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Preface

MATLAB1 is an interactive system for numerical computation. Numerical analyst

Cleve Moler wrote the initial Fortran version of MATLAB in the late 1970s as a

teaching aid. It became popular for both teaching and research and evolved into a

commercial software package written in C. For many years now, MATLAB has been

widely used in universities and industry.

MATLAB has several advantages over more traditional means of numerical com-

puting (e.g., writing Fortran or C programs and calling numerical libraries):

� It allows quick and easy coding in a very high-level language.

� Data structures require minimal attention; in particular, arrays need not be

declared before �rst use.

� An interactive interface allows rapid experimentation and easy debugging.

� High-quality graphics and visualization facilities are available.

� MATLAB M-�les are completely portable across a wide range of platforms.

� Toolboxes can be added to extend the system, giving, for example, specialized

signal processing facilities and a symbolic manipulation capability.

� A wide range of user-contributed M-�les is freely available on the Internet.

Furthermore, MATLAB is a modern programming language and problem solving envi-

ronment: it has sophisticated data structures, contains built-in debugging and pro�l-

ing tools, and supports object-oriented programming. These factors make MATLAB

an excellent language for teaching and a powerful tool for research and practical

problem solving. Being interpreted, MATLAB inevitably su�ers some loss of e�-

ciency compared with compiled languages, but this can be mitigated by using the

MATLAB Compiler or by linking to compiled Fortran or C code using MEX �les.

This book has two purposes. First, it aims to give a lively introduction to the most

popular features of MATLAB, covering all that most users will ever need to know.

We assume no prior knowledge of MATLAB, but the reader is expected to be familiar

with the basics of programming and with the use of the operating system under which

MATLAB is being run. We describe how and why to use MATLAB functions but

do not explain the mathematical theory and algorithms underlying them; instead,

references are given to the appropriate literature.

The second purpose of the book is to provide a compact reference for all MATLAB

users. The scope of MATLAB has grown dramatically as the package has been devel-

oped (see Table 1), and even experienced MATLAB users may be unaware of some

of the functionality of the latest version. Indeed the documentation provided with

1MATLAB is a registered trademark of The MathWorks, Inc.

xix
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Table 1. Versions of MATLAB.

Year Version Notable features

1978 Classic MATLAB Original Fortran version.

1984 MATLAB 1 Rewritten in C.

1985 MATLAB 2 30% more commands and functions,

typeset documentation.

1987 MATLAB 3 Faster interpreter, color graphics, high-

resolution graphics hard copy.

1992 MATLAB 4 Sparse matrices, animation, visualiza-

tion, user interface controls, debugger,

Handle Graphics,� Microsoft Windows

support.

1997 MATLAB 5 Pro�ler, object-oriented programming,

multidimensional arrays, cell arrays,

structures, more sparse linear alge-

bra, new ordinary di�erential equation

solvers, browser-based help.

2000 MATLAB 6 MATLAB desktop including Help

Browser, matrix computations based

on LAPACK with optimized BLAS,

function handles, eigs interface to

ARPACK, boundary value prob-

lem and partial di�erential equation

solvers, graphics object transparency,

Java support.
� Handle Graphics is a registered trademark of The MathWorks, Inc.

MATLAB has grown to such an extent that the introductory Using MATLAB [56]

greatly exceeds this book in page length. Hence we believe that there is a need for

a manual that is wide-ranging yet concise. We hope that our approach of focus-

ing on the most important features of MATLAB, combined with the book's logical

organization and detailed index, will make MATLAB Guide a useful reference.

The book is intended to be used by students, researchers and practitioners alike.

Our philosophy is to teach by giving informative examples rather than to treat every

function comprehensively. Full documentation is available in MATLAB's online help

and we pinpoint where to look for further details.

Our treatment includes many \hidden" or easily overlooked features of MATLAB

and we provide a wealth of useful tips, covering such topics as customizing graphics,

M-�le style, code optimization and debugging.

The main subject omitted is object-oriented programming. Every MATLAB user

bene�ts, perhaps unknowingly, from its object-oriented nature, but we think that the

typical user does not need to program in an object-oriented fashion. Other areas not

covered include Graphical User Interface tools, MATLAB's Java interface, and some

of the more advanced visualization features.

We have not included exercises; MATLAB is often taught in conjunction with

particular subjects, and exercises are best tailored to the context.
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We have been careful to show complete, undoctored MATLAB output and to test

every piece of MATLAB code listed. The only editing we have done of output has

been to break over-long lines that continued past our right margin|in these cases we

have manually inserted the continuation periods \..." at the line break.

MATLAB runs on several operating systems and we concentrate on features com-

mon to all. We do not describe how to install or run MATLAB, or how to customize

it|the manuals, available in both printed and online form, should be consulted for

this system-speci�c information.

A Web page has been created for the book, at

http://www.siam.org/books/ot75

It includes

� All the M-�les used as examples in the book.

� Updates relating to material in the book.

� Links to various MATLAB-related Web resources.

What This Book Describes

This book describes MATLAB 6 (Release 12), although most of the examples work

with at most minor modi�cation in MATLAB 5.3 (Release 11). If you are not sure

which version of MATLAB you are using type ver or version at the MATLAB

prompt. The book is based on a prerelease version of MATLAB 6, and it is possible

that some of what we say does not fully reect the release version; any corrections

and additions will be posted on the Web site mentioned above.

All the output shown was generated on a Pentium III machine running MATLAB

under Windows 98.

How This Book Is Organized

The book begins with a tutorial that provides a quick tour of MATLAB. The rest of

the book is independent of the tutorial, so the tutorial can be skipped|for example,

by readers already familiar with MATLAB.

The chapters are ordered so as to introduce topics in a logical fashion, with the

minimum of forward references. A principal aim was to cover M-�les and graphics

as early as possible, subject to being able to provide meaningful examples. Later

chapters contain material that is more advanced or less likely to be needed by the

beginner.

Using the Book

Readers new to MATLAB should begin by working through the tutorial in Chapter 1.

Although it is designed to be read sequentially, with most chapters building on ma-

terial from earlier ones, the book can be read in a nonsequential fashion by following

cross-references and making use of the index. It is di�cult to do serious MATLAB

computation without a knowledge of arithmetic, matrices, the colon notation, oper-

ators, ow control and M-�les, so Chapters 4{7 contain information essential for all

users.

Experienced MATLAB users who are upgrading from versions earlier than version

6 should refer to Appendix A, which lists some of the main changes in recent releases.
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Chapter 1

A Brief Tutorial

The best way to learn MATLAB is by trying it yourself, and hence we begin with a

whirlwind tour. Working through the examples below will give you a quick feel for

the way that MATLAB operates and an appreciation of its power and exibility.

The tutorial is entirely independent of the rest of the book|all the MATLAB

features introduced are discussed in greater detail in the subsequent chapters. Indeed,

in order to keep this chapter brief, we have not explained all the functions used here.

You can use the index to �nd out more about particular topics that interest you.

The tutorial contains commands for you to type at the command line. In the last

part of the tutorial we give examples of script and function �les|MATLAB's versions

of programs and functions, subroutines, or procedures in other languages. These �les

are short, so you can type them in quickly. Alternatively, you can download them

from the Web site mentioned in the preface on p. xxi. You should experiment as you

proceed, keeping the following points in mind.

� Upper and lower case characters are not equivalent (MATLAB is case sensitive).

� Typing the name of a variable will cause MATLAB to display its current value.

� A semicolon at the end of a command suppresses the screen output.

� MATLAB uses both parentheses, (), and square brackets, [], and these are not

interchangeable.

� The up arrow and down arrow keys can be used to scroll through your previous

commands. Also, an old command can be recalled by typing the �rst few

characters followed by up arrow.

� You can type help topic to access online help on the command, function or

symbol topic.

� You can quit MATLAB by typing exit or quit.

Having entered MATLAB, you should work through this tutorial by typing in the

text that appears after the MATLAB prompt, >>, in the Command Window. After

showing you what to type, we display the output that is produced. We begin with

>> a = [1 2 3]

a =

1 2 3

1
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Figure 1.1. MATLAB desktop at start of tutorial.

This means that you are to type \a = [1 2 3]", after which you will see MATLAB's

output \a =" and \1 2 3" on separate lines separated by a blank line.

See Figure 1.1. (To save space we will subsequently omit blank lines in MATLAB's

output. You can tell MATLAB to suppress blank lines by typing format compact.)

This example sets up a 1-by-3 array a (a row vector). In the next example, semicolons

separate the entries:

>> c = [4; 5; 6]

c =

4

5

6

A semicolon tells MATLAB to start a new row, so c is 3-by-1 (a column vector). Now

you can multiply the arrays a and c:

>> a*c

ans =

32

Here, you performed an inner product: a 1-by-3 array multiplied into a 3-by-1 array.

MATLAB automatically assigned the result to the variable ans, which is short for

answer. An alternative way to compute an inner product is with the dot function:

>> dot(a,c)

ans =

32

Inputs to MATLAB functions are speci�ed after the function name and within paren-

theses. You may also form the outer product:

>> A = c*a
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A =

4 8 12

5 10 15

6 12 18

Here, the answer is a 3-by-3 matrix that has been assigned to A.

The product a*a is not de�ned, since the dimensions are incompatible for matrix

multiplication:

>> a*a

??? Error using ==> *

Inner matrix dimensions must agree.

Arithmetic operations on matrices and vectors come in two distinct forms. Matrix

sense operations are based on the normal rules of linear algebra and are obtained

with the usual symbols +, -, *, / and ^. Array sense operations are de�ned to act

elementwise and are generally obtained by preceding the symbol with a dot. Thus if

you want to square each element of a you can write

>> b = a.^2

b =

1 4 9

Since the new vector b is 1-by-3, like a, you can form the array product of it with a:

>> a.*b

ans =

1 8 27

MATLAB has many mathematical functions that operate in the array sense when

given a vector or matrix argument. For example,

>> exp(a)

ans =

2.7183 7.3891 20.0855

>> log(ans)

ans =

1 2 3

>> sqrt(a)

ans =

1.0000 1.4142 1.7321

MATLAB displays oating point numbers to 5 decimal digits, by default, but always

stores numbers and computes to the equivalent of 16 decimal digits. The output

format can be changed using the format command:

>> format long

>> sqrt(a)

ans =

1.00000000000000 1.41421356237310 1.73205080756888

>> format
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The last command reinstates the default output format of 5 digits. Large or small

numbers are displayed in exponential notation, with a power of 10 scale factor pre-

ceded by e:

>> 2^(-24)

ans =

5.9605e-008

Various data analysis functions are also available:

>> sum(b), mean(c)

ans =

14

ans =

5

As this example shows, you may include more than one command on the same line

by separating them with commas. If a command is followed by a semicolon then

MATLAB suppresses the output:

>> pi

ans =

3.1416

>> y = tan(pi/6);

The variable pi is a permanent variable with value �. The variable ans always

contains the most recent unassigned expression evaluated without a semicolon, so

after the assignment to y, ans still holds the value �.

You may set up a two-dimensional array by using spaces to separate entries within

a row and semicolons to separate rows:

>> B = [-3 0 1; 2 5 -7; -1 4 8]

B =

-3 0 1

2 5 -7

-1 4 8

At the heart of MATLAB is a powerful range of linear algebra functions. For example,

recalling that c is a 3-by-1 vector, you may wish to solve the linear system B*x = c.

This can be done with the backslash operator:

>> x = B\c

x =

-1.3717

1.3874

-0.1152

You can check the result by computing the Euclidean norm of the residual:

>> norm(B*x-c)

ans =

0
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The eigenvalues of B can be found using eig:

>> e = eig(B)

e =

-2.8601

6.4300 + 5.0434i

6.4300 - 5.0434i

Here, i is the imaginary unit,
p
�1. You may also specify two output arguments for

the function eig:

>> [V,D] = eig(B)

V =

0.9823 -0.0400 - 0.0404i -0.0400 + 0.0404i

-0.1275 0.7922 0.7922

0.1374 -0.1733 - 0.5823i -0.1733 + 0.5823i

D =

-2.8601 0 0

0 6.4300 + 5.0434i 0

0 0 6.4300 - 5.0434i

In this case the columns of V are eigenvectors of B and the diagonal elements of D are

the corresponding eigenvalues.

The colon notation is useful for constructing vectors of equally spaced values. For

example,

>> v = 1:6

v =

1 2 3 4 5 6

Generally, m:n generates the vector with entries m, m+1, . . . , n. Nonunit increments

can be speci�ed with m:s:n, which generates entries that start at m and increase (or

decrease) in steps of s as far as n:

>> w = 2:3:10, y = 1:-0.25:0

w =

2 5 8

y =

1.0000 0.7500 0.5000 0.2500 0

You may construct big matrices out of smaller ones by following the conventions

that (a) square brackets enclose an array, (b) spaces or commas separate entries in a

row and (c) semicolons separate rows:

>> C = [A,[8;9;10]], D = [B;a]

C =

4 8 12 8

5 10 15 9

6 12 18 10

D =

-3 0 1

2 5 -7

-1 4 8

1 2 3



6 A Brief Tutorial

The element in row i and column j of the matrix C (where i and j always start at

1) can be accessed as C(i,j):

>> C(2,3)

ans =

15

More generally, C(i1:i2,j1:j2) picks out the submatrix formed by the intersection

of rows i1 to i2 and columns j1 to j2:

>> C(2:3,1:2)

ans =

5 10

6 12

You can build certain types of matrix automatically. For example, identities and

matrices of 0s and 1s can be constructed with eye, zeros and ones:

>> I3 = eye(3,3), Y = zeros(3,5), Z = ones(2)

I3 =

1 0 0

0 1 0

0 0 1

Y =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z =

1 1

1 1

Note that for these functions the �rst argument speci�es the number of rows and the

second the number of columns; if both numbers are the same then only one need

be given. The functions rand and randn work in a similar way, generating random

entries from the uniform distribution over [0; 1] and the normal (0; 1) distribution,

respectively. If you want to make your experiments repeatable, you should set the

state of the two random number generators. Here, they are set to 20:

>> rand('state',20), randn('state',20)

>> F = rand(3), G = randn(1,5)

F =

0.7062 0.3586 0.8468

0.5260 0.8488 0.3270

0.2157 0.0426 0.5541

G =

1.4051 1.1780 -1.1142 0.2474 -0.8169

Single (closing) quotes act as string delimiters, so 'state' is a string. ManyMATLAB

functions take string arguments.

By this point several variables have been created in the workspace. You can obtain

a list with the who command:
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>> who

Your variables are:

A F Y b w

B G Z c x

C I3 a e y

D V ans v

Alternatively, type whos for a more detailed list showing the size and class of each

variable, too.

Like most programming languages, MATLAB has loop constructs. The following

example uses a for loop to evaluate the continued fraction

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + 1

;

which approximates the golden ratio, (1 +
p
5)=2. The evaluation is done from the

bottom up:

>> g = 2;

>> for k=1:10, g = 1 + 1/g; end

>> g

g =

1.6181

Loops involving while can be found later in this tutorial.

The plot function produces two-dimensional (2D) pictures:

>> t = 0:0.005:1; z = exp(10*t.*(t-1)).*sin(12*pi*t);

>> plot(t,z)

Here, plot(t,z) joins the points t(i),z(i) using the default solid linetype. MATLAB

opens a �gure window in which the picture is displayed. Figure 1.2 shows the result.

You can produce a histogram with the function hist:

>> hist(randn(1000,1))

Here, hist is given 1000 points from the normal (0,1) random number generator. The

result is shown in Figure 1.3.

You are now ready for more challenging computations. A random Fibonacci se-

quence fxng is generated by choosing x1 and x2 and setting

xn+1 = xn � xn�1; n � 2:
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Figure 1.2. Basic 2D picture produced by plot.
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Figure 1.3. Histogram produced by hist.
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Figure 1.4. Growth of a random Fibonacci sequence.

Here, the � indicates that + and � must have equal probability of being chosen.

Viswanath [82] analyzed this recurrence and showed that, with probability 1, for

large n the quantity jxnj increases like a multiple of cn, where c = 1:13198824 : : : (see

also [17]). You can test Viswanath's result as follows:

>> clear

>> rand('state',100)

>> x = [1 2];

>> for n = 2:999, x(n+1) = x(n) + sign(rand-0.5)*x(n-1); end

>> semilogy(1:1000,abs(x))

>> c = 1.13198824;

>> hold on

>> semilogy(1:1000,c.^[1:1000])

>> hold off

Here, clear removes all variables from the workspace. The for loop stores a random

Fibonacci sequence in the array x; MATLAB automatically extends x each time a

new element x(n+1) is assigned. The semilogy function then plots n on the x-axis

against abs(x) on the y-axis, with logarithmic scaling for the y-axis. Typing hold on

tells MATLAB to superimpose the next picture on top of the current one. The second

semilogy plot produces a line of slope c. The overall picture, shown in Figure 1.4, is

consistent with Viswanath's theory.

The MATLAB commands to generate Figure 1.4 stretched over several lines. This

is inconvenient for a number of reasons, not least because if a change is made to the

experiment then it is necessary to reenter all the commands. To avoid this di�culty

you can employ a script M-�le. Create an ASCII �le named rfib.m identical to List-

ing 1.1 in your current directory. (Typing edit calls up MATLAB's Editor/Debugger;

pwd displays the current directory and ls or dir lists its contents.) Now type

>> rfib
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Listing 1.1. Script M-�le rfib.m.

%RFIB Random Fibonacci sequence.

rand('state',100) % Set random number state.

m = 1000; % Number of iterations.

x = [1 2]; % Initial conditions.

for n = 2:m-1 % Main loop.

x(n+1) = x(n) + sign(rand-0.5)*x(n-1);

end

semilogy(1:m,abs(x))

c = 1.13198824; % Viswanath's constant.

hold on

semilogy(1:m,c.^(1:m))

hold off

at the command line. This will reproduce the picture in Figure 1.4. Running rfib in

this way is essentially the same as typing the commands in the �le at the command

line, in sequence. Note that in Listing 1.1 blank lines and indentation are used to

improve readability, and we have made the number of iterations a variable, m, so

that it can be more easily changed. The script also contains helpful comments|

all text on a line after the % character is ignored by MATLAB. Having set up these

commands in an M-�le you are now free to experiment further. For example, changing

rand('state',100) to rand('state',101) generates a di�erent random Fibonacci

sequence, and adding the line title('Random Fibonacci Sequence') at the end of

the �le will put a title on the graph.

