen Orthogonalisierungsverfahren ausgehend von den Monomen $(x^n)_{n \in \mathbb{N}}$ iterativ erzeugt werden.

Abbildung 3.5: Legendre-Polynome $P_n(x)$. Im Limes hoher Ordnung *n* fallen die Funktionen sehr schnell vom Randwert ab und besitzen im Innern eine fast konstante Oszillationsamplitude. Die Oszillationen sind in Randnähe schneller als im Zentrum.

sieht, daß die oben in (3.56) berechneten Stützstellen der 2-Punkt-Gauß-Quadratur gerade die Nullstellen von $P_2(x)$ sind.

Die Legendre-Polynome⁸ bilden ein *vollständiges Orthogonalsystem*. Das heißt, man kann jede reelle Funktion auf [-1, 1] nach Legendre-Polynomen entwickeln

$$f(x) = \sum_{n=0}^{\infty} c_n P_n(x).$$
 (3.69)

Die Koeffizienten c_m ergeben sich durch Projektion mittels des Skalarprodukts

$$(1 - x^2)f'' - 2xf' + n(n+1)f = 0, \qquad n \in \mathbb{N}_0.$$

Diese Gleichung ist ein Grenzfall (m = 0) der allgemeinen Legendre-Differentialgleichung

$$(1-x^2)f'' \mathrm{d}x^2 - 2xf' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)f = 0,$$

mit ℓ und m ganzzahlig und $0 \leq m \leq \ell$. Ihre Lösungen sind die sogenannten zugeordneten Legendre-Polynome $f = P_l^{(m)}(x)$. Die allgemeine Legendresche Differentialgleichung resultiert, wenn man Lösungen der Laplace-Gleichung in Kugelkoordinaten sucht. Die Differentialgleichung beschreibt dann den meridionalen Anteil $(x = \cos \theta)$ der Lösung. Der azimutale Anteil ist $\sim e^{im\varphi}$. Dies spielt z.B. eine Rolle in der quantenmechanischen Berechnung des Wasserstoffatoms oder bei anderen Problemen mit Kugelsymmetrie (Elekrostatik, Geodäsie). Für den Fall m = 0 sind die zugeordneten Legendre-Polynome identisch mit den Legendre-Polynomen $P_l^{(m)}(x) = P_l(x)$.

⁸Die Legendre-Polynome $P_n(x)$ sind Lösungen der Legendreschen Differentialgleichung

(3.63) auf die Legendre-Polynome P_m

$$\int_{-1}^{1} P_m(x) f(x) \, \mathrm{d}x = \int_{-1}^{1} \sum_{n=0}^{\infty} c_n P_m(x) P_n(x) \, \mathrm{d}x = \sum_{n=0}^{\infty} c_n \underbrace{\int_{-1}^{1} P_m(x) P_n(x) \, \mathrm{d}x}_{\delta_{n,m}} = c_m.$$
(3.70)

Chebyshev-Polynome

Ein anderes populäres System orthogonaler Polynome erhält man für [a, b] = [-1, 1]und $w(x) = (1 - x^2)^{-1/2}$. Dann ergeben sich die *Chebyshev-Polynome* $T_n(x)$. Das Skalarprodukt lautet dann

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = h_n \delta_{n,m} = \delta_{n,m} \begin{cases} \pi, & n = 0, \\ \pi/2, & n \neq 0. \end{cases}$$
(3.71)

Mit $T_0(1) = 1$ und $T_1 = (x)$ erhält man die übrigen Chebyshev-Polynome mit der einfachen Rekursion

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$
(3.72)

Die ersten Polynome lauten⁹

$$T_0(x) = 1,$$
 (3.73a)

$$T_1(x) = x, \tag{3.73b}$$

$$T_2(x) = 2x^2 - 1, (3.73c)$$

$$T_3(x) = 4x^3 - 3x, (3.73d)$$

$$T_4(x) = 8x^4 - 8x^2 + 1, (3.73e)$$

$$T_5(x) = 16x^5 - 20x^3 + 5x. ag{3.73f}$$

Sie sind in Abb. 3.6 gezeigt. Mit Hilfe von $x = \cos \theta$ kann man die Chebyshev Polynome auch schreiben als

$$T_n(x) = \cos(n\theta) = \cos\left[n \arccos\left(x\right)\right]. \tag{3.74}$$

Auch die Chebyshev-Polynome bilden ein vollständiges Orthogonalsystem. Man kann jede reelle Funktion auf [-1, 1] darstellen als

$$f(x) = \sum_{i=0}^{\infty} c_i T_i(x).$$
 (3.75)

$$(1 - x^2)f'' - xf' + n^2f = 0.$$

⁹Die Chebyshev-Polynome sind Lösung der Chebyshev-Differentialgleichung

Abbildung 3.6: Chebyshev-Polynome $T_n(x)$. Sie oszillieren am Rand sehr viel schneller als im Innern. Alle lokalen Extrema sind vom Betrage eins.