Our next example involves the Collatz iteration, which, given a positive integer

x1, has the form xk+1 = f(xk), where

f(x) =

�
3x+ 1; if x is odd,

x=2; if x is even.

In words: if x is odd, replace it by 3x + 1, and if x is even, halve it. It has been

conjectured that this iteration will always lead to a value of 1 (and hence thereafter

cycle between 4, 2 and 1) whatever starting value x1 is chosen. There is ample

computational evidence to support this conjecture, which is variously known as the

Collatz problem, the 3x + 1 problem, the Syracuse problem, Kakutani's problem,

Hasse's algorithm, and Ulam's problem. However, a rigorous proof has so far eluded

mathematicians. For further details, see [47] or type \Collatz problem" into your

favorite Web search engine. You can investigate the conjecture by creating the script

M-�le collatz.m shown in Listing 1.2. In this �le a while loop and an if statement

are used to implement the iteration. The input command prompts you for a starting

value. The appropriate response is to type an integer and then hit return or enter:

>> collatz

Enter an integer bigger than 2: 27

Here, the starting value 27 has been entered. The iteration terminates and the re-

sulting picture is shown in Figure 1.5.
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Listing 1.2. Script M-�le collatz.m.

%COLLATZ Collatz iteration.

n = input('Enter an integer bigger than 2: ');

narray = n;

count = 1;

while n ~= 1

if rem(n,2) == 1 % Remainder modulo 2.

n = 3*n+1;

else

n = n/2;

end

count = count + 1;

narray(count) = n; % Store the current iterate.

end

plot(narray,'*-') % Plot with * marker and solid line style.

title(['Collatz iteration starting at ' int2str(narray(1))],'FontSize',16)

0 20 40 60 80 100 120
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10000
Collatz iteration starting at 27

Figure 1.5. Plot produced by collatz.m.
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To investigate the Collatz problem further, the script collbar in Listing 1.3 plots

a bar graph of the number of iterations required to reach the value 1, for starting

values 1; 2; : : : ; 29. The result is shown in Figure 1.6. For this picture, the function

grid adds grid lines that extend from the axis tick marks, and title, xlabel and

ylabel add further information.

The well-known and much studied Mandelbrot set can be approximated graphi-

cally in just a few lines of MATLAB. It is de�ned as the set of points c in the complex

plane for which the sequence generated by the map z 7! z
2 + c, starting with z = c,

remains bounded [65, Chap. 14]. The script mandel in Listing 1.4 produces the plot of

the Mandelbrot set shown in Figure 1.7. The script contains calls to linspace of the

form linspace(a,b,n), which generate an equally spaced vector of n values between

a and b. The meshgrid and complex functions are used to construct a matrix C that

represents the rectangular region of interest in the complex plane. The waitbar func-

tion plots a bar showing the progress of the computation and illustrates MATLAB's

Handle Graphics (the variable h is a \handle" to the bar). The plot itself is produced

by contourf, which plots a �lled contour. The expression abs(Z)<Z max in the call

to contourf detects points that have not exceeded the threshold Z max and which are

therefore assumed to lie in the Mandelbrot set. You can experiment with mandel by

changing the region that is plotted, via the linspace calls, the number of iterations

it max, and the threshold Z max.

Next we solve the ordinary di�erential equation (ODE) system

d

dt
y1(t) = 10(y2(t)� y1(t));

d

dt
y2(t) = 28y1(t)� y2(t)� y1(t)y3(t);

d

dt
y3(t) = y1(t)y2(t)� 8y3(t)=3:

This is an example from the Lorenz equations family; see [74]. We take initial condi-

tions y(0) = [0; 1; 0]T and solve over 0 � t � 50. The M-�le lorenzde in Listing 1.5

is an example of a MATLAB function. Given t and y, this function returns the right-

hand side of the ODE as the vector yprime. This is the form required by MATLAB's

ODE solving functions. The script lrun in Listing 1.6 uses the MATLAB function

ode45 to solve the ODE numerically and then produces the (y1; y3) phase plane plot

shown in Figure 1.8. You can see an animated plot of the solution by typing lorenz,

which calls one of MATLAB's demonstrations (type help demos for the complete

list).

Now we give an example of a recursive function, that is, a function that calls

itself. The Sierpinski gasket [64, Sec. 2.2] is based on the following process. Given

a triangle with vertices Pa, Pb and Pc, we remove the triangle with vertices at the

midpoints of the edges, (Pa + Pb)=2, (Pb + Pc)=2 and (Pc + Pa)=2. This removes

the \middle quarter" of the triangle, as illustrated in Figure 1.9. E�ectively, we have

replaced the original triangle with three \subtriangles". We can now apply the middle

quarter removal process to each of these subtriangles to generate nine subsubtriangles,

and so on. The Sierpinski gasket is the set of all points that are never removed by

repeated application of this process. The function gasket in Listing 1.7 implements

the removal process. The input arguments Pa, Pb and Pc de�ne the vertices of the

triangle and level speci�es how many times the process is to be applied. If level is

nonzero then gasket calls itself three times with level reduced by 1, once for each
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Listing 1.3. Script M-�le collbar.m.

%COLLBAR Collatz iteration bar graph.

N = 29; % Use starting values 1,2,...,N.

niter = zeros(N,1); % Preallocate array.

for i = 1:N

count = 0;

n = i;

while n ~= 1

if rem(n,2) == 1

n = 3*n+1;

else

n = n/2;

end

count = count + 1;

end

niter(i) = count;

end

bar(niter) % Bar graph.

grid % Add horizontal and vertical grid lines.

title('Collatz iteration counts','FontSize',16)

xlabel('Starting value','FontSize',16) % Label x axis.

ylabel('Number of iterations','FontSize',16) % Label y axis.
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Figure 1.6. Plot produced by collbar.m.
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Listing 1.4. Script M-�le mandel.m.

%MANDEL Mandelbrot set.

h = waitbar(0,'Computing...');

x = linspace(-2.1,0.6,301);

y = linspace(-1.1,1.1,301);

[X,Y] = meshgrid(x,y);

C = complex(X,Y);

Z_max = 1e6; it_max = 50;

Z = C;

for k = 1:it_max

Z = Z.^2 + C;

waitbar(k/it_max)

end

close(h)

contourf(x,y,abs(Z)<Z_max,1)

title('Mandelbrot Set','FontSize',16)
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Figure 1.7. Mandelbrot set approximation produced by mandel.m.
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Listing 1.5. Function M-�le lorenzde.m.

function yprime = lorenzde(t,y)

%LORENZDE Lorenz equations.

% YPRIME = LORENZDE(T,Y).

yprime = [10*(y(2)-y(1))

28*y(1)-y(2)-y(1)*y(3)

y(1)*y(2)-8*y(3)/3];

Listing 1.6. Script M-�le lrun.m.

%LRUN ODE solving example: Lorenz.

tspan = [0 50]; % Solve for 0 <= t <= 50.

yzero = [0;1;0]; % Initial conditions.

[t,y] = ode45('lorenzde',tspan,yzero);

plot(y(:,1),y(:,3)) % (y_1,y_3) phase plane.

xlabel('y_1','FontSize',14)

ylabel('y_3 ','FontSize',14,'Rotation',0,'HorizontalAlignment','right')

title('Lorenz equations','FontSize',16)
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Figure 1.8. Phase plane plot from ode45.
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Listing 1.7. Function M-�le gasket.m.

function gasket(Pa,Pb,Pc,level)

%GASKET Recursively generated Sierpinski gasket.

% GASKET(PA, PB, PC, LEVEL) generates an approximation to

% the Sierpinski gasket, where the 2-vectors PA, PB and PC

% define the triangle vertices.

% LEVEL is the level of recursion.

if level == 0

% Fill the triangle with vertices Pa, Pb, Pc.

fill([Pa(1),Pb(1),Pc(1)],[Pa(2),Pb(2),Pc(2)],[0.5 0.5 0.5]);

hold on

else

% Recursive calls for the three subtriangles.

gasket(Pa,(Pa+Pb)/2,(Pa+Pc)/2,level-1)

gasket(Pb,(Pb+Pa)/2,(Pb+Pc)/2,level-1)

gasket(Pc,(Pc+Pa)/2,(Pc+Pb)/2,level-1)

end

of the three subtriangles. When level �nally reaches zero, the appropriate triangle

is drawn. The following code generates Figure 1.10.

>> level = 5;

>> Pa = [0;0];

>> Pb = [1;0];

>> Pc = [0.5;sqrt(3)/2];

>> gasket(Pa,Pb,Pc,level)

>> hold off

>> title(['Gasket level = ' num2str(level)],'FontSize',16)

>> axis('equal','off')

(Figure 1.9 was generated in the same way with level = 1.) In the last line, the

call to axis makes the units of the x- and y-axes equal and turns o� the axes and

their labels. You should experiment with di�erent initial vertices Pa, Pb and Pc, and

di�erent levels of recursion, but keep in mind that setting level bigger than 8 may

overstretch either your patience or your computer's resources.

The Sierpinski gasket can also be generated by playing Barnsley's \chaos game"

[64, Sec. 1.3]. We choose one of the vertices of a triangle as a starting point. Then

we pick one of the three vertices at random, take the midpoint of the line joining this

vertex with the starting point and plot this new point. Then we take the midpoint

of this point and a randomly chosen vertex as the next point, which is plotted, and

the process continues. The script barnsley in Listing 1.8 implements the game.

Figure 1.11 shows the result of choosing 1000 iterations:

>> barnsley

Enter number of points (try 1000) 1000

Try experimenting with the number of points, n, the type and size of marker in the

plot command, and the location of the starting point.
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Gasket level = 1

Figure 1.9. Removal process for the Sierpinski gasket.

Gasket level = 5

Figure 1.10. Level 5 Sierpinski gasket approximation from gasket.m.
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Listing 1.8. Script M-�le barnsley.m.

%BARNSLEY Barnsley's game to compute Sierpinski gasket.

rand('state',1) % Set random number state.

V = [0, 1, 0.5; 0, 0, sqrt(3)/2]; % Columns give triangle vertices.

point = V(:,1); % Start at a vertex.

n = input('Enter number of points (try 1000) ');

for k = 1:n

node = ceil(3*rand); % node is 1, 2 or 3 with equal prob.

point = (V(:,node) + point)/2;

plot(point(1),point(2),'.','MarkerSize',15)

hold on

end

axis('equal','off')

hold off

Figure 1.11. Sierpinski gasket approximation from barnsley.m.
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Listing 1.9. Script M-�le sweep.m.

%SWEEP Generates a volume-swept 3D object.

N = 10; % Number of increments - try increasing.

z = linspace(-5,5,N)';

radius = sqrt(1+z.^2); % Try changing SQRT to some other function.

theta = 2*pi*linspace(0,1,N);

X = radius*cos(theta);

Y = radius*sin(theta);

Z = z(:,ones(1,N));

surf(X,Y,Z)

axis equal
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Figure 1.12. 3D picture produced by sweep.m.
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We �nish with the script sweep in Listing 1.9, which generates a volume-swept

three-dimensional (3D) object; see Figure 1.12. Here, the command surf(X,Y,Z) cre-

ates a 3D surface where the height Z(i,j) is speci�ed at the point (X(i,j),Y(i,j))

in the x-y plane. The script is not written in the most obvious fashion, which would

use two nested for loops. Instead it is vectorized. To understand how it works you

will need to be familiar with Chapter 5 and Section 21.4. You can experiment with

the script by changing the parameter N and the function that determines the variable

radius: try replacing sqrt by other functions, such as log, sin or abs.

If you are one of those experts who

wants to see something from MATLAB right now

and would rather read the instructions later,

this page is for you.

| 386-MATLAB User's Guide (1989)

Do not be too timid and squeamish about your actions.

All life is an experiment.

The more experiments you make the better.

| RALPH WALDO EMERSON



Chapter 2

Basics

2.1. Interaction and Script Files

MATLAB is an interactive system. You type commands at the prompt (>>) in the

Command Window and computations are performed when you press the enter or

return key. At its simplest level, MATLAB can be used like a pocket calculator:

>> (1+sqrt(5))/2

ans =

1.6180

>> 2^(-53)

ans =

1.1102e-016

The �rst example computes (1 +
p
5)=2 and the second 2�53. Note that the second

result is displayed in exponential notation: it represents 1:1102�10�16. The variable
ans is created (or overwritten, if it already exists) when an expression is not assigned

to a variable. It can be referenced later, just like any other variable. Unlike in most

programming languages, variables are not declared prior to use but are created by

MATLAB when they are assigned:

>> x = sin(22)

x =

-0.0089

Here we have assigned to x the sine of 22 radians. The printing of output can be

suppressed by appending a semicolon. The next example assigns a value to y without

displaying the result:

>> y = 2*x + exp(-3)/(1+cos(.1));

Commas or semicolons are used to separate statements that appear on the same line:

>> x = 2, y = cos(.3), z = 3*x*y

x =

2

y =

0.9553

z =

5.7320

>> x = 5; y = cos(.5); z = x*y^2

21
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z =

3.8508

Note again that the semicolon causes output to be suppressed.

MATLAB is case sensitive. This means, for example, that x and X are distinct

variables.

To perform a sequence of related commands, you can write them into a script M-

�le, which is a text �le with a .m �lename extension. For example, suppose you wish

to process a set of exam marks using the MATLAB functions sort, mean, median

and std, which, respectively, sort into increasing order and compute the arithmetic

mean, the median and the standard deviation. You can create a �le, say marks.m, of

the form

%MARKS

exmark = [12 0 5 28 87 3 56];

exsort = sort(exmark)

exmean = mean(exmark)

exmed = median(exmark)

exstd = std(exmark)

The % denotes a comment line. Typing

>> marks

at the command line then produces the output

exsort =

0 3 5 12 28 56 87

exmean =

27.2857

exmed =

12

exstd =

32.8010

Note that calling marks is entirely equivalent to typing each of the individual com-

mands in sequence at the command line. More details on creating and using script

�les can be found in Chapter 7.

Throughout this book, unless otherwise indicated, the prompt >> signals an ex-

ample that has been typed at the command line and it is immediately followed by

MATLAB's output (if any). A sequence of MATLAB commands without the prompt

should be interpreted as forming a script �le (or part of one).

To quit MATLAB type exit or quit.

2.2. More Fundamentals

MATLAB has many useful functions in addition to the usual ones found on a pocket

calculator. For example, you can set up a random matrix of order 3 by typing

>> A = rand(3)

A =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214
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Here each entry of A is chosen independently from the uniform distribution on the

interval [0; 1]. The inv command inverts A:

>> inv(A)

ans =

1.6740 -0.1196 -0.9276

-0.4165 1.1738 0.2050

-0.8504 -1.0006 1.7125

The inverse has the property that its product with the matrix is the identity matrix.

We can check this property for our example by typing

>> ans*A

ans =

1.0000 0.0000 -0.0000

0.0000 1.0000 0.0000

0.0000 -0.0000 1.0000

The product has 1s on the diagonal, as expected. The o�-diagonal elements, displayed

as plus or minus 0.0000, are, in fact, not exactly zero. MATLAB stores numbers and

computes to a relative precision of about 16 decimal digits. By default it displays

numbers in a 5-digit �xed point format. While concise, this is not always the most

useful format. The format command can be used to set a 5-digit oating point format

(also known as scienti�c or exponential notation):

>> format short e

>> ans

ans =

1.0000e+000 7.4485e-017 -8.9772e-017

1.3986e-017 1.0000e+000 9.7172e-018

7.4159e-017 -7.9580e-017 1.0000e+000

Now we see that the o�-diagonal elements of the product are nonzero but tiny|

the result of rounding errors. The default format can be reinstated by typing format

short, or simply format. The format command has many options, which can be seen

by typing help format. See Table 2.1 for some examples. All the MATLAB output

shown in this book was generated with format compact in e�ect, which suppresses

blank lines.

Generally, help foo displays information on the command or function named foo.

For example:

>> help sqrt

SQRT Square root.

SQRT(X) is the square root of the elements of X. Complex

results are produced if X is not positive.

See also SQRTM.

Note that it is a convention that function names are capitalized within help lines,

in order to make them easy to identify. The names of all functions that are part of

MATLAB or one of its toolboxes should be typed in lower case, however. On Unix

systems the names of user-written M-�les should be typed to match the case of the
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Table 2.1. 10*exp(1) displayed in several output formats.

format short 27.1828

format long 27.18281828459045

format short e 2.7183e+001

format long e 2.718281828459045e+001

format short g 27.183

format long g 27.1828182845905

format hex 403b2ecd2dd96d44

format bank 27.18

format rat 2528/93

name of the .m �le, since Unix �lenames are case sensitive (Windows �lenames are

not).

Typing help by itself produces the list of directories shown in Table 2.2 (extra

directories will be shown for any toolboxes that are available, and if you have added

your own directories to the path they will be shown as well). This list provides

an overview of how MATLAB functions are organized. Typing help followed by a

directory name (e.g., help general) gives a list of functions in that directory. Type

help help for further details on the help command.

The most comprehensive documentation is available in the Help Browser (see

Figure 2.1), which provides help for all MATLAB functions, release and upgrade

notes, and online versions of the complete MATLAB documentation in html and

PDF format. The Help Browser includes a Help Navigator pane containing tabs for

a Contents listing, an Index listing, a Search facility, and Favorites. The attached

display pane displays html documentation containing links to related subjects and

allows you to move back or forward a page, to search the current page, and to add a

page to the list of favorites. The Help Browser is accessed by clicking the \?" icon on

the toolbar of the MATLAB desktop, by selecting Help from the Help menu, or by

typing helpbrowser at the command line prompt. You can type doc foo to call up

help on function foo directly in the Help Browser. Typing helpwin calls up the Help

Browser with the same list of directories produced by help; clicking on a directory

takes you to a list of M-�les in that directory and you can click on an M-�le name to

obtain help on that M-�le.

A useful search facility is provided by the lookfor command. Type lookfor

keyword to search for functions relating to the keyword. Example:

>> lookfor elliptic

ELLIPJ Jacobi elliptic functions.

ELLIPKE Complete elliptic integral.

PDEPE Solve initial-boundary value problems for parabolic-elliptic

PDEs in 1-D.

If you make an error when typing at the prompt you can correct it using the

arrow keys and the backspace or delete keys. Previous command lines can be recalled

using the up arrow key, and the down arrow key takes you forward through the

command list. If you type a few characters before hitting up arrow then the most

recent command line beginning with those characters is recalled. A number of the
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Table 2.2. MATLAB directory structure (under Windows).

>> help

HELP topics:

matlab\general - General purpose commands.

matlab\ops - Operators and special characters.

matlab\lang - Programming language constructs.

matlab\elmat - Elementary matrices and matrix manipulation.

matlab\elfun - Elementary math functions.

matlab\specfun - Specialized math functions.

matlab\matfun - Matrix functions - numerical linear algebra.

matlab\datafun - Data analysis and Fourier transforms.

matlab\audio - Audio support.

matlab\polyfun - Interpolation and polynomials.

matlab\funfun - Function functions and ODE solvers.

matlab\sparfun - Sparse matrices.

matlab\graph2d - Two dimensional graphs.

matlab\graph3d - Three dimensional graphs.

matlab\specgraph - Specialized graphs.

matlab\graphics - Handle Graphics.

matlab\uitools - Graphical user interface tools.

matlab\strfun - Character strings.

matlab\iofun - File input/output.

matlab\timefun - Time and dates.

matlab\datatypes - Data types and structures.

matlab\verctrl - (No table of contents file)

matlab\winfun - Windows Operating System Interface Files

(DDE/ActiveX)

matlab\demos - Examples and demonstrations.

toolbox\local - Preferences.

matlabr12\work - (No table of contents file)

For more help on directory/topic, type "help topic".
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Figure 2.1. Help Browser.

Emacs control key commands for cursor movement are also supported. Table 2.3

summarizes the command line editing keypresses. You can scroll through commands

previously typed in the current and past sessions in the Command History window.

Double-clicking on a command in this window executes it.

Type clc to clear the Command Window.

A MATLAB computation can be aborted by pressing ctrl-c (holding down the

control key and pressing the \c" key). If MATLAB is executing a built-in function it

may take some time to respond to this keypress.

A line can be terminated with three periods (...), which causes the next line to

be a continuation line:

>> x = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ...

1/6 + 1/7 + 1/8 + 1/9 + 1/10

x =

2.9290

The value of x illustrates the fact that, unlike in some other programming languages,

there is no separate type and arithmetic for integers, so all computations are done in

oating point arithmetic and can be written in the natural way.

Several functions provide special values:

� pi is � = 3:14159 : : :;

� i is the imaginary unit,
p
�1, as is j. Complex numbers are entered as, for

example, 2-3i, 2-3*i, 2-3*sqrt(-1), or complex(2,-3). Note that the form

2-3*i may not produce the intended results if i is being used as a variable, so

the other forms are generally preferred.

Functions generating constants related to oating point arithmetic are described in

Chapter 4. It is possible to override existing variables and functions by creating
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Table 2.3. Command line editing keypresses.

Key Control equivalent Operation

Up arrow Ctrl-p Recall previous line

Down arrow Ctrl-n Recall next line

Left arrow Ctrl-b Back one character

Right arrow Ctrl-f Forward one character

Ctrl left arrow Ctrl-l Left one word

Ctrl right arrow Ctrl-r Forward one word

Home Ctrl-a Beginning of line

Esc Ctrl-u Clear line

End Ctrl-e End of line

Del Ctrl-d Delete character under cursor

Backspace Ctrl-h Delete previous character

Ctrl-k Delete (kill) to end of line

Ctrl-t Toggle insert mode (Unix only)

new ones with the same names. This practice should be avoided, as it can lead to

confusion. However, the use of i and j as counting variables is widespread.

MATLAB fully supports complex arithmetic. For example,

>> w = (-1)^0.25

w =

0.7071 + 0.7071i

>> exp(i*pi)

ans =

-1.0000 + 0.0000i

Variable names are case sensitive and can be up to 31 characters long, consisting

of a letter followed by any combination of letters, digits and underscores.

A list of variables in the workspace can be obtained by typing who, while whos

shows the size and class of each variable as well. For example, after executing the

commands so far in this chapter, whos produces

Name Size Bytes Class

A 3x3 72 double array

ans 1x1 16 double array (complex)

exmark 1x7 56 double array

exmean 1x1 8 double array

exmed 1x1 8 double array

exsort 1x7 56 double array

exstd 1x1 8 double array

w 1x1 16 double array (complex)

x 1x1 8 double array

y 1x1 8 double array

z 1x1 8 double array

Grand total is 31 elements using 264 bytes



28 Basics

Figure 2.2. Workspace Browser.

Figure 2.3. Array Editor.

An existing variable var can be removed from the workspace by typing clear var,

while clear clears all existing variables.

The workspace can also be examined via the Workspace Browser (see Figure 2.2),

which is invoked by the View-Workspace menu option or by typing workspace. A

variable, A, say, can be edited interactively in spreadsheet format in the Array Ed-

itor by double-clicking on the variable name (see Figure 2.3); alternatively, typing

openvar('A') calls up the Array Editor on A.

To save variables for recall in a future MATLAB session type save filename; all

variables in the workspace are saved to filename.mat. Alternatively,

save filename A x

saves just the variables A and x. The command load filename loads in the variables

from filename.mat, and individual variables can be loaded using the same syntax

as for save. The default is to save and load variables in binary form, but options

allow ASCII form to be speci�ed. MAT-�les can be ported between MATLAB imple-

mentations running on di�erent computer systems. A Load Wizard, accessible from
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Table 2.4. Information and demonstrations.

bench Benchmarks to test the speed of your computer

demo A collection of demonstrations

info Contact information for The MathWorks

intro A \slideshow" giving a brief introduction to

MATLAB

ver Version number and release dates of MATLAB and

toolboxes

version Version number and release dates of MATLAB.

whatsnew whatsnew brings up the Release Notes in the Help

Browser. whatsnew matlab displays the readme

�le for MATLAB, which explains the new features

introduced in the most recent version. whatsnew

toolbox displays the readme �le for the speci�ed

toolbox

the File-Load Data menu option, provides a graphical interface to MATLAB's import

functions.

Often you need to capture MATLAB output for incorporation into a report. This

is most conveniently done with the diary command. If you type diary filename

then all subsequent input and (most) text output is copied to the speci�ed �le; diary

off turns o� the diary facility. After typing diary off you can later type diary on

to cause subsequent output to be appended to the same diary �le.

To print the value of a variable or expression without the name of the variable or

ans being displayed, you can use disp:

>> A = eye(2); disp(A)

1 0

0 1

>> disp('Result:'), disp(1/7)

Result:

0.1429

Commands are available for interacting with the operating system, including cd

(change directory), copyfile (copy �le), mkdir (make directory), pwd (print working

directory), dir or ls (list directory), and delete (delete �le). A command can

be issued to the operating system by preceding it with an exclamation mark, !.

For example, you might type !emacs myscript.m to edit myscript with the Emacs

editor.

Some MATLAB commands giving access to information and demonstrations are

listed in Table 2.4.
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Help!

| Title of a song by LENNON and MCCARTNEY (1965)

If ifs and ans were pots and pans,

there'd be no trade for tinkers.

| Proverb



Chapter 3

Distinctive Features of MATLAB

MATLAB has three features that distinguish it from most other modern programming

languages and problem solving environments. We introduce them in this chapter and

elaborate on them later in the book.

3.1. Automatic Storage Allocation

As we saw in Chapter 2, variables need not be declared prior to being assigned. This

applies to arrays as well as scalars. Moreover, MATLAB automatically expands the

dimensions of arrays in order for assignments to make sense. Thus, starting with an

empty workspace, we can set up a 1-by-3 vector x of zeros with

>> x(3) = 0

x =

0 0 0

and then expand it to length 6 with

>> x(6) = 0

x =

0 0 0 0 0 0

MATLAB's automatic allocation of storage is one of its most convenient and distinc-

tive features.

3.2. Functions with Variable Arguments Lists

MATLAB contains a large (and user-extendible) collection of functions. They take

zero or more input arguments and return zero or more output arguments. MATLAB

enforces a clear distinction between input and output: input arguments appear on

the right of the function name, within parentheses, and output arguments appear on

the left, within square brackets. Functions can support a variable number of input

and output arguments, so that on a given call not all arguments need be supplied.

Functions can even vary their behavior depending on the precise number and type of

arguments supplied. We illustrate with some examples.

The norm function computes the Euclidean norm, or 2-norm, of a vector (the

square root of the sum of squares of the absolute values of the elements):

>> x = [3 4];

>> norm(x)
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ans =

5

A di�erent norm can be obtained by supplying norm with a second input argument.

For example, the 1-norm (the sum of the absolute values of the elements) is obtained

with

>> norm(x,1)

ans =

7

If the second argument is not speci�ed then it defaults to 2, giving the 2-norm. The

max function has a variable number of output arguments. With one output argument

it returns the largest element of the input vector:

>> m = max(x)

m =

4

If a second output argument is supplied then the index of the largest element is

assigned to it:

>> [m,k] = max(x)

m =

4

k =

2

As a �nal illustration of the versatility of MATLAB functions consider size, which

returns the dimensions of an array. In the following example we set up a 5-by-3

random matrix and then request its dimensions:

>> A = rand(5,3);

>> s = size(A)

s =

5 3

With one output argument, size returns a 1-by-2 vector with �rst element the number

of rows of the input argument and second element the number of columns. However,

size can also be given two output arguments, in which case it sets them to the number

of rows and columns individually:

>> [m,n] = size(A)

m =

5

n =

3

3.3. Complex Arrays and Arithmetic

The fundamental data type in MATLAB is a multidimensional array of complex

numbers, with real and imaginary parts stored in double precision oating point
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arithmetic. Important special cases are matrices (two-dimensional arrays), vectors

and scalars. All computation in MATLAB is performed in oating point arithmetic,

and complex arithmetic is used automatically when the data is complex. There is

no separate real data type (though for reals the imaginary part is not stored). This

can be contrasted with Fortran, in which di�erent data types are used for real and

complex numbers, and with C, C++ and Java, which support only real numbers and

real arithmetic.

There are some integer data types, but they are used for memory-e�cient storage

only, not for computation; see help datatypes.

The guts of MATLAB are written in C.

Much of MATLAB is also written in MATLAB,

because it's a programming language.

| CLEVE MOLER, Putting Math to Work (1999)

In some ways, MATLAB resembles SPEAKEASY and, to a lesser extent, APL.

All are interactive terminal languages that ordinarily

accept single-line commands or statements,

process them immediately,

and print the results.

All have arrays as the principal data type.

| CLEVE B. MOLER, Demonstration of a Matrix Laboratory (1982)
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Arithmetic

4.1. IEEE Arithmetic

MATLAB carries out all its arithmetic computations in double precision oating

point arithmetic, conforming to the IEEE standard [32]. The logical function isieee

returns a result of 1 (true) if MATLAB is using IEEE arithmetic and 0 (false) if

not. For MATLAB 6 isieee is always true, but earlier versions of MATLAB were

available for certain machines that did not support IEEE arithmetic. The function

computer returns the type of computer on which MATLAB is running. The machine

used to produce all the output shown in this book gives

>> computer

ans =

PCWIN

>> isieee

ans =

1

In MATLAB's double data type each number occupies a 64-bit word. Nonzero

numbers range in magnitude between approximately 10�308 and 10+308 and the unit

roundo� is 2�53 � 1:11 � 10�16. (See [30, Chap. 2] for a detailed explanation of

oating point arithmetic.) The signi�cance of the unit roundo� is that it is a bound

for the relative error in converting a real number to oating point form and also a

bound for the relative error in adding, subtracting, multiplying or dividing two oating

point numbers or taking the square root of a oating point number. In simple terms,

MATLAB stores oating point numbers and carries out elementary operations to an

accuracy of about 16 signi�cant decimal digits.

The function eps returns the distance from 1.0 to the next larger oating point

number:

>> eps

ans =

2.2204e-016

This distance, 2�52, is twice the unit roundo�.

Because MATLAB implements the IEEE standard, every computation produces

a oating point number, albeit possibly one of a special type. If the result of a

computation is larger than the value returned by the function realmax then overow

occurs and the result is Inf (also written inf), representing in�nity. Similarly, a

result more negative than �realmax produces �inf. Example:
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>> realmax

ans =

1.7977e+308

>> -2*realmax

ans =

-Inf

>> 1.1*realmax

ans =

Inf

A computation whose result is not mathematically de�ned produces a NaN, stand-

ing for Not a Number. A NaN (also written nan) is generated by expressions such as

0=0, inf=inf and 0 � inf:

>> 0/0

Warning: Divide by zero.

ans =

NaN

>> inf/inf

ans =

NaN

>> inf-inf

ans =

NaN

Once generated, a NaN propagates through all subsequent computations:

>> NaN-NaN

ans =

NaN

>> 0*NaN

ans =

NaN

The function realmin returns the smallest positive normalized oating point num-

ber. Any computation whose result is smaller than realmin either underows to zero

if it is smaller than eps�realmin or produces a subnormal number|one with leading

zero bits in its mantissa. To illustrate:

>> realmin

ans =

2.2251e-308

>> realmin*eps

ans =

4.9407e-324
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Table 4.1. Arithmetic operator precedence.

Precedence level Operator

1 (highest) Exponentiation (^ )

2 Unary plus (+), unary minus (-)

3 Multiplication (*), division (/)

4 (lowest) Addition (+), subtraction (-)

>> realmin*eps/2

ans =

0

To obtain further insight, repeat all the above computations after typing format hex,

which displays the binary oating point representation of the numbers in hexadecimal

format.

4.2. Precedence

MATLAB's arithmetic operators obey the same precedence rules as those in most

calculators and computer languages. The rules are shown in Table 4.1. (For a more

complete table, showing the precedence of all MATLAB operators, see Table 6.2.)

For operators of equal precedence evaluation is from left to right. Parentheses can

always be used to overrule priority, and their use is recommended to avoid ambiguity.

Examples:

>> 2^10/10

ans =

102.4000

>> 2 + 3*4

ans =

14

>> -2 - 3*4

ans =

-14

>> 1 + 2/3*4

ans =

3.6667

>> 1 + 2/(3*4)

ans =

1.1667
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Table 4.2. Elementary and special mathematical functions (\fun*" indicates that

more than one function name begins \fun").

cos, sin, tan, csc, sec, cot Trigonometric

acos, asin, atan, atan2, asec, acsc, acot Inverse trigonometric

cosh, sinh, tanh, sech, csch, coth Hyperbolic

acosh, asinh, atanh, asech, acsch, acoth Inverse hyperbolic

log, log2, log10, exp, pow2, nextpow2 Exponential

ceil, fix, floor, round Rounding

abs, angle, conj, imag, real Complex

mod, rem, sign Remainder, sign

airy, bessel*, beta*, erf*, expint, Mathematical

gamma*, legendre

factor, gcd, isprime, lcm, primes, Number theoretic

nchoosek, perms, rat, rats

cart2sph, cart2pol, pol2cart, sph2cart Coordinate transforms

4.3. Mathematical Functions

MATLAB contains a large set of mathematical functions. Typing help elfun and

help specfun calls up full lists of elementary and special functions. A selection is

listed in Table 4.2. The trigonometric functions take arguments in radians.

The Airy and Bessel functions are evaluated using a MEX interface to a library

of Amos [2]. (You can view the Fortran source in the �le specfun\besselmx.f.)

Round numbers are always false.

| SAMUEL JOHNSON, Boswell's Life of Johnson (1791)

Minus times minus is plus.

The reason for this we need not discuss.

| W. H. AUDEN, A Certain World (1971)

The only feature of classic MATLAB that is

not present in modern MATLAB is the \chop" function

which allows the simulation of shorter precision arithmetic.

It is an interesting curiosity,

but it is no substitute for roundo� error analysis

and it makes execution very slow, even when it isn't used.

| CLEVE B. MOLER, MATLAB Digest Volume 3, Issue 1 (1991)
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Matrices

An m-by-n matrix is a two-dimensional array of numbers consisting of m rows and n

columns. Special cases are a column vector (n = 1) and a row vector (m = 1).

Matrices are fundamental to MATLAB, and even if you are not intending to use

MATLAB for linear algebra computations you need to become familiar with matrix

generation and manipulation. In versions 3 and earlier of MATLAB there was only

one data type: the complex matrix.2 Nowadays MATLAB has several data types

(see Chapter 18) and matrices are special cases of a double: a double precision

multidimensional array.

5.1. Matrix Generation

Matrices can be generated in several ways. Many elementary matrices can be con-

structed directly with a MATLAB function; see Table 5.1. The matrix of zeros, the

matrix of ones and the identity matrix (which has ones on the diagonal and zeros

elsewhere) are returned by the functions zeros, ones and eye, respectively. All have

the same syntax. For example, zeros(m,n) or zeros([m,n]) produces an m-by-n

matrix of zeros, while zeros(n) produces an n-by-n matrix. Examples:

>> zeros(2)

ans =

0 0

0 0

>> ones(2,3)

ans =

1 1 1

1 1 1

>> eye(3,2)

ans =

1 0

0 1

0 0

A common requirement is to set up an identity matrix whose dimensions match

those of a given matrix A. This can be done with eye(size(A)), where size is

the function introduced in Section 3.2. Related to size is the length function:

length(A) is the larger of the two dimensions of A. Thus for an n-by-1 or 1-by-n

vector x, length(x) returns n.
2Cleve Moler used to joke that \MATLAB is a strongly typed language: it only has one data type!"
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Table 5.1. Elementary matrices.

zeros Zeros array

ones Ones array

eye Identity matrix

repmat Replicate and tile array

rand Uniformly distributed random numbers

randn Normally distributed random numbers

linspace Linearly spaced vector

logspace Logarithmically spaced vector

meshgrid X and Y arrays for 3D plots

: Regularly spaced vector and index into matrix

Two other very important matrix generation functions are rand and randn, which

generate matrices of (pseudo-)random numbers using the same syntax as eye. The

function rand produces a matrix of numbers from the uniform distribution over the

interval [0; 1]. For this distribution the proportion of numbers in an interval [a; b] with

0 < a < b < 1 is b � a. The function randn produces a matrix of numbers from the

standard normal (0,1) distribution. Called without any arguments, both functions

produce a single random number.

>> rand

ans =

0.9528

>> rand(3)

ans =

0.7041 0.8407 0.5187

0.9539 0.4428 0.0222

0.5982 0.8368 0.3759

In carrying out experiments with random numbers it is often important to be able

to regenerate the same numbers on a subsequent occasion. The numbers produced

by a call to rand depend on the state of the generator. The state can be set using

the command rand('state',j). For j=0 the rand generator is set to its initial state

(the state it has when MATLAB starts). For a nonzero integer j, the generator is set

to its jth state. The state of randn is set in the same way. The periods of rand and

randn, that is, the number of terms generated before the sequences start to repeat,

exceed 21492 � 10449.