Wenn man die Reihe bei i = n abbricht, kann man die n + 1 Koeffizienten erhalten, indem man die f(x) mittels des Skalarprodukts (3.63) auf die Chebyshev Polynome projiziert. Dieses Verfahren wird *Galerkin-Methode* genannt. Alternativ kann man die Funktion f an den Extremstellen x_j von $T_{n+1}(x)$ auswerten, d.h. $f(x_j) = \sum_{i=0}^{n} c_i T_i(x_j)$, um die Koeffizienten c_i zu bestimmen (Kollokations-Methode). Diese Extremstellen von $T_{n+1}(x)$ heißen Chebyshev-Gauß-Lobatto-Punkte

$$x_j = -\cos\left(\frac{j\pi}{n}\right), \qquad j = 0, 1, \dots, n.$$
 (3.76)

Wir hatten sie schon oben in (2.23) zur Vermeidung des Runge-Phänomens verwendet. Für weitere Systeme von orthogonalen Polynomen sei auf Abramowitz & Stegun (1972) verwiesen.

3.5.4 Bezug zur Gauß-Quadratur

Für die Gauß-Quadratur werden die Nullstellen der Legendre-Polynome benötigt. Die Nullstellen für die *N*-Punkt-*Legendre-Gauß-Quadratur* kann man aus der Rekursion (3.67) gewinnen. Sei $x_i \in [-1, 1]$ irgend ein Punkt. Dann gilt nach (3.67)

$$(n+1)P_{n+1}(x_i) = (2n+1)x_iP_n(x_i) - nP_{n-1}(x_i), \qquad n = 1, 2, \dots,$$
(3.77)

oder

$$\frac{n+1}{2n+1}P_{n+1}(x_i) + \frac{n}{2n+1}P_{n-1}(x_i) = \mathbf{x}_i P_n(x_i), \qquad n = 1, 2, \dots$$
(3.78)

Dies kann man verallgemeinern. Die allgemeine Rekursion (3.65) kann man in der Form schreiben

$$a_n p_{n+1}(x_i) + b_n p_n(x_i) + c_n p_{n-1}(x_i) = \mathbf{x}_i p_n(x_i), \qquad n = 1, 2, \dots$$
 (3.79)

Wenn wir nun den Vektor $\vec{p} = [p_0(x_i), p_1(x_i), ..., p_{N-1}(x_i)]^T$ der Länge N definieren, können wir die Gleichungen für n = 0, 1, 2, ..., N - 1 in Matrixform schreiben

$$\begin{pmatrix} b_0 & a_0 & & & \\ c_1 & b_1 & a_1 & & & \\ & c_2 & b_2 & a_2 & & \\ & & \ddots & \ddots & \ddots & \\ & & & c_{N-2} & b_{N-2} & a_{N-2} \\ & & & & c_{N-1} & b_{N-1} \end{pmatrix} \cdot \vec{p} = x_i \vec{p}.$$
(3.80)

In der ersten Zeile taucht c_0 nicht auf, da p_{-1} nicht existiert. In der letzten Zeile müßte eigentlich noch a_{N-1} auftauchen. Dies ist aber nicht der Fall, genau dann wenn x_i gerade eine Nullstelle von $p_N(x)$ ist. Denn der Vorfaktor a_{N-1} vor $p_N(x_i) = 0$ wird dann mit Null multipliziert und der Term verschwindet. Die Rekursion bricht dann ab.

Gleichung (3.80) definiert über die tridiagonale Matrix ein *Eigenwertproblem*. Die Eigenwerte der Matrix sind gerade die Nullstellen x_i von $p_N(x)$, d.h. die gesuchten Stützstellen der Gauß-Quadratur. Die Komponenten der Eigenvektoren sind die anderen orthogonalen Polynome $p_n(x_i)$ mit n < N an den Stützstellen. Wie man derartige Probleme lösen kann, wird in Kap. 6 behandelt.