Matrices can be built explicitly using the square bracket notation. For example,

a 3-by-3 matrix comprising the �rst 9 primes can be set up with the command

>> A = [2 3 5

7 11 13

17 19 23]

A =

2 3 5

7 11 13

17 19 23
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The end of a row can be speci�ed by a semicolon instead of a carriage return, so a

more compact command with the same e�ect is

>> A = [2 3 5; 7 11 13; 17 19 23]

Within a row, elements can be separated by spaces or by commas. In the former case,

if numbers are speci�ed with a plus or minus sign take care not to leave a space after

the sign, else MATLAB will interpret the sign as an addition or subtraction operator.

To illustrate with vectors:

>> v = [-1 2 -3 4]

v =

-1 2 -3 4

>> w = [-1, 2, -3, 4]

w =

-1 2 -3 4

>> x = [-1 2 - 3 4]

x =

-1 -1 4

Matrices can be constructed in block form. With B de�ned by B = [1 2; 3 4],

we may create

>> C = [B zeros(2)

ones(2) eye(2)]

C =

1 2 0 0

3 4 0 0

1 1 1 0

1 1 0 1

Block diagonal matrices can be de�ned using the function blkdiag, which is easier

than using the square bracket notation. Example:

>> A = blkdiag(2*eye(2),ones(2))

A =

2 0 0 0

0 2 0 0

0 0 1 1

0 0 1 1

Useful for constructing \tiled" block matrices is repmat: repmat(A,m,n) creates

a block m-by-n matrix in which each block is a copy of A. If m is omitted, it defaults

to n. Example:

>> A = repmat(eye(2),2)

A =

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1



42 Matrices

Table 5.2. Special matrices.

compan Companion matrix

gallery Large collection of test matrices

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

invhilb Inverse Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson's eigenvalue test matrix

MATLAB provides a number of special matrices; see Table 5.2. These matrices

have interesting properties that make them useful for constructing examples and for

testing algorithms. One of the most famous is the Hilbert matrix, whose (i; j) element

is 1=(i+ j � 1). The matrix is generated by hilb and its inverse (which has integer

entries) by invhilb. The function magic generates magic squares, which are fun to

investigate using MATLAB [60].

The function gallery provides access to a large collection of test matrices cre-

ated by N. J. Higham [29] (an earlier version of the collection was published in

[28]). Table 5.3 lists the matrices; more information is obtained by typing help

private/matrix name. As indicated in the table some of the matrices in gallery

are returned in the sparse data type|see Chapter 15. Example:

>> help private/moler

MOLER Moler matrix (symmetric positive definite).

A = GALLERY('MOLER',N,ALPHA) is the symmetric positive definite

N-by-N matrix U'*U, where U = GALLERY('TRIW',N,ALPHA).

For the default ALPHA = -1, A(i,j) = MIN(i,j)-2, and A(i,i) = i.

One of the eigenvalues of A is small.

>> A = gallery('moler',5)

A =

1 -1 -1 -1 -1

-1 2 0 0 0

-1 0 3 1 1

-1 0 1 4 2

-1 0 1 2 5

Table 5.4 lists matrices from Tables 5.2 and 5.3 having certain properties; in most

cases the matrix has the property for the default arguments, but in some cases, such

as for gallery's randsvd, the arguments must be suitably chosen. For de�nitions of

these properties see Chapter 9 and the textbooks listed at the start of that chapter.
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Another way to generate a matrix is to load it from a �le using the load command

(see p. 28).

Table 5.3. Matrices available through gallery.

cauchy Cauchy matrix

chebspec Chebyshev spectral di�erentiation matrix

chebvand Vandermonde-like matrix for the Chebyshev polynomials

chow Chow matrix|a singular Toeplitz lower Hessenberg matrix

circul Circulant matrix

clement Clement matrix|tridiagonal with zero diagonal entries

compar Comparison matrices

condex Counter-examples to matrix condition number estimators

cycol Matrix whose columns repeat cyclically

dorr Dorr matrix|diagonally dominant, ill-conditioned, tridiagonal

(one or three output arguments, sparse)

dramadah Matrix of 1s and 0s whose inverse has large integer entries

fiedler Fiedler matrix|symmetric

forsythe Forsythe matrix|a perturbed Jordan block

frank Frank matrix|ill-conditioned eigenvalues

gearmat Gear matrix

grcar Grcar matrix|a Toeplitz matrix with sensitive eigenvalues

hanowa Matrix whose eigenvalues lie on a vertical line in the complex

plane

house Householder matrix (two output arguments)

invhess Inverse of an upper Hessenberg matrix

invol Involutory matrix

ipjfact Hankel matrix with factorial elements (two output arguments)

jordbloc Jordan block matrix

kahan Kahan matrix|upper trapezoidal

kms Kac{Murdock{Szego Toeplitz matrix

krylov Krylov matrix

lauchli L�auchli matrix|rectangular

lehmer Lehmer matrix|symmetric positive de�nite

lesp Tridiagonal matrix with real, sensitive eigenvalues

lotkin Lotkin matrix

minij Symmetric positive de�nite matrix min(i; j)

moler Moler matrix|symmetric positive de�nite

neumann Singular matrix from the discrete Neumann problem (sparse)

orthog Orthogonal and nearly orthogonal matrices

parter Parter matrix|a Toeplitz matrix with singular values near �

pei Pei matrix

poisson Block tridiagonal matrix from Poisson's equation (sparse)

prolate Prolate matrix|symmetric, ill-conditioned Toeplitz matrix

randcolu Random matrix with normalized columns and speci�ed singular

values

randcorr Random correlation matrix with speci�ed eigenvalues

randhess Random, orthogonal upper Hessenberg matrix

rando Random matrix with elements �1, 0 or 1
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Table 5.3. (continued)

randsvd Random matrix with preassigned singular values and speci�ed

bandwidth

redheff Matrix of 0s and 1s of Redhe�er

riemann Matrix associated with the Riemann hypothesis

ris Ris matrix|a symmetric Hankel matrix

smoke Smoke matrix|complex, with a \smoke ring" pseudospectrum

toeppd Symmetric positive de�nite Toeplitz matrix

toeppen Pentadiagonal Toeplitz matrix (sparse)

tridiag Tridiagonal matrix (sparse)

triw Upper triangular matrix discussed by Wilkinson and others

wathen Wathen matrix|a �nite element matrix (sparse, random entries)

wilk Various speci�c matrices devised/discussed by Wilkinson (two

output arguments)

gallery(3) Badly conditioned 3-by-3 matrix

gallery(5) Interesting eigenvalue problem

Table 5.4. Matrices classi�ed by property. Most of the matrices listed here are accessed

through gallery.

Defective chebspec, gallery(5), gearmat, jordbloc,

triw

Hankel hilb, ipjfact, ris

Hessenberg chow, frank, grcar, randhess, randsvd

Idempotent invol

Inverse of tridiagonal matrix kms, lehmer, minij

Involutary invol, orthog, pascal

Nilpotent chebspec, gallery(5)

Normal� circul

Orthogonal hadamard, orthog, randhess, randsvd

Rectangular chebvand, cycol, kahan, krylov, lauchli,

rando, randsvd, triw

Symmetric inde�nite clement, fiedler

Symmetric positive de�nite hilb, invhilb, ipjfact, kms, lehmer, minij,

moler, pascal, pei, poisson, prolate, randsvd,

toeppd, tridiag, wathen

Toeplitz chow, dramadah, grcar, kms, parter, prolate,

toeppd, toeppen

Totally positive/nonnegative cauchy,y hilb, lehmer, pascal

Tridiagonal clement, dorr, lesp, randsvd, tridiag, wilk,

wilkinson

Triangular dramadah, jordbloc, kahan, pascal, triw

� But not symmetric or orthogonal.
y cauchy(x,y) is totally positive if 0 < x1 < � � � < xn and 0 < y1 < � � � < yn [30].
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5.2. Subscripting and the Colon Notation

To enable access and assignment to submatrices MATLAB has a powerful notation

based on the colon character. The colon is used to de�ne vectors that can act as

subscripts. For integers i and j, i:j denotes the row vector of integers from i to j

(in steps of 1). A nonunit step (or stride) s is speci�ed as i:s:j. This notation is

valid even for noninteger i, j and s. Examples:

>> 1:5

ans =

1 2 3 4 5

>> 4:-1:-2

ans =

4 3 2 1 0 -1 -2

>> 0:.75:3

ans =

0 0.7500 1.5000 2.2500 3.0000

Single elements of a matrix are accessed as A(i,j), where i � 1 and j � 1 (zero

or negative subscripts are not supported in MATLAB). The submatrix comprising

the intersection of rows p to q and columns r to s is denoted by A(p:q,r:s). As

a special case, a lone colon as the row or column speci�er covers all entries in that

row or column; thus A(:,j) is the jth column of A and A(i,:) the ith row. The

keyword end used in this context denotes the last index in the speci�ed dimension;

thus A(end,:) picks out the last row of A. Finally, an arbitrary submatrix can be

selected by specifying the individual row and column indices. For example, A([i j

k],[p q]) produces the submatrix given by the intersection of rows i, j and k and

columns p and q. Here are some examples, using the matrix of primes set up above:

>> A

A =

2 3 5

7 11 13

17 19 23

>> A(2,1)

ans =

7

>> A(2:3,2:3)

ans =

11 13

19 23

>> A(:,1)

ans =

2

7

17
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>> A(2,:)

ans =

7 11 13

>> A([1 3],[2 3])

ans =

3 5

19 23

A further special case is A(:), which denotes a vector comprising all the elements

of A taken down the columns from �rst to last:

>> B = A(:)

B =

2

7

17

3

11

19

5

13

23

When placed on the left side of an assignment statement A(:) �lls A, preserving its

shape. Using this notation, another way to de�ne our 3-by-3 matrix of primes is

>> A = zeros(3); A(:) = primes(23); A = A'

A =

2 3 5

7 11 13

17 19 23

The function primes returns a vector of the prime numbers less than or equal to its

argument. The transposition A = A' (see the next section) is necessary to reorder

the primes across the rows rather than down the columns.

Related to the colon notation for generating vectors of equally spaced numbers is

the function linspace, which accepts the number of points rather than the increment:

linspace(a,b,n) generates n equally spaced points between a and b. If n is omitted

it defaults to 100. Example:

>> linspace(-1,1,9)

ans =

Columns 1 through 7

-1.0000 -0.7500 -0.5000 -0.2500 0 0.2500 0.5000

Columns 8 through 9

0.7500 1.0000

The notation [] denotes an empty, 0-by-0 matrix. Assigning [] to a row or column

is one way to delete that row or column from a matrix:
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Table 5.5. Elementary matrix and array operations.

Operation Matrix sense Array sense

Addition + +

Subtraction - -

Multiplication * .*

Left division \ .\

Right division / ./

Exponentiation ^ .^

>> A(2,:) = []

A =

2 3 5

17 19 23

In this example the same e�ect is achieved by A = A([1 3],:). The empty matrix

is also useful as a placeholder in argument lists, as we will see in Section 5.5.

5.3. Matrix and Array Operations

For scalars a and b, the operators +, -, *, / and ^ produce the obvious results. As

well as the usual right division operator, /, MATLAB has a left division operator, n:

MATLAB notation Mathematical equivalent

Right division: a/b
a

b

Left division: a\b
b

a

For matrices, all these operations can be carried out in a matrix sense (according to

the rules of matrix algebra) or an array sense (elementwise). Table 5.5 summarizes

the syntax.

Addition and subtraction, which are identical operations in the matrix and array

senses, are de�ned for matrices of the same dimension. The product A*B is the result of

matrix multiplication, de�ned only when the number of columns of A and the number

of rows of B are the same. The backslash and the forward slash de�ne solutions of

linear systems: A\B is a solution X of A*X = B, while A=B is a solution X of X*B = A;

see Section 9.2 for more details. Examples:

>> A = [1 2; 3 4], B = ones(2)

A =

1 2

3 4

B =

1 1

1 1

>> A+B
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ans =

2 3

4 5

>> A*B

ans =

3 3

7 7

>> A\B

ans =

-1 -1

1 1

Multiplication and division in the array, or elementwise, sense are speci�ed by

preceding the operator with a period. If A and B are matrices of the same dimen-

sions then C = A.*B sets C(i,j) = A(i,j)*B(i,j) and C = A./B sets C(i,j) =

A(i,j)/B(i,j). The assignment C = A.\B is equivalent to C = B./A. With the

same A and B as in the previous example:

>> A.*B

ans =

1 2

3 4

>> B./A

ans =

1.0000 0.5000

0.3333 0.2500

Exponentiation with ^ is de�ned as matrix powering, but the dot form exponen-

tiates elementwise. Thus if A is a square matrix then A^2 is the matrix product A*A,

but A.^2 is A with each element squared:

>> A^2, A.^2

ans =

7 10

15 22

ans =

1 4

9 16

The dot form of exponentiation allows the power to be an array when the dimensions

of the base and the power agree, or when the base is a scalar:

>> x = [1 2 3]; y = [2 3 4]; Z = [1 2; 3 4];

>> x.^y

ans =

1 8 81

>> 2.^x
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ans =

2 4 8

>> 2.^Z

ans =

2 4

8 16

Matrix exponentiation is de�ned for all powers, not just for positive integers. If

n<0 is an integer then A^n is de�ned as inv(A)^n. For noninteger p, A^p is evaluated

using the eigensystem of A; results can be incorrect or inaccurate when A is not

diagonalizable or when A has an ill-conditioned eigensystem.

The conjugate transpose of the matrix A is obtained with A'. If A is real, this

is simply the transpose. The transpose without conjugation is obtained with A.'.

The functional alternatives ctranspose(A) and transpose(A) are sometimes more

convenient.

For the special case of column vectors x and y, x'*y is the inner or dot product,

which can also be obtained using the dot function as dot(x,y). The vector or cross

product of two 3-by-1 or 1-by-3 vectors (as used in mechanics) is produced by cross.

Example:

>> x = [-1 0 1]'; y = [3 4 5]';

>> x'*y

ans =

2

>> dot(x,y)

ans =

2

>> cross(x,y)

ans =

-4

8

-4

The kron function evaluates the Kronecker product of two matrices. The Kro-

necker product of an m-by-n A and p-by-q B has dimensions mp-by-nq and can be

expressed as a block m-by-n matrix with (i; j) block aijB. Example:

>> A = [1 10; -10 100]; B = [1 2 3; 4 5 6; 7 8 9];

>> kron(A,B)

ans =

1 2 3 10 20 30

4 5 6 40 50 60

7 8 9 70 80 90

-10 -20 -30 100 200 300

-40 -50 -60 400 500 600

-70 -80 -90 700 800 900
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If a scalar is added to a matrix MATLAB will expand the scalar into a matrix

with all elements equal to that scalar. For example:

>> [4 3; 2 1] + 4

ans =

8 7

6 5

>> A = [1 -1] - 6

A =

-5 -7

However, if an assignment makes sense without expansion then it will be interpreted

in that way. Thus if the previous command is followed by A = 1 then A becomes the

scalar 1, not ones(1,2).

If a matrix is multiplied or divided by a scalar, the operation is performed ele-

mentwise. For example:

>> [3 4 5; 4 5 6]/12

ans =

0.2500 0.3333 0.4167

0.3333 0.4167 0.5000

Most of the functions described in Section 4.3 can be given a matrix argument,

in which case the functions are computed elementwise. Functions of a matrix in the

linear algebra sense are signi�ed by names ending in m (see Section 9.9): expm, funm,

logm, sqrtm. For example, for A = [2 2; 0 2],

>> sqrt(A)

ans =

1.4142 1.4142

0 1.4142

>> sqrtm(A)

ans =

1.4142 0.7071

0 1.4142

>> ans*ans

ans =

2.0000 2.0000

0 2.0000

5.4. Matrix Manipulation

Several commands are available for manipulating matrices (commands more speci�-

cally associated with linear algebra are discussed in Chapter 9); see Table 5.6.

The reshape function changes the dimensions of a matrix: reshape(A,m,n) pro-

duces an m-by-n matrix whose elements are taken columnwise from A. For example:
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Table 5.6. Matrix manipulation functions.

reshape Change size

diag Diagonal matrices and diagonals of matrix

blkdiag Block diagonal matrix

tril Extract lower triangular part

triu Extract upper triangular part

fliplr Flip matrix in left/right direction

flipud Flip matrix in up/down direction

rot90 Rotate matrix 90 degrees

>> A = [1 4 9; 16 25 36], B = reshape(A,3,2)

A =

1 4 9

16 25 36

B =

1 25

16 9

4 36

The function diag deals with the diagonals of a matrix and can take a vector or

a matrix as argument. For a vector x, diag(x) is the diagonal matrix with main

diagonal x:

>> diag([1 2 3])

ans =

1 0 0

0 2 0

0 0 3

More generally, diag(x,k) puts x on the kth diagonal, where k > 0 speci�es diagonals

above the main diagonal and k < 0 diagonals below the main diagonal (k = 0 gives

the main diagonal):

>> diag([1 2], 1)

ans =

0 1 0

0 0 2

0 0 0

>> diag([3 4], -2)

ans =

0 0 0 0

0 0 0 0

3 0 0 0

0 4 0 0

For a matrix A, diag(A) is the column vector comprising the main diagonal of A. To

produce a diagonal matrix with diagonal the same as that of A you must therefore
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write diag(diag(A)). Analogously to the vector case, diag(A,k) produces a column

vector made up from the kth diagonal of A. Thus if

A =

2 3 5

7 11 13

17 19 23

then

>> diag(A)

ans =

2

11

23

>> diag(A,-1)

ans =

7

19

Triangular parts of a matrix can be extracted using tril and triu. The lower

triangular part of A (the elements on and below the main diagonal) is speci�ed by

tril(A) and the upper triangular part of A (the elements on and above the main

diagonal) is speci�ed by triu(A). More generally, tril(A,k) gives the elements on

and below the kth diagonal of A, while triu(A,k) gives the elements on and above

the kth diagonal of A. With A as above:

>> tril(A)

ans =

2 0 0

7 11 0

17 19 23

>> triu(A,1)

ans =

0 3 5

0 0 13

0 0 0

>> triu(A,-1)

ans =

2 3 5

7 11 13

0 19 23

5.5. Data Analysis

Table 5.7 lists functions for basic data analysis computations. The simplest usage is

to apply these functions to vectors. For example:
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>> x = [4 -8 -2 1 0]

x =

4 -8 -2 1 0

>> [min(x) max(x)]

ans =

-8 4

>> sort(x)

ans =

-8 -2 0 1 4

>> sum(x)

ans =

-5

The sort function sorts into ascending order. For a real vector x, descending order

is obtained with -sort(-x). For complex vectors, sort sorts by absolute value and

so descending order must be obtained by explicitly reordering the output:

>> x = [1+i -3-4i 2i 1];

>> y = sort(x);

>> y = y(end:-1:1)

y =

-3.0000 - 4.0000i 0 + 2.0000i 1.0000 + 1.0000i 1.0000

For matrices the functions are de�ned columnwise. Thus max and min return a

vector containing the maximum and minimum element, respectively, in each column,

sum returns a vector containing the column sums, and sort sorts the elements in each

column of the matrix into ascending order. The functions min and max can return

a second argument that speci�es in which components the minimum and maximum

elements are located. For example, if

A =

0 -1 2

1 2 -4

5 -3 -4

then

>> max(A)

ans =

5 2 2

>> [m,i] = min(A)

m =

0 -3 -4

i =

1 3 2
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As this example shows, if there are two or more minimal elements in a column then

the index of the �rst is returned. The smallest element in the matrix can be found

by applying min twice in succession:

>> min(min(A))

ans =

-4

Functions max and min can be made to act row-wise via a third argument:

>> max(A,[],2)

ans =

2

2

5

The 2 in max(A,[],2) speci�es the maximum over the second dimension, that is,

over the column index. The empty second argument, [], is needed because with just

two arguments max and min return the elementwise maxima and minima of the two

arguments:

>> max(A,0)

ans =

0 0 2

1 2 0

5 0 0

Functions sort and sum can also be made to act row-wise, via a second argument.

For more on sort see Section 21.3.

The diff function forms di�erences. Applied to a vector x of length n it produces

the vector [x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)] of length n-1. Example:

>> x = (1:8).^2

x =

1 4 9 16 25 36 49 64

>> y = diff(x)

y =

3 5 7 9 11 13 15

>> z = diff(y)

z =

2 2 2 2 2 2
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Table 5.7. Basic data analysis functions.

max Largest component

min Smallest component

mean Average or mean value

median Median value

std Standard deviation

var Variance

sort Sort in ascending order

sum Sum of elements

prod Product of elements

cumsum Cumulative sum of elements

cumprod Cumulative product of elements

diff Di�erence of elements

Handled properly,

empty arrays relieve programmers of the

nuisance of special cases at beginnings and ends of

algorithms that construct matrices recursively from submatrices.

| WILLIAM M. KAHAN (1994)

Kirk: \You did all this in a day?"

Carol: \The matrix formed in a day.

The lifeforms grew later at a substantially accelerated rate."

| Star Trek III: The Search For Spock (Stardate 8130.4)

I start by looking at a 2 by 2 matrix.

Sometimes I look at a 4 by 4 matrix.

That's when things get out of control and too hard.

Usually 2 by 2 or 3 by 3 is enough, and I look at them,

and I compute with them, and I try to guess the facts.

| PAUL R. HALMOS, in Paul Halmos: Celebrating 50 Years of Mathematics (1991)





Chapter 6

Operators and Flow Control

6.1. Relational and Logical Operators

MATLAB's relational operators are

== equal

~= not equal

< less than

> greater than

<= less than or equal

>= greater than or equal

Note that a single = denotes assignment and never a test for equality in MATLAB.

Comparisons between scalars produce 1 if the relation is true and 0 if it is false.

Comparisons are also de�ned between matrices of the same dimension and between

a matrix and a scalar, the result being a matrix of 0s and 1s in both cases. For

matrix{matrix comparisons corresponding pairs of elements are compared, while for

matrix{scalar comparisons the scalar is compared with each matrix element. For

example:

>> A = [1 2; 3 4]; B = 2*ones(2);

>> A == B

ans =

0 1

0 0

>> A > 2

ans =

0 0

1 1

To test whether matrices A and B are identical, the expression isequal(A,B) can

be used:

>> isequal(A,B)

ans =

0

The function isequal is one of many useful logical functions whose names begin with

is, a selection of which is listed in Table 6.1; for a full list type doc is. The function

isnan is particularly important because the test x == NaN always produces the result

57
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Table 6.1. Selected logical is* functions.

ischar True for char array (string)

isempty True for empty array

isequal True if arrays are identical

isfinite True for �nite array elements

isieee True for machine using IEEE arithmetic

isinf True for in�nite array elements

islogical True for logical array

isnan True for NaN (Not a Number)

isnumeric True for numeric array

isreal True for real array

issparse True for sparse array

0 (false), even if x is a NaN! (A NaN is de�ned to compare as unequal and unordered

with everything.)

MATLAB's logical operators are

& logical and

| logical or

~ logical not

xor logical exclusive or

all true if all elements of vector are nonzero

any true if any element of vector is nonzero

Like the relational operators, the &, | and ~ operators produce matrices of 0s and 1s

when one of the arguments is a matrix. When applied to a vector, the all function

returns 1 if all the elements of the vector are nonzero and 0 otherwise. The any

function is de�ned in the same way, with \any" replacing \all". Examples:

>> x = [-1 1 1]; y = [1 2 -3];

>> x>0 & y>0

ans =

0 1 0

>> x>0 | y>0

ans =

1 1 1

>> xor(x>0,y>0)

ans =

1 0 1

>> any(x>0)

ans =

1

>> all(x>0)
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Table 6.2. Operator precedence.

Precedence level Operator

1 (highest) Transpose (.'), power (.^), complex conjugate

transpose ('), matrix power (^)

2 Unary plus (+), unary minus (-), logical negation (~)

3 Multiplication (.*), right division (./), left division

(.\), matrix multiplication (*), matrix right division

(/), matrix left division (\)

4 Addition (+), subtraction (-)

5 Colon operator (:)

6 Less than (<), less than or equal to (<=), greater

than (>), greater than or equal to (>=), equal to (==),

not equal to (~=)

7 Logical and (&)

8 (Lowest) Logical or (|)

ans =

0

Note that xormust be called as a function: xor(a,b). The and, or and not operators

and the relational operators can also be called in functional form as and(a,b), . . . ,

eq(a,b), . . . (see help ops).

The precedence of arithmetic, relational and logical operators is summarized in

Table 6.2 (which is based on the information provided by help precedence). For

operators of equal precedence MATLAB evaluates from left to right. Precedence can

be overridden by using parentheses.

Note that in versions of MATLAB prior to MATLAB 6 the logical and and or

operators had the same precedence (unlike in most programming languages). A logical

expression such as

x | y & z

is evaluated in MATLAB 5.3 and earlier versions as

(x | y) & z

whereas in MATLAB 6 onwards it is evaluated as

x | (y & z)

The MathWorks recommends that parentheses are added in expressions of this form

to ensure that the same results are obtained in all versions of MATLAB.

For matrices, all returns a row vector containing the result of all applied to

each column. Therefore all(all(A==B)) is another way of testing equality of the

matrices A and B. The any function works in the corresponding way. Thus, for

example, any(any(A==B)) has the value 1 if A and B have any equal elements and 0

otherwise.

The find command returns the indices corresponding to the nonzero elements of

a vector. For example,
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>> x = [-3 1 0 -inf 0];

>> f = find(x)

f =

1 2 4

The result of find can then be used to extract just those elements of the vector:

>> x(f)

ans =

-3 1 -Inf

With x as above, we can use find to obtain the �nite elements of x,

>> x(find(isfinite(x)))

ans =

-3 1 0 0

and to replace negative components of x by zero:

>> x(find(x < 0)) = 0

x =

0 1 0 0 0

When find is applied to a matrix A, the index vector corresponds to A regarded

as a vector of the columns stacked one on top of the other (that is, A(:)), and this

vector can be used to index into A. In the following example we use find to set to

zero those elements of A that are less than the corresponding elements of B:

>> A = [4 2 16; 12 4 3], B = [12 3 1; 10 -1 7]

A =

4 2 16

12 4 3

B =

12 3 1

10 -1 7

>> f = find(A<B)

f =

1

3

6

>> A(f) = 0

A =

0 0 16

12 4 0

An alternative usage of find for matrices is [i,j] = find(A), which returns vectors

i and j containing the row and column indices of the nonzero elements.

The results of MATLAB's logical operators and logical functions are arrays of 0s

and 1s that are examples of logical arrays. Logical arrays can also be created by

applying the function logical to a numeric array. Logical arrays can be used for

subscripting. Consider the following example.



6.1 Relational and Logical Operators 61

>> clear

>> y = [1 2 0 -3 0]

y =

1 2 0 -3 0

>> i1 = logical(y)

i1 =

1 2 0 -3 0

>> i2 = (y ~= 0)

i2 =

1 1 0 1 0

>> i3 = [1 1 0 1 0]

i3 =

1 1 0 1 0

>> whos

Name Size Bytes Class

i1 1x5 40 double array (logical)

i2 1x5 40 double array (logical)

i3 1x5 40 double array

y 1x5 40 double array

Grand total is 20 elements using 160 bytes

>> y(i1)

ans =

1 2 -3

>> y(i2)

ans =

1 2 -3

>> isequal(i2,i3)

ans =

1

>> y(i3)

??? Index into matrix is negative or zero. See release notes on

changes to logical indices.

This example illustrates the rule that A(M), where M is a logical array of the same

dimension as A, extracts the elements of A corresponding to the elements of M with

nonzero real part. Note that even though i2 has the same elements as i3 (and

compares as equal with it), only the logical array i2 can be used for subscripting.

A call to find can sometimes be avoided when its argument is a logical array.

In our earlier example, x(find(isfinite(x))) can be replaced by x(isfinite(x)).

We recommend using find for clarity.
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6.2. Flow Control

MATLAB has four ow control structures: the if statement, the for loop, the while

loop and the switch statement. The simplest form of the if statement is

if expression

statements

end

where the statements are executed if the (real parts of) the elements of expression

are all nonzero. For example, the following code swaps x and y if x is greater than y:

if x > y

temp = y;

y = x;

x = temp;

end

When an if statement is followed on its line by further statements, a comma is needed

to separate the if from the next statement:

if x > 0, x = sqrt(x); end

Statements to be executed only if expression is false can be placed after else, as

in the example

e = exp(1);

if 2^e > e^2

disp('2^e is bigger')

else

disp('e^2 is bigger')

end

Finally, one or more further tests can be added with elseif (note that there must

be no space between else and if):

if isnan(x)

disp('Not a Number')

elseif isinf(x)

disp('Plus or minus infinity')

else

disp('A ''regular'' floating point number')

end

In the third disp, '' prints as a single quote '.

In an if test of the form \if condition1 & condition2", condition2 is not evaluated

when condition1 is false (a so-called \early return" if evaluation). This is useful when

evaluating condition2 might otherwise give an error|perhaps because of an unde�ned

variable or an index out of range.

The for loop is one of the most useful MATLAB constructs although, as discussed

in Section 20.1, experienced programmers who are concerned with producing compact

and fast code try to avoid for loops wherever possible. The syntax is
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for variable = expression

statements

end

Usually, expression is a vector of the form i:s:j (see Section 5.2). The statements

are executed with variable equal to each element of expression in turn. For example,

the sum of the �rst 25 terms of the harmonic series 1=i is computed by

>> s = 0;

>> for i = 1:25, s = s + 1/i; end, s

s =

3.8160

Another way to de�ne expression is using the square bracket notation:

>> for x = [pi/6 pi/4 pi/3], disp([x, sin(x)]), end

0.5236 0.5000

0.7854 0.7071

1.0472 0.8660

Multiple for loops can of course be nested, in which case indentation helps to

improve the readability. The following code forms the 5-by-5 symmetric matrix A

with (i; j) element i=j for j � i:

n = 5; A = eye(n);

for j=2:n

for i = 1:j-1

A(i,j) = i/j;

A(j,i) = i/j;

end

end

The expression in the for loop can be a matrix, in which case variable is assigned

the columns of expression from �rst to last. For example, to set x to each of the unit

vectors in turn, we can write for x=eye(n), ..., end.

The while loop has the form

while expression

statements

end

The statements are executed as long as expression is true. The following example

approximates the smallest nonzero oating point number:

>> x = 1; while x>0, xmin = x; x = x/2; end, xmin

xmin =

4.9407e-324

A while loop can be terminated with the break statement, which passes control to

the �rst statement after the corresponding end. An in�nite loop can be constructed

using while 1, ..., end, which is useful when it is not convenient to put the exit

test at the top of the loop. (Note that, unlike some other languages, MATLAB does

not have a \repeat{until" loop.) We can rewrite the previous example less concisely as
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x = 1;

while 1

xmin = x;

x = x/2;

if x == 0, break, end

end

xmin

The break statement can also be used to exit a for loop. In a nested loop a break

exits to the loop at the next higher level.

The continue statement causes execution of a for or while loop to pass immedi-

ately to the next iteration of the loop, skipping the remaining statements in the loop.

As a trivial example,

for i=1:10

if i < 5, continue, end

disp(i)

end

displays the integers 5 to 10. In more complicated loops the continue statement can

be useful to avoid long-bodied if statements.

The �nal control structure is the switch statement. It consists of \switch ex-

pression" followed by a list of \case expression statements", optionally ending with

\otherwise statements" and followed by end. The switch expression is evaluated and

the statements following the �rst matching case expression are executed. If none of

the cases produces a match then the statements following otherwise are executed.

The next example evaluates the p-norm of a vector x (i.e., norm(x,p)) for just three

values of p:

switch p

case 1

y = sum(abs(x));

case 2

y = sqrt(x'*x);

case inf

y = max(abs(x));

otherwise

error('p must be 1, 2 or inf.')

end

(The error function is described in Section 14.1.) The expression following case can

be a list of values enclosed in parentheses (a cell array|see Section 18.3). In this case

the switch expression can match any value in the list:

x = input('Enter a real number: ');

switch x

case {inf,-inf}

disp('Plus or minus infinity')

case 0

disp('Zero')

otherwise

disp('Nonzero and finite')

end
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C programmers should note that MATLAB's switch construct behaves di�erently

from that in C: once a MATLAB case group expression has been matched and its

statements executed control is passed to the �rst statement after the switch, with no

need for break statements.

Kirk: \Well, Spock, here we are.

Thanks to your restored memory, a little bit of good luck,

we're walking the streets of San Francicso,

looking for a couple of humpback whales.

How do you propose to solve this minor problem?"

Spock: \Simple logic will su�ce."

| Star Trek IV: The Voyage Home (Stardate 8390)

Things equally high on the pecking order get evaluated from left to right.

When in doubt, throw in some parentheses and be sure.

Only use good quality parentheses with nice round sides.

| ROGER EMANUEL KAUFMAN, A FORTRAN Coloring Book (1978)
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M-Files

7.1. Scripts and Functions

Although you can do many useful computations working entirely at the MATLAB

command line, sooner or later you will need to write M-�les. These are the equivalents

of programs, functions, subroutines and procedures in other programming languages.

Collecting together a sequence of commands into an M-�le opens up many possibilities,

including

� experimenting with an algorithm by editing a �le, rather than retyping a long

list of commands,

� making a permanent record of a numerical experiment,

� building up utilities that can be reused at a later date,

� exchanging M-�les with colleagues.

Many useful M-�les that have been written by enthusiasts can be obtained over the

internet; see Appendix C.

An M-�le is a text �le that has a .m �lename extension and contains MATLAB

commands. There are two types:

Script M-�les (or command �les) have no input or output arguments and operate

on variables in the workspace.

Function M-�les contain a function de�nition line and can accept input argu-

ments and return output arguments, and their internal variables are local to

the function (unless declared global).

A script enables you to store a sequence of commands that are to be used re-

peatedly or will be needed at some future time. A simple example of a script M-�le,

marks.m, was given in Section 2.1. As another example we describe a script for play-

ing \eigenvalue roulette" [15], which is based on counting how many eigenvalues of

a random real matrix are real. If the matrix A is real and of dimension 8 then the

number of real eigenvalues is 0, 2, 4, 6 or 8 (the number must be even, since nonreal

eigenvalues appear in complex conjugate pairs). The short script

%SPIN

% Counts number of real eigenvalues of random matrix.

A = randn(8); sum(abs(imag(eig(A)))<.0001)

67
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Listing 7.1. Script rouldist.

%ROULDIST Empirical distribution of number of real eigenvalues.

k = 1000;

wheel = zeros(k,1);

for i=1:k

A = randn(8);

% Count number of eigenvalues with imag. part < tolerance.

wheel(i) = sum(abs(imag(eig(A)))<.0001);

end

hist(wheel,[0 2 4 6 8]);

creates a random normally distributed 8�8 matrix and counts how many eigenvalues

have imaginary parts with absolute value less than the (somewhat arbitrary) threshold

10�4. The �rst two lines of this script begin with the % symbol and hence are comment

lines. Whenever MATLAB encounters a % it ignores the remainder of the line. This

allows you to insert text that makes the script easier for humans to understand.

Assuming this script exists as a �le spin.m, typing spin is equivalent to typing the

two commands A = randn(8); and sum(abs(imag(eig(A)))<.0001). This \spins

the roulette wheel", producing one of the �ve answers 0, 2, 4, 6 and 8. Each call to

spin produces a di�erent random matrix and hence may give a di�erent answer:

>> spin

ans =

2

>> spin

ans =

4

To get an idea of the probability of each of the �ve outcomes you can run the script

rouldist in Listing 7.1. It generates 1000 random matrices and plots a histogram of

the distribution of the number of real eigenvalues. Figure 7.1 shows a possible result.

(The exact probabilities are known and are given in [15], [16].) Note that to make

rouldist more readable we have used spaces to indent the for loop and inserted a

blank line before the �rst command.

Function M-�les enable you to extend the MATLAB language by writing your

own functions that accept and return arguments. They can be used in exactly the

same way as existing MATLAB functions such as sin, eye, size, etc.

Listing 7.2 shows a simple function that evaluates the largest element in absolute

value of a matrix. This example illustrates a number of features. The �rst line

begins with the keyword function followed by the output argument, y, and the =

symbol. On the right of = comes the function name, maxentry, followed by the input

argument, A, within parentheses. (In general there can be any number of input and

output arguments.) The function name must be the same as the name of the .m �le

in which the function is stored|in this case the �le must be named maxentry.m.