Hat man die Nullstellen x_i der Legendre-Polynome $P_N(x)$ auf diese Weise gefunden, ergeben sich die Gewichtskoeffizienten für die Legendre-Gauß-Quadratur als (ohne Beweis)

$$a_i = \frac{2}{\left(1 - x_i^2\right) \left[P'_N(x_i)\right]^2}.$$
(3.81)

Für niedrige Werte von n sind diese Größen in Tab. 3.1 aufgelistet.

Anstelle der Legendre-Polynome kann man in (3.58) auch Chebyshev-Polynome oder andere orthogonale Polynome verwenden. Man muß nur das Integral in eine Form bringen, in der auch die Gewichtsfunktion für das Skalarprodukt der Chebyshev-Polynome auftritt. Die wird durch die Funktion g(x) erreicht, für die gilt

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = \int_{-1}^{1} \frac{g(x)}{\sqrt{1 - x^2}} \, \mathrm{d}x. \tag{3.82}$$

Als Stützstellen fungieren dann die Nullstellen des *n*-ten Chebyshev-Polynoms. Man kann mit Hilfe der Beziehung $0 = T_n(x_i) = \cos(n\theta_i)$ berechnen. Hieraus folgt $n\theta_i = (2i+1)(\pi/2)$ mit $i = 0, \ldots, n-1$. Wegen $\theta = \arccos(x)$ folgt

$$x_i = \cos\left(\frac{2i+1}{2n}\pi\right), \qquad i = 1, \dots, n-1.$$
 (3.83)

Diese Punkte heißen *Chebyshev-Knoten*. Das resultierende Verfahren wird *Chebyshev-Gauß-Quadratur* genannt. Mit diesen Stützpunkten gilt dann

$$\int_{-1}^{1} \frac{g(x)}{\sqrt{1-x^2}} \,\mathrm{d}x \approx \sum_{i=1}^{n} a_i g(x_i).$$
(3.84)

Punktezahl \boldsymbol{n}	Stützstellen x_i	Gewichte a_i
1	0	2
2	$\pm\sqrt{1/3}$	1
3	0	8/9
	$\pm\sqrt{3/5}$	5/9
4	$\pm\sqrt{\left(3-2\sqrt{6/5}\right)/7}$	$\frac{18 + \sqrt{30}}{36}$
	$\pm\sqrt{\left(3+2\sqrt{6/5}\right)/7}$	$\frac{18-\sqrt{30}}{36}$
5	0	128/225
	$ \begin{array}{l} \pm \frac{1}{3} \sqrt{5 - 2\sqrt{10/7}} \\ \pm \frac{1}{3} \sqrt{5 + 2\sqrt{10/7}} \end{array} $	$\frac{\frac{322+13\sqrt{70}}{900}}{\frac{322-13\sqrt{70}}{900}}$

Tabelle 3.1: Stützstellen x_i und Gewichte a_i für die Gauß-Legendre-Quadratur.

Die Gewichtskoeffizienten sind konstant $a_i = \pi/n$.

Bei den genannten Verfahren werden nur Stützpunkte im Innern des Intervalls für die Quadratur verwendet. Manchmal ist es aber wichtig, auch die Randpunkte selbst zu verwenden. Hierfür existieren gewissen Modifikationen (siehe z.B. Canuto et al. 1988), die nur geringfügig ungenauer sind als die Verfahren ohne Verwendung der Randpunkte. Wird ein einziger Randpunkt verwendet, spricht man von Gauß-Radau-Quadratur, werden beide Randpunkte verwendet heißt das Verfahren Gauß-Lobatto-Quadratur. Diese Verfahren integrieren dann nur noch Polynome bis zur Ordnung 2N - 2 (Gauß-Radau) bzw. 2N - 3 (Gauß-Lobatto) exakt, anstelle von 2N - 1 für die Formeln ohne die inneren Randpunkte.

In Matlab ist eine adaptive Gauß-Lobatto-Quadratur im Befehl q = quadl(fun,a,b) implementiert. Hierbei muß die Funktion fun definiert sein. Sie wird über das Intervall [a,b] integriert. Der Befehl q = quad(fun,a,b) verwendet eine adaptive Simpson-Regel.