The second line of a function �le is called the H1 (help 1) line. It should be a

comment line of a special form: a line beginning with a % character, followed without
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Figure 7.1. Histogram produced by rouldist.

any space by the function name in capital letters, followed by one or more spaces and

then a brief description. The description should begin with a capital letter, end with

a period, and omit the words \the" and \a". All the comment lines from the �rst

comment line up to the �rst noncomment line (usually a blank line, for readability of

the source code) are displayed when help function_name is typed. Therefore these

lines should describe the function and its arguments. It is conventional to capitalize

function and argument names in these comment lines. For the maxentry.m example,

we have

>> help maxentry

MAXENTRY Largest absolute value of matrix entries.

MAXENTRY(A) is the maximum of the absolute values

of the entries of A.

We strongly recommend documenting all your function �les in this way, however short

they may be. It is often useful to record in comment lines the date when the function

was �rst written and to note any subsequent changes that have been made. The help

command works in a similar manner on script �les, displaying the initial sequence of

comment lines.

The function maxentry is called just like any other MATLAB function:

>> maxentry(1:10)

ans =

10

>> maxentry(magic(4))

ans =

16

The function flogist shown in Listing 7.3 illustrates the use of multiple input

and output arguments. This function evaluates the scalar logistic function x(1� ax)
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Listing 7.2. Function maxentry.

function y = maxentry(A)

%MAXENTRY Largest absolute value of matrix entries.

% MAXENTRY(A) is the maximum of the absolute values

% of the entries of A.

y = max(max(abs(A)));

Listing 7.3. Function flogist.

function [f,fprime] = flogist(x,a)

%FLOGIST Logistic function and its derivative.

% [F,FPRIME] = FLOGIST(X,A) evaluates the logistic

% function F(X) = X.*(1-A*X) and its derivative FPRIME

% at the matrix argument X, where A is a scalar parameter.

f = x.*(1-a*x);

fprime = 1-2*a*x;

and its derivative with respect to x. The two output arguments f and fprime are

enclosed in square brackets. When calling a function with multiple input or output

arguments it is not necessary to request all the output arguments, but arguments

must be dropped starting at the end of the list. If more than one output argument

is requested the arguments must be listed within square brackets. Examples of usage

are

>> f = flogist(2,.1)

f =

1.6000

>> [f,fprime] = flogist(2,.1)

f =

1.6000

fprime =

0.6000

A technical point of note in function flogist is that array multiplication (.*) is used

in the statement f = x.*(1-a*x). So, if a vector or matrix is supplied for x, the

function is evaluated at each element simultaneously:

>> flogist(1:4,2)

ans =

-1 -6 -15 -28

Another function using array multiplication is cheby in Listing 7.4, which is used

with MATLAB's fplot to produce Figure 8.10. The kth Chebyshev polynomial,
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Listing 7.4. Function cheby.

function Y = cheby(x,p)

%CHEBY Chebyshev polynomials.

% Y = CHEBY(X,P) evaluates the first P Chebyshev polynomials

% at the vector X. The K'th column of Y contains the

% Chebyshev polynomial of degree K-1 evaluated at X.

Y = ones(length(x),p);

x = x(:); % Ensure x is a column vector.

if p == 1, return, end

Y(:,2) = x;

for k = 3:p

Y(:,k) = 2*x.*Y(:,k-1) - Y(:,k-2);

end

Tk(x), can be de�ned by the recurrence

Tk(x) = 2xTk�1(x) � Tk�2(x); for k � 2;

with T0(x) = 1 and T1(x) = x. The function cheby accepts a vector x and an integer

p and returns a matrix Y whose ith row gives the values of T0(x); T1(x); : : : ; Tp�1(x)

at x = x(i). (This is the form of output argument required by fplot.)

Note that cheby uses the return command, which causes an immediate return

from the M-�le. It is not necessary to put a return statement at the end of a function

or script, unlike in some other programming languages.

A more complicated function is sqrtn, shown in Listing 7.5. Given a > 0, it

implements the Newton iteration for
p
a,

xk+1 =
1

2

�
xk +

a

xk

�
; x1 = a;

printing the progress of the iteration. Output is controlled by the fprintf command,

which is described in Section 13.2. Examples of usage are

>> [x,iter] = sqrtn(2)

k x_k rel. change

1: 1.5000000000000000e+000 3.33e-001

2: 1.4166666666666665e+000 5.88e-002

3: 1.4142156862745097e+000 1.73e-003

4: 1.4142135623746899e+000 1.50e-006

5: 1.4142135623730949e+000 1.13e-012

6: 1.4142135623730949e+000 0.00e+000

x =

1.4142

iter =

6

>> x = sqrtn(2,1e-4);
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Listing 7.5. Function sqrtn.

function [x,iter] = sqrtn(a,tol)

%SQRTN Square root of a scalar by Newton's method.

% X = SQRTN(A,TOL) computes the square root of the scalar

% A by Newton's method (also known as Heron's method).

% A is assumed to be >= 0.

% TOL is a convergence tolerance (default EPS).

% [X,ITER] = SQRTN(A,TOL) returns also the number of

% iterations ITER for convergence.

if nargin < 2, tol = eps; end

x = a;

iter = 0;

xdiff = inf;

fprintf(' k x_k rel. change\n')

while xdiff > tol

iter = iter + 1;

xold = x;

x = (x + a/x)/2;

xdiff = abs(x-xold)/abs(x);

fprintf('%2.0f: %20.16e %9.2e\n', iter, x, xdiff)

if iter > 50

error('Not converged after 50 iterations.')

end

end

k x_k rel. change

1: 1.5000000000000000e+000 3.33e-001

2: 1.4166666666666665e+000 5.88e-002

3: 1.4142156862745097e+000 1.73e-003

4: 1.4142135623746899e+000 1.50e-006

This M-�le illustrates the use of optional input arguments. The function nargin

returns the number of input arguments supplied when the function was called and

enables default values to be assigned to arguments that have not been speci�ed. In

this case, if the call to sqrtn does not specify a value for tol, then eps is assigned

to tol.

An analogous function nargout returns the number of output arguments re-

quested. In this example there is no need to check nargout, because iter is computed

by the function whether or not it is requested as an output argument. Some functions

gain e�ciency by inspecting nargout and computing only those output arguments

that are requested (for example, eig in the next chapter). To illustrate, Listing 7.6

shows how the marks M-�le on p. 22 can be rewritten as a function. Its usage is

illustrated by

>> exmark = [12 0 5 28 87 3 56];
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Listing 7.6. Function marks2.

function [x_sort,x_mean,x_med,x_std] = marks2(x)

%MARKS2 Statistical analysis of marks vector.

% Given a vector of marks X,

% [X_SORT,X_MEAN,X_MED,X_STD] = MARKS2(X) computes a

% sorted marks list and the mean, median and standard deviation

% of the marks.

x_sort = sort(x);

if nargout > 1, x_mean = mean(x); end

if nargout > 2, x_med = median(x); end

if nargout > 3, x_std = std(x); end

>> x_sort = marks2(exmark)

x_sort =

0 3 5 12 28 56 87

>> [x_sort,x_mean,x_med] = marks2(exmark)

x_sort =

0 3 5 12 28 56 87

x_mean =

27.2857

x_med =

12

7.2. Editing M-Files

To create and edit M-�les you have two choices. You can use whatever editor you

normally use for ASCII �les (if it is a word processor you need to ensure that you

save the �les in standard ASCII form, not in the word processor's own format).

Or you can use the built-in MATLAB Editor/Debugger, shown in Figure 7.2. On

Windows systems this is invoked by typing edit at the command prompt or from the

File-New or File-Open menu options. On Unix systems invocation is via the edit

command only. The MATLAB editor has various features to aid in editing M-�les,

including automatic indentation of loops and if structures, color syntax highlighting,

and bracket and quote matching. These and other features can be turned o� or

customized via the Tools-Options menu of the editor.

7.3. Working with M-Files and the MATLAB Path

Many MATLAB functions are M-�les residing on the disk, while others are built into

the MATLAB interpreter. The MATLAB search path is a list of directories that

speci�es where MATLAB looks for M-�les. An M-�le is available only if it is on the

search path. Type path to see the current search path. The path can be set and

added to with the path and addpath commands, or from the Path Browser that is

invoked by the File-Set Path menu option or by typing pathtool.
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Figure 7.2. MATLAB Editor/Debugger.

Several commands can be used to search the path. The what command lists the

MATLAB �les in the current directory; what dirname lists the MATLAB �les in the

directory dirname on the path.

The command lookfor keyword (illustrated on p. 24) searches the path for M-

�les containing keyword in their H1 line (the �rst line of help text). All the comment

lines displayed by the help command can be searched using lookfor keyword -all.

Some MATLAB functions use comment lines after the initial block of comment

lines to provide further information, such as bibliographic references (an example is

fminsearch). This information can be accessed using type but is not displayed by

help.

Typing which foo displays the pathname of the function foo or declares it to be

built in or not found. This is useful if you want to know in which directory on the

path an M-�le is located. If you suspect there may be more than one M-�le with a

given name on the path you can use which foo -all to display all of them.

A script (but not a function) not on the search path can be invoked by typing run

followed by a statement in which the full pathname to the M-�le is given.

You may list the M-�le foo.m to the screen with type foo or type foo.m. (If

there is an ASCII �le called foo then the former command will list foo rather than

foo.m.) Preceding a type command with more on will cause the listing to be dis-

played a page at a time (more off turns o� paging).

Before writing an M-�le it is important to check whether the name you are planning

to give it is the name of an existing M-�le or built-in function. This can be done in

several ways: using which as just described, using type (e.g., type lu produces

the response that lu is a built-in function), using help, or using the function

exist. The command exist('myname') tests whether myname is a variable in the

workspace, a �le (with various possible extensions, including .m) on the path, or a

directory. A result of 0 means no matches were found, while the numbers 1{7 indicate

a match; see help exist for the precise meaning of these numbers.
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When a function residing on the path is invoked for the �rst time it is compiled into

memory (see the chapter \M-File Programming" in [56] for more details). MATLAB

can usually detect when a function M-�le has changed and then automatically recom-

piles it when it is invoked.

To clear function fun from memory, type clear fun. To clear all functions type

clear functions.

7.4. Command/Function Duality

User-written functions are usually called by giving the function name followed by

a list of arguments in parentheses. Yet some built-in MATLAB functions, such as

type and what described in the previous section, are normally called with arguments

separated from the function name by spaces. This is not an inconsistency but an

illustration of command/function duality. Consider the function

function comfun(x,y,z)

%COMFUN Illustrative function with three string arguments.

disp(x), disp(y), disp(z)

We can call it with string arguments in parentheses (functional form), or with the

string arguments separated by spaces after the function name (command form):

>> comfun('ab','cd','ef')

ab

cd

ef

>> comfun ab cd ef

ab

cd

ef

The two invocations are equivalent. Other examples of command/function duality

are (with the �rst in each pair being the most commonly used)

format long, format('long')

disp('Hello'), disp Hello

diary mydiary, diary('mydiary')

warning off, warning('off')

Note, however, that the command form should be used only for functions that

take string arguments. In the example

>> sqrt 2

ans =

7.07106781186548

MATLAB interprets 2 as a string and sqrt is applied to the ASCII value of 2, namely

50.
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>> why

Cleve insisted on it.

>> why

Jack knew it was a good idea.

| MATLAB

Replace repetitive expressions by calls to a common function.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Much of MATLAB's power is derived from its extensive set of functions. . .

Some of the functions are intrinsic,

or \built-in" to the MATLAB processor itself.

Others are available in the library of external M-�les distributed with MATLAB. . .

It is transparent to the user whether a function is intrinsic or contained in an M-�le.

| 386-MATLAB User's Guide (1989)



Chapter 8

Graphics

MATLAB has powerful and versatile graphics capabilities. Figures of many types can

be generated with relative ease and their \look and feel" is highly customizable. In

this chapter we cover the basic use of MATLAB's most popular tools for graphing

two- and three-dimensional data; Chapter 17 on Handle Graphics delves more deeply

into the innards of MATLAB's graphics. Our philosophy of teaching a useful subset

of MATLAB's language, without attempting to be exhaustive, is particularly relevant

to this chapter. The �nal section hints at what we have left unsaid.

Our emphasis in this chapter is on generating graphics at the command line or in

M-�les, but existing �gures can also be modi�ed and annotated interactively using

the Plot Editor. To use the Plot Editor see help plotedit and the Tools menu and

toolbar of the �gure window.

Note that the graphics output shown in this book is printed in black and white.

Most of the output appears as color on the screen and can be printed as color on a

color printer.

8.1. Two-Dimensional Graphics

8.1.1. Basic Plots

MATLAB's plot function can be used for simple \join-the-dots" x-y plots. Typing

>> x = [1.5 2.2 3.1 4.6 5.7 6.3 9.4];

>> y = [2.3 3.9 4.3 7.2 4.5 3.8 1.1];

>> plot(x,y)

produces the left-hand picture in Figure 8.1, where the points x(i), y(i) are joined

in sequence. MATLAB opens a �gure window (unless one has already been opened

as a result of a previous command) in which to draw the picture. In this example,

default values are used for a number of features, including the ranges for the x- and

y-axes, the spacing of the axis tick marks, and the color and type of the line used for

the plot.

More generally, we could replace plot(x,y) with plot(x,y,string), where string

combines up to three elements that control the color, marker and line style. For

example, plot(x,y,'r*--') speci�es that a red asterisk is to be placed at each

point x(i), y(i) and that the points are to be joined by a red dashed line, whereas

plot(x,y,'y+') speci�es a yellow cross marker with no line joining the points. Ta-

ble 8.1 lists the options available. The right-hand picture in Figure 8.1 was produced

with plot(x,y,'kd:'), which gives a black dotted line with diamond marker. The

three elements in string may appear in any order, so, for example, plot(x,y,'ms--')

77
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Figure 8.1. Simple x-y plots. Left: default. Right: nondefault.

Table 8.1. Options for the plot command.

Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

k Black

w White

Marker

o Circle

* Asterisk

. Point

+ Plus

x Cross

s Square

d Diamond

^ Upward triangle

v Downward triangle

> Right triangle

< Left triangle

p Five-point star

h Six-point star

Line style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

and plot(x,y,'s--m') are equivalent. Note that more than one set of data can be

passed to plot. For example,

plot(x,y,'g-',b,c,'r--')

superimposes plots of x(i), y(i) and b(i), c(i) with solid green and dashed red

line styles, respectively.

The plot command also accepts matrix arguments. If x is an m-vector and

Y is an m-by-n matrix, plot(x,Y) superimposes the plots created by x and each

column of Y. Similarly, if X and Y are both m-by-n, plot(X,Y) superimposes the

plots created by corresponding columns of X and Y. If nonreal numbers are supplied

to plot then imaginary parts are generally ignored. The only exception to this rule

arises when plot is given a single argument. If Y is nonreal, plot(Y) is equivalent to

plot(real(Y),imag(Y)). In the case where Y is real, plot(Y) plots the columns of

Y against their index.
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Figure 8.2. Two nondefault x-y plots.

You can exert further control by supplying more arguments to plot. The proper-

ties LineWidth (default 0.5 points) and MarkerSize (default 6 points) can be speci�ed

in points, where a point is 1/72 inch. For example, the commands

plot(x,y,'LineWidth',2)

plot(x,y,'p','MarkerSize',10)

produce a plot with a 2-point line width and 10-point marker size, respectively. For

markers that have a well-de�ned interior, the MarkerEdgeColorand MarkerFaceColor

can be set to one of the colors in Table 8.1. So, for example,

plot(x,y,'o','MarkerEdgeColor','m')

gives magenta edges to the circles. The left-hand plot in Figure 8.2 was produced

with

plot(x,y,'m--^','LineWidth',3,'MarkerSize',5)

and the right-hand plot with

plot(x,y,'--rs','MarkerSize',20,'MarkerFaceColor','g')

Using loglog instead of plot causes the axes to be scaled logarithmically. This

feature is useful for revealing power-law relationships as straight lines. In the example

below we plot j1+h+h
2
=2�exp(h)j against h for h = 1; 10�1; 10�2; 10�3; 10�4. This

quantity behaves like a multiple of h3 when h is small, and hence on a log-log scale

the values should lie close to a straight line of slope 3. To con�rm this, we also plot a

dashed reference line with the predicted slope, exploiting the fact that more than one

set of data can be passed to the plot commands. The output is shown in Figure 8.3.

h = 10.^[0:-1:-4];

taylerr = abs((1+h+h.^2/2) - exp(h));

loglog(h,taylerr,'-',h,h.^3,'--')

xlabel('h')

ylabel('abs(error)')

title('Error in quadratic Taylor series approximation to exp(h)')

box off
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Figure 8.3. loglog example.

In this example, we used title, xlabel and ylabel. These functions reproduce

their input string above the plot and on the x- and y-axes, respectively. We also

used the command box off, which removes the box from the current plot, leaving

just the x- and y-axes. MATLAB will, of course, complain if nonpositive data is

sent to loglog (it displays a warning and plots only the positive data). Related

functions are semilogx and semilogy, for which only the x- or y-axis, respectively,

is logarithmically scaled.

If one plotting command is later followed by another then the new picture will

either replace or be superimposed on the old picture, depending on the current hold

state. Typing hold on causes subsequent plots to be superimposed on the current

one, whereas hold off speci�es that each new plot should start afresh. The default

status corresponds to hold off.

The command clf clears the current �gure window, while close closes it. It is

possible to have several �gure windows on the screen. The simplest way to create a

new �gure window is to type figure. The nth �gure window (where n is displayed in

the title bar) can be made current by typing figure(n). The command close all

causes all the �gure windows to be closed.

Note that many aspects of a �gure can be changed interactively, after the �gure

has been displayed, by using the items on the toolbar of the �gure window or on the

Tools pull-down menu. In particular, it is possible to zoom in on a particular region

of the plot using mouse clicks (see help zoom).

8.1.2. Axes and Annotation

Various aspects of the axes of a plot can be controlled with the axis command. Some

of the options are summarized in Table 8.2. The axes are removed from a plot with

axis off. The aspect ratio can be set to unity, so that, for example, a circle appears

circular rather than elliptical, by typing axis equal. The axis box can be made
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Table 8.2. Some commands for controlling the axes.

axis([xmin xmax ymin ymax]) Set speci�ed x- and y-axis limits

axis auto Return to default axis limits

axis equal Equalize data units on x-, y- and z-axes

axis off Remove axes

axis square Make axis box square (cubic)

axis tight Set axis limits to range of data

xlim([xmin xmax]) Set speci�ed x-axis limits

ylim([ymin ymax]) Set speci�ed y-axis limits

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8.4. Using axis off.

square with axis square.

To illustrate, the left-hand plot in Figure 8.4 was produced by

plot(fft(eye(17))), axis equal, axis square

Since the plot obviously lies inside the unit circle the axes are hardly necessary. The

right-hand plot in Figure 8.4 was produced with

plot(fft(eye(17))), axis equal, axis off

(The meaning of this interesting picture is described in [59].)

Setting axis([xmin xmax ymin ymax]) causes the x-axis to run from xmin to

xmax and the y-axis from ymin to ymax. To return to the default axis scaling, which

MATLAB chooses automatically based on the data being plotted, type axis auto.

If you want one of the limits to be chosen automatically by MATLAB, set it to -inf

or inf; for example, axis([-1 1 -inf 0]). The x-axis and y-axis limits can be set

individually with xlim([xmin xmax]) and ylim([ymin ymax]).

Our next example plots the function 1=(x�1)2+3=(x�2)2 over the interval [0; 3]:

x = linspace(0,3,500);

plot(x,1./(x-1).^2 + 3./(x-2).^2)

grid on
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Figure 8.5. Use of ylim (right) to change automatic (left) y-axis limits.

We speci�ed grid on, which introduces a light horizontal and vertical hashing that

extends from the axis ticks. The result is shown in the left-hand plot of Figure 8.5. Be-

cause of the singularities at x = 1; 2 the plot is uninformative. However, by executing

the additional command

ylim([0 50])

the right-hand plot of Figure 8.5 is produced, which focuses on the interesting part

of the �rst plot.

In the following example we plot the epicycloid

x(t) = (a+ b) cos(t)� b cos((a=b+ 1)t)

y(t) = (a+ b) sin(t)� b sin((a=b+ 1)t)

)
0 � t � 10�;

for a = 12 and b = 5.

a = 12; b = 5;

t = 0:0.05:10*pi;

x = (a+b)*cos(t) - b*cos((a/b+1)*t);

y = (a+b)*sin(t) - b*sin((a/b+1)*t);

plot(x,y)

axis equal

axis([-25 25 -25 25])

grid on

title('Epicycloid: a=12, b=5')

xlabel('x(t)'), ylabel('y(t)')

The resulting picture appears in Figure 8.6. The axis limits were chosen to put some

space around the epicycloid.

Next we plot the Legendre polynomials of degrees 1 to 4 (see, for example, [9])

and use the legend function to add a box that explains the line styles. The result is

shown in Figure 8.7.
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Figure 8.6. Epicycloid example.

x = -1:.01:1;

p1 = x;

p2 = (3/2)*x.^2 - 1/2;

p3 = (5/2)*x.^3 - (3/2)*x;

p4 = (35/8)*x.^4 - (15/4)*x.^2 + 3/8;

plot(x,p1,'r:',x,p2,'g--',x,p3,'b-.',x,p4,'m-')

box off

legend('\itn=1','n=2','n=3','n=4',4)

xlabel('x','FontSize',12,'FontAngle','italic')

ylabel('P_n','FontSize',12,'FontAngle','italic')

title('Legendre Polynomials','FontSize',14)

text(-.6,.7,'(n+1)P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x)',...

'FontSize',12,'FontAngle','italic')

Generally, typing legend(`string1','string2',...,'stringn') will create a leg-

end box that puts `stringi' next to the color/marker/line style information for the

corresponding plot. By default, the box appears in the top right-hand corner of the

axis area. The location of the box can be speci�ed by adding an extra argument as

follows:
-1 to the right of the plot

0 automatically chosen \best" location

1 top right-hand corner (default)

2 top left-hand corner

3 bottom left-hand corner

4 bottom right-hand corner
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Figure 8.7. Legendre polynomial example, using legend.

In our example we chose the bottom right-hand corner. Once the plot has been drawn,

the legend box can be repositioned by putting the cursor over it and dragging it using

the left mouse button.

This example uses the text command: generally, text(x,y,'string') places

'string' at the position whose coordinates are given by x and y. (A related function

gtext allows the text location to be determined interactively via the mouse.) Note

that the strings in the ylabel and text commands use the notation of the typesetting

system TEX to specify Greek letters, mathematical symbols, fonts and superscripts

and subscripts [23], [43], [48]. Table 8.3 lists some of the TEX notation supported,

and a full list can be found in the string entry under doc text_props. Note that

curly braces can be used to delimit the range of application of the font commands

and of subscripts and superscripts. Thus

title('{\itItalic} Normal {\bfBold} \int_{-\infty}^\infty')

produces a title of the form \Italic Normal Bold
R1
�1

". (Note that, unlike in TEX,

if you leave a space after a font command then that space is printed.) If you are

unfamiliar with TEX or LATEX you may prefer to use texlabel('string'), which

allows 'string' to be given in the style of a MATLAB expression. Thus the following

two commands have identical e�ect:

text(5,5,'\alpha^{3/2}+\beta^{12}-\sigma_i')

text(5,5,texlabel('alpha^(3/2)+beta^12-sigma_i'))

A �nal note about the Legendre polynomial example is that we have used the

FontSize and FontAngle properties to adjust the point size and angle of the text

produced by the xlabel, ylabel, title and text commands (the default value of

FontSize is 10 and the default FontAngle is normal). However, legend does not

accept these arguments, so we used TEX notation to make the legend italic. For plots
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Table 8.3. Some of the TEX commands supported in text strings.

Greek letters

Lower case

� \alpha

� \beta

 \gamma

...
...

! \omega

Upper case

� \Gamma

� \Delta

� \Theta

...
...


 \Omega

Selected symbols

� \approx

� \circ

� \geq

= \Im

2 \in

1 \inftyR
\int

� \leq

6= \neq


 \otimes

@ \partial

� \pm

< \Re

� \simp
\surd

Fonts

Normal \rm

Bold \bf

Italic \it

that are to be incorporated into a printed document or presentation, increasing the

font size can improve readability.

The fill function works in a similar manner to plot. Typing fill(x,y,[r g

b]) shades a polygon whose vertices are speci�ed by the points x(i), y(i). The points

are taken in order, and the last vertex is joined to the �rst. The color of the shading

is determined by the third argument [r g b]. The elements r, g and b, which must

be scalars in the range [0; 1], determine the level of red, green and blue, respectively,

in the shading. So, fill(x,y,[0 1 0]) uses pure green and fill(x,y,[1 0 1])

uses magenta. Specifying equal amounts of red, green and blue gives a grey shading

that can be varied between black ([0 0 0]) and white ([1 1 1]). The next example

plots a cubic Bezier curve, which is de�ned by

p(u) = (1� u)3P1 + 3u(1� u)2P2 + 3u2(1� u)P3 + u
3P4; 0 � u � 1;

where the four control points, P1, P2, P3 and P4, have given x and y compo-

nents. We use fill to shade the control polygon, that is, the polygon formed by

the control points. The matrix P stores the control point Pj in its jth column,

and fill(P(1,:),P(2,:),[.8 .8 .8]) shades the control polygon with light grey.

The columns of the matrix Curve are closely spaced points on the Bezier curve, and

plot(Curve(1,:),Curve(2,:),'--') joins these with a dashed line. Figure 8.8 gives

the resulting picture.

P = [0.1 0.3 0.7 0.8;

0.3 0.8 0.6 0.1];

plot(P(1,:),P(2,:),'*')

axis([0 1 0 1])

hold on

u = 0:.01:1;

umat = [(1-u).^3; 3.*u.*(1-u).^2; 3.*u.^2.*(1-u); u.^3];
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Figure 8.8. Bezier curve and control polygon.

Curve = P*umat;

fill(P(1,:),P(2,:),[.8 .8 .8])

plot(Curve(1,:),Curve(2,:),'--')

text(0.35,0.35,'control polygon')

text(0.05,0.3,'P_1')

text(0.25,0.8,'P_2')

text(0.72,0.6,'P_3')

text(0.82,0.1,'P_4')

hold off

8.1.3. Multiple Plots in a Figure

MATLAB's subplot allows you to place a number of plots in a grid pattern together

on the same �gure. Typing subplot(mnp) or, equivalently, subplot(m,n,p), splits

the �gure window into an m-by-n array of regions, each having its own axes. The

current plotting commands will then apply to the pth of these regions, where the

count moves along the �rst row, and then along the second row, and so on. So, for

example, subplot(425) splits the �gure window into a 4-by-2 matrix of regions and

speci�es that plotting commands apply to the �fth region, that is, the �rst region in

the third row. If subplot(427) appears later, then the region in the (4,1) position

becomes active. Several examples in which subplot is used appear below.

For plotting mathematical functions the fplot command is useful. It adaptively

samples a function at enough points to produce a representative graph. The following

example generates the graphs in Figure 8.9.

subplot(221), fplot('exp(sqrt(x)*sin(12*x))',[0 2*pi])
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Figure 8.9. Example with subplot and fplot.

subplot(222), fplot('sin(round(x))',[0 10],'--')

subplot(223), fplot('cos(30*x)/x',[0.01 1 -15 20],'-.')

subplot(224), fplot('[sin(x),cos(2*x),1/(1+x)]',[0 5*pi -1.5 1.5])

In this example, the �rst call to fplot produces a graph of the function exp(
p
x sin 12x)

over the interval 0 � x � 2�. In the second call, we override the default solid line

style and specify a dashed line with '--'. The argument [0.01 1 -15 20] in the

third call forces limits in both the x and y directions, 0:01 � x � 1 and �15 � y � 20,

and '-.' asks for a dash-dot line style. The �nal fplot example illustrates how more

than one function can be plotted in the same call.

It is possible to supply further arguments to fplot. The general pattern is

fplot('fun',lims,tol,N,'LineSpec',p1,p2,...). The argument list works as fol-

lows.

� fun is the function to be plotted.

� The x and/or y limits are given by lims.

� tol is a relative error tolerance, the default value of 2� 10�3 corresponding to

0.2% accuracy.

� At least N+1 points will be used to produce the plot.

� LineSpec determines the line type.

� p1, p2, . . . are parameters that are passed to fun, which must have input

arguments x,p1,p2,....

The arguments tol, N and 'LineSpec' can be speci�ed in any order, and an empty

matrix ([]) can be passed to obtain the default for any of these arguments.

In Listing 7.4 on p. 71 is a function cheby(x,p) that returns the �rst p Chebyshev

polynomials evaluated at x. Using this function the code
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Figure 8.10. First 5 (upper) and 35 (lower) Chebyshev polynomials, plotted using

fplot and cheby in Listing 7.4.

subplot(211), fplot('cheby',[-1 1],[],[],[],5)

subplot(212), fplot('cheby',[-1 1],[],[],[],35)

produces the pictures in Figure 8.10. Here, the �rst 5 and �rst 35 Chebyshev poly-

nomials are plotted in the upper and lower regions, respectively.

It is possible to produce irregular grids of plots by invoking subplot with di�erent

grid patterns. For example, Figure 8.11 was produced as follows:

x = linspace(0,15,100);

subplot(2,2,1), plot(x,sin(x))

subplot(2,2,2), plot(x,round(x))

subplot(2,1,2), plot(x,sin(round(x)))

The third argument to subplot can be a vector specifying several regions, so we could

replace the last line by

subplot(2,2,3:4), plot(x,sin(round(x)))

To complete this section, we list in Table 8.4 the most popular 2D plotting func-

tions in MATLAB. Some of these functions are discussed in Section 8.3.

8.2. Three-Dimensional Graphics

The function plot3 is the three-dimensional analogue of plot. The following example

illustrates the simplest usage: plot3(x,y,z) draws a \join-the-dots" curve by taking

the points x(i), y(i), z(i) in order. The result is shown in Figure 8.12.

t = -5:.005:5;

x = (1+t.^2).*sin(20*t);
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Figure 8.11. Irregular grid of plots produced with subplot.

Table 8.4. 2D plotting functions.

plot Simple x-y plot

loglog Plot with logarithmically scaled axes

semilogx Plot with logarithmically scaled x-axis

semilogy Plot with logarithmically scaled y-axis

plotyy x-y plot with y-axes on left and right

polar Plot in polar coordinates

fplot Automatic function plot

ezplot Easy-to-use version of fplot

ezpolar Easy-to-use version of polar

fill Polygon �ll

area Filled area graph

bar Bar graph

barh Horizontal bar graph

hist Histogram

pie Pie chart

comet Animated, comet-like, x-y plot

errorbar Error bar plot

quiver Quiver (velocity vector) plot

scatter Scatter plot
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y = (1+t.^2).*cos(20*t);

z = t;

plot3(x,y,z)

grid on

xlabel('x(t)'), ylabel('y(t)'), zlabel('z(t)')

title('\it{plot3 example}','FontSize',14)

This example also uses the functions xlabel, ylabel and title, which were discussed

in the previous section, and the analogous zlabel. Note that we have used the TEX

notation \it in the title command to produce italic text. The color, marker and

line styles for plot3 can be controlled in the same way as for plot. So, for example,

plot3(x,y,z,'rx--') would use a red dashed line and place a cross at each point.

Note that for 3D plots the default is box off; specifying box on adds a box that

bounds the plot.

A simple contour plotting facility is provided by ezcontour. The call to ezcontour

in the following example produces contours for the function sin(3y�x2+1)+cos(2y2�
2x) over the range �2 � x � 2 and �1 � y � 1; the result can be seen in the upper

half of Figure 8.13.

subplot(211)

ezcontour('sin(3*y-x^2+1)+cos(2*y^2-2*x)',[-2 2 -1 1]);

x = -2:.01:2; y = -1:.01:1;

[X,Y] = meshgrid(x,y);

Z = sin(3*Y-X.^2+1)+cos(2*Y.^2-2*X);

subplot(212)

contour(x,y,Z,20)
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Figure 8.13. Contour plots with ezcontour (upper) and contour (lower).

Note that the contour levels have been chosen automatically. For the lower half of

Figure 8.13 we use the more general function contour. We �rst assign x = -2:.01:2

and y = -1:.01:1 to obtain closely spaced points in the appropriate range. We then

set [X,Y] = meshgrid(x,y), which produces matrices X and Y such that each row

of X is a copy of the vector x and each column of Y is a copy of the vector y. (The

function meshgrid is extremely useful for setting up data for many of MATLAB's 3D

plotting tools.) The matrix Z is then generated from array operations on X and Y,

with the result that Z(i,j) stores the function value corresponding to x(j), y(i).

This is precisely the form required by contour. Typing contour(x,y,Z,20) tells

MATLAB to regard Z as de�ning heights above the x-y plane with spacing given by x

and y. The �nal input argument speci�es that 20 contour levels are to be used; if this

argument is omitted MATLAB automatically chooses the number of contour levels.

The next example illustrates the use of clabel to label contours, with the result

shown in Figure 8.14.

[X,Y] = meshgrid(linspace(-3,3,100), linspace(-1.5,1.5,100));

Z = 4*X.^2 - 2.1*X.^4 + X.^6/3 + X.*Y - 4*Y.^2 + 4*Y.^4;

cvals = [linspace(-2,5,14) linspace(5,10,3)];

[C,h] = contour(X,Y,Z,cvals);

clabel(C,h,cvals([3 5 7 9 13 17]))

xlabel('x'), ylabel('y')

title('Six hump camel back function','FontSize',16)

Here, we are using an interesting function having a number of maxima, minima and

saddle points. MATLAB's default choice of contour levels does not produce an at-

tractive picture, so we specify the levels (chosen by trial and error) in the vector

cvals. The clabel command takes as input the output from contour (C contains

the contour data and h is a graphics object handle) and adds labels to the contour

levels speci�ed in its third input argument. Again the contour levels need not be
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Figure 8.14. Contour plot labelled using clabel.

speci�ed, but the default of labelling all contours produces a cluttered plot in this

example. An alternative form of clabel is clabel(C,h,'manual'), which allows you

to specify with the mouse the contours to be labelled: click to label a contour and

press return to �nish. The h argument of clabel can be omitted, in which case the

labels are placed close to each contour with a plus sign marking the contour.

The function mesh accepts data in a similar form to contour and produces wire-

frame surface plots. If meshc is used in place of mesh, a contour plot is appended

below the surface. The example below, which produces Figure 8.15, involves the sur-

face de�ned by sin(y2+x)�cos(y�x2) for 0 � x; y � �. The �rst subplot is produced

by mesh(Z). Since no x, y information is supplied to mesh, row and column indices are

used for the axis ranges. The second subplot shows the e�ect of meshc(Z). For the

third subplot, we use mesh(x,y,Z), so the tick labels on the x- and y-axes correspond

to the values of x and y. We also specify the axis limits with axis([0 pi 0 pi -5

5]), which gives 0 � x; y � � and �5 � z � 5. For the �nal subplot, we use mesh(Z)

again, followed by hidden off, which causes hidden lines to be shown.

x = 0:.1:pi; y = 0:.1:pi;

[X,Y] = meshgrid(x,y);

Z = sin(Y.^2+X)-cos(Y-X.^2);

subplot(221)

mesh(Z)

subplot(222)

meshc(Z)

subplot(223)

mesh(x,y,Z)
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Figure 8.15. Surface plots with mesh and meshc.

axis([0 pi 0 pi -5 5])

subplot(224)

mesh(Z)

hidden off

The function surf di�ers from mesh in that it produces a solid �lled surface

plot, and surfc adds a contour plot below. In the next example we call MATLAB's

membrane, which returns the �rst eigenfunction of an L-shaped membrane. The pic-

tures in the �rst row of Figure 8.16 show the e�ect of surf and surfc. The (1,2) plot

displays a color scale using colorbar. The color map for the current �gure can be set

using colormap; see doc colormap. The (2,1) plot uses the shading function with

the flat option to remove the grid lines on the surface; another option is interp,

which varies the color over each segment by interpolation. The (2,2) plot uses the re-

lated function waterfall, which is similar to mesh with the wireframes in the column

direction removed.

Z = membrane; FS = 'FontSize';

subplot(221), surf(Z), title('\bf{surf}',FS,14)

subplot(222), surfc(Z), title('\bf{surfc}',FS,14), colorbar

subplot(223), surf(Z), shading flat

title('\bf{surf} shading flat',FS,14)

subplot(224), waterfall(Z), title('\bf{waterfall}',FS,14)

The 3D pictures in Figures 8.12, 8.15 and 8.16 use MATLAB's default viewing

angle. This can be overridden with the function view. Typing view(a,b) sets the

counterclockwise rotation about the z-axis to a degrees and the vertical elevation to

b degrees. The default is view(-37.5,30). The rotate 3D tool on the toolbar of the

�gure window enables the mouse to be used to change the angle of view by clicking

and dragging within the axis area.
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Figure 8.16. Surface plots with surf, surfc and waterfall.

It is possible to view a 2D plot as a 3D one, by using the view command to specify

a viewing angle, or simply by typing view(3). Figure 8.17 shows the result of typing

plot(fft(eye(17))); view(3); grid

In the next example we generate a fractal landscape using the recursive function

land shown in Listing 8.1, which uses a variant of the random midpoint displacement

algorithm [64, Sec. 7.6]; see Figure 8.18. Recursion is discussed further in Section 10.5.

The basic step taken by land is to update an N-by-Nmatrix with nonzeros only in each

corner by �lling in the entries in positions (1,d), (d,1), (d,d), (d,N) and (N,d),

where d = (N+1)/2, in the following manner:2
66666666664

a b

c d

3
77777777775
!

2
666666664

a
a+b
2

b

a+c
2

a+b+c+d
4

b+d
2

c
c+d
2

d

3
777777775
+ noise:

The noise is introduced by adding a multiple of randn to each new nonzero element.

The process is repeated recursively on the four square submatrices whose corners are

de�ned by the nonzero elements, until the whole matrix is �lled. The scaling factor for

the noise is reduced by 20:9 at each level of recursion. Note that the input argument

A in land(A) must be a square matrix with dimension of the form 2n + 1, and only

the corner elements of A have any e�ect on the result.

In the example below that produces Figure 8.18 we use land to set up a height

matrix, B. For the surface plots, we use meshz, which works like mesh but hangs a

vertical curtain around the edges of the surface. The �rst subplot shows the default
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Figure 8.17. 3D view of a 2D plot.

Listing 8.1. Function land.

function B = land(A)

%LAND Fractal landscape.

% B = LAND(A) generates a random fractal landscape

% represented by B, where A is a square matrix of

% dimension N = 2^n + 1 whose four corner elements

% are used as input parameters.

N = size(A,1);

d = (N+1)/2;

level = log2(N-1);

scalef = 0.05*(2^(0.9*level));

B = A;

B(d,d) = mean([A(1,1),A(1,N),A(N,1),A(N,N)]) + scalef*randn;

B(1,d) = mean([A(1,1),A(1,N)]) + scalef*randn;

B(d,1) = mean([A(1,1),A(N,1)]) + scalef*randn;

B(d,N) = mean([A(1,N),A(N,N)]) + scalef*randn;

B(N,d) = mean([A(N,1),A(N,N)]) + scalef*randn;

if N > 3

B(1:d,1:d) = land(B(1:d,1:d));

B(1:d,d:N) = land(B(1:d,d:N));

B(d:N,1:d) = land(B(d:N,1:d));

B(d:N,d:N) = land(B(d:N,d:N));

end
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view of B. For the second subplot we impose a \sea level" by raising all heights that

are below the average value. This resulting data matrix, Bisland, is also plotted with

the default view. The third and fourth subplots use view([-75 40]) and view([240

65]), respectively. For these two subplots we also control the axis limits.

randn('state',10);

k = 2^5+1;

A = zeros(k);

A([1 k], [1 k]) = [1 1.25

1.1 2.0];

B = land(A);

subplot(221), meshz(B)

FS = 'FontSize'; title('Default view',FS,12)

Bisland = max(B,mean(mean(B)));

Bmin = min(min(Bisland));

Bmax = max(max(Bisland));

subplot(222), meshz(Bisland)

title('Default view',FS,12)

subplot(223), meshz(Bisland)

view([-75 40])

axis([0 k 0 k Bmin Bmax])

title('view([-75 40])',FS,12)

subplot(224), meshz(Bisland)

view([240 65])

axis([0 k 0 k Bmin Bmax])

title('view([240 65])',FS,12)

Table 8.5 summarizes the most popular 3D plotting functions. As the table in-

dicates, several of the functions have \easy-to-use" alternative versions with names

beginning ez. Section 8.3 discusses some of these functions.

A feature common to all graphics functions is that NaNs are interpreted as \miss-

ing data" and are not plotted. For example,

plot([1 2 NaN 3 4])

draws two disjoint lines and does not connect \2" to \3", while

A = peaks(80); A(28:52,28:52) = NaN; surfc(A)

produces the surfc plot with a hole in the middle shown in Figure 8.19. (The function

peaks generates a matrix of height values corresponding to a particular function of

two variables and is useful for demonstrating 3D plots.)

MATLAB contains in its demos directory several functions with names beginning

cplx for visualizing functions of a complex variable (type what demos). Figure 8.20

shows the plot produced by cplxroot(3). In general, cplxroot(n) plots the Riemann

surface for the function z
1=n.
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Figure 8.18. Fractal landscape views.

Table 8.5. 3D plotting functions.

plot3� Simple x-y-z plot

contour� Contour plot

contourf� Filled contour plot

contour3 3D contour plot

mesh� Wireframe surface

meshc� Wireframe surface plus contours

meshz Wireframe surface with curtain

surf� Solid surface

surfc� Solid surface plus contours

waterfall Unidirectional wireframe

bar3 3D bar graph

bar3h 3D horizontal bar graph

pie3 3D pie chart

fill3 Polygon �ll

comet3 3D animated, comet-like plot

scatter3 3D scatter plot

stem3 Stem plot
� These functions fun have ezfun counterparts, too.
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Figure 8.20. Riemann surface for z1=3.
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8.3. Specialized Graphs for Displaying Data

In this section we describe some additional functions from Tables 8.4 and 8.5 that are

useful for displaying data (as opposed to plotting mathematical functions).

MATLAB has four functions for plotting bar graphs, covering 2D and 3D vertical

or horizontal bar graphs, with options to stack or group the bars. The simplest usage

of the bar plot functions is with a single m-by-n matrix input argument. For 2D bar

plots elements in a row are clustered together, either in a group of n bars with the

default 'grouped' argument, or in one bar apportioned among the n row entries with

the 'stacked' argument.

The following code uses bar and barh to produce Figure 8.21:

Y = [7 6 5

6 8 1

4 5 9

2 3 4

9 7 2];

subplot(2,2,1)

bar(Y)

title('bar(...,''grouped'')')

subplot(2,2,2)

bar(0:5:20,Y)

title('bar(...,''grouped'')')

subplot(2,2,3)

bar(Y,'stacked')

title('bar(...,''stacked'')')

subplot(2,2,4)

barh(Y)

title('barh')

Note that in the two-argument form bar(x,Y) the vector x provides the x-axis loca-

tions for the bars.

For 3D bar graphs the default arrangement is 'detached', with the bars for the

elements in each column distributed along the y-axis. The arguments 'grouped' and

'stacked' give 3D views of the corresponding 2D bar plots with the same arguments.

With the same data matrix, Y, Figure 8.22 is produced by

subplot(2,2,1)

bar3(Y)

title('bar3(...,''detached'')')

subplot(2,2,2)

bar3(Y,'grouped')

title('bar3(...,''grouped'')')

subplot(2,2,3)

bar3(Y,'stacked')
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Figure 8.21. 2D bar plots.

title('bar3(...,''stacked'')')

subplot(2,2,4)

bar3h(Y)

title('bar3h')

Note that with the default 'detached' arrangement some bars are hidden behind

others. A satisfactory solution to this problem can sometimes be found by rotating

the plot using view or the mouse.

Histograms are produced by the hist function, which counts the number of el-

ements lying within intervals and, if no output arguments are speci�ed, plots a bar

graph. The �rst argument, y, to hist is the data vector and the second is either

a scalar specifying the number of bars (or bins) or a vector de�ning the intervals;

if only y is supplied then 10 bins are used. If y is a matrix then bins are created

for each column and a grouped bar graph is produced. The following code produces

Figure 8.23:

randn('state',1)

y = exp(randn(1000,1)/3);

subplot(2,2,1)

hist(y)

title('1000-by-1 data vector, 10 bins')

subplot(2,2,2)

hist(y,25)

title('25 bins')

subplot(2,2,3)

hist(y,min(y):.1:max(y))
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Figure 8.22. 3D bar plots.

title('Bin width 0.1')

Y = exp(randn(1000,3)/3);

subplot(2,2,4)

hist(Y)

title('1000-by-3 data matrix')

Pie charts can be produced with pie and pie3. They take a vector argument, x,

and corresponding to each element x(i) they draw a slice with area proportional to

x(i). A second argument explode can be given, which is a 0-1 vector with a 1 in

positions corresponding to slices that are to be o�set from the chart. By default, the

slices are labelled with the percentage of the total area that they occupy; replacement

labels can be speci�ed in a cell array of strings (see Section 18.3). The following code

produces Figure 8.24.

x = [1.5 3.4 4.2];

subplot(2,2,1)

pie(x)

subplot(2,2,2)

pie(x,[0 0 1])

subplot(2,2,3)

pie(x,{'Slice 1','Slice 2','Slice 3'})
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Figure 8.23. Histograms produced with hist.

subplot(2,2,4)

pie3(x,[0 1 0])

The area function produces a stacked area plot. With vector arguments, area is

similar to plot except that the area between the y-values and 0 (or the level speci�ed

by the optional second argument) is �lled; for matrix arguments the plots of the

columns are stacked, showing the sum at each x-value. The following code produces

Figure 8.25.

randn('state',1)

x = [1:12 11:-1:8 10:15]; Y = [x' x'];

subplot(2,1,1)

area(Y+randn(size(Y)))

subplot(2,1,2)

Y = Y + 5*randn(size(Y));

area(Y,min(min(Y)))

axis tight

8.4. Saving and Printing Figures

If your default printer has been set appropriately, simply typing print will send the

contents of the current �gure window to your printer. An alternative is to use the

print command to save the �gure as a �le. For example,

print -deps2 myfig.eps
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creates an encapsulated level 2 black and white PostScript �le myfig.eps that can

subsequently be printed on a PostScript printer or included in a document. This �le

can be incorporated into a LATEX document, as in the following outline:

\documentclass{article}

\usepackage[dvips]{graphicx} % Assumes use of dvips dvi driver.

...

\begin{document}

...

\begin{center}

\includegraphics[width=8cm]{myfig.eps}

\end{center}

...

\end{document}

See [23] for more about LATEX.

The many options of the print command can be seen with help print. The

print command also has a functional form, illustrated by

print('-deps2','myfig.eps')

(an example of command/function duality|see Section 7.4). To illustrate the utility

of the functional form, the next example generates a sequence of �ve �gures and saves

them to �les fig1.eps, . . . , fig5.eps:

x = linspace(0,2*pi,50);

for i=1:5

plot(x,sin(i*x))

print('-deps2',['fig' int2str(i) '.eps'])

end

The second argument to the print command is formed by string concatenation (see

Section 18.1), making use of the function int2str, which converts its integer argu-

ment to a string. Thus when i=1, for example, the print statement is equivalent to

print('-deps2','fig1.eps').

The saveas command saves a �gure to a �le in a form that can be reloaded into

MATLAB. For example,

saveas(gcf,'myfig','fig')

saves the current �gure as a binary FIG-�le, which can be reloaded into MATLAB

with open('myfig.fig').

It is also possible to save and print �gures from the pulldown File menu in the

�gure window.

8.5. On Things Not Treated

We have restricted our treatment in this chapter to high-level graphics functions that

deal with common 2D and 3D visualization tasks. MATLAB's graphics capabilities

extend far beyond what is described here. On the one hand, MATLAB provides access

to lighting, transparency control, solid model building, texture mapping, and the

construction of graphical user interfaces. On the other hand, it is possible to control
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Figure 8.26. From the 1964 Gatlinburg Conference on Numerical Algebra. From left to

right: J. H. Wilkinson, W. J. Givens, G. E. Forsythe, A. S. Householder, P. Henrici

and F. L. Bauer. (Source of photograph: Oak Ridge National Laboratory.)

low-level details such as the tick labels and the position and size of the axes, and to

produce animation; how to do this is described in Chapter 17 on Handle Graphics.

A good place to learn more about MATLAB graphics is [57]. You can also learn by

exploring the demonstrations in the matlab\demos directory. Try help demos, but

note that not all �les in this directory are documented in the help information.

Another area of MATLAB that we have not discussed is image handling and

manipulation. If you type what demos, you will �nd that the demos directory contains

a selection of MAT-�les, most of which contain image data. These can be loaded and

displayed as in the following example, which produces the image shown in Figure 8.26:

>> load gatlin, image(X); colormap(map), axis off

This picture was taken at a meeting in Gatlinburg, Tennessee, in 1964, and shows six

major �gures in the development of numerical linear algebra and scienti�c computing

(you can �nd some of their names in Table 5.3).

Before coding graphs in MATLAB you should think carefully about the design,

aiming for a result that is uncluttered and conveys clearly the intended message.

Good references on graphical design are [8, Chaps. 10, 11], [76], [77], [78].
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\What is the use of a book," thought Alice,

\without pictures or conversation?"

| LEWIS CARROLL, Alice's Adventures in Wonderland (1865)

The close command closes the current �gure window.

If there is no open �gure window MATLAB opens one and then closes it.

| CLEVE B. MOLER

A picture is worth a thousand words.

| ANONYMOUS

Given their low data-density and

failure to order numbers along a visual dimension,

pie charts should never be used.

| EDWARD R. TUFTE, The Visual Display of Quantitative Information (1983)

It's kind of scandalous that the world's calculus books,

up until recent years, have never had a good picture
3
of a cardioid. . .

Nobody ever knew what a cardioid looked like, when I took calculus,

because the illustrations were done by graphic artists

who were trying to imitate drawings by previous artists,

without seeing the real thing.

| DONALD E. KNUTH, Digital Typography (1999)

3ezpolar('1+cos(t)')



Chapter 9

Linear Algebra

MATLAB was originally designed for linear algebra computations, so it not surprising

that it has a rich set of functions for solving linear equation and eigenvalue problems.

Many of the linear algebra functions are based on routines from the LAPACK [3]

Fortran library.

Most of the linear algebra functions work for both real and complex matrices. We

write A� for the conjugate transpose of A. Recall that a square matrix A is Hermitian

if A� = A and unitary if A�A = I , where I is the identity matrix. To avoid clutter, we

use the appropriate adjectives for complex matrices. Thus, when the matrix is real,

\Hermitian" can be read as \symmetric" and \unitary" can be read as \orthogonal".

For background on numerical linear algebra see [13], [21], [73] or [75].

9.1. Norms and Condition Numbers

A norm is a scalar measure of the size of a vector or matrix. The p-norm of an

n-vector x is de�ned by

kxkp =
� nX
i=1

jxijp
�1=p

; 1 � p <1:

For p =1 the norm is de�ned by

kxk1 = max
1�i�n

jxij:

The norm function can compute any p-norm and is invoked as norm(x,p), with default

p = 2. As a special case, for p = �inf the quantity mini jxij is computed. Example:

>> x = 1:4;

>> [norm(x,1) norm(x,2) norm(x,inf) norm(x,-inf)]

ans =

10.0000 5.4772 4.0000 1.0000

The p-norm of a matrix is de�ned by

kAkp = max
x 6=0

kAxkp
kxkp

:

The 1- and 1-norms of an m-by-n matrix A can be characterized as

kAk1 = max
1�j�n

mX
i=1

jaij j; \max column sum",

kAk1 = max
1�i�m

nX
j=1

jaij j; \max row sum".

107
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The 2-norm of A can be expressed as the largest singular value of A, max(svd(A))

(singular values and the svd function are described in Section 9.6). For matrices the

norm function is invoked as norm(A,p) and supports p = 1,2,inf and p = 'fro',

the Frobenius norm

kAkF =

� mX
i=1

nX
j=1

jaij j2
�1=2

:

(This is a an example of a function with an argument that can vary in type: p can

be a double or a string.) Example:

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> [norm(A,1) norm(A,2) norm(A,inf) norm(A,'fro')]

ans =

18.0000 16.8481 24.0000 16.8819

For cases in which computation of the 2-norm of a matrix is too expensive the

function normest can be used to obtain an estimate. The call normest(A,tol) uses

the power method on A�A to estimate kAk2 to within a relative error tol; the default
is tol = 1e-6.

For a nonsingular square matrixA, �(A) = kAk kA�1k � 1 is the condition number

with respect to inversion. It measures the sensitivity of the solution of a linear system

Ax = b to perturbations in A and b. The matrix A is said to be well conditioned or

ill conditioned according as �(A) is small or large. A large condition number implies

that A is close to a singular matrix. The condition number is computed by the

cond function as cond(A,p). The p-norm choices p = 1,2,inf,'fro' are supported,

with default p = 2. For p = 2, rectangular matrices are allowed, in which case the

condition number is de�ned by �2(A) = kAk2kA+k2, where A+ is the pseudo-inverse

(see Section 9.3).

Computing the exact condition number is expensive, so MATLAB provides two

functions for estimating the 1-norm condition number of a square matrix A, rcond

and condest. Both functions produce estimates usually of the correct order of mag-

nitude at about one third the cost of explicitly computing A�1. Function rcond uses

the LAPACK condition estimator to estimate the reciprocal of �1(A), producing a

result between 0 and 1, with 0 signalling exact singularity. Function condest esti-

mates �1(A) and also returns an approximate null vector, which is required in some

applications. The command [c,v] = condest(A) produces a scalar c and vector v

so that c � �1(A) and norm(A*v,1)= norm(A,1)*norm(v,1)=c. Example:

>> A = gallery('grcar',8);

>> [cond(A,1) 1/rcond(A) condest(A)]

ans =

7.7778 5.3704 7.7778

>> [cond(A,1) 1/rcond(A) condest(A)]

ans =

7.7778 5.3704 7.2222
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As this example illustrates, condest does not necessarily return the same result on

each invocation, as it makes use of rand.

9.2. Linear Equations

The fundamental tool for solving a linear system of equations is the backslash oper-

ator, \. It handles three types of linear system Ax = b, where the matrix A and the

vector b are given. The three possible shapes for A lead to square, overdetermined

and underdetermined systems, as described below. More generally, the n operator can
be used to solve AX = B, where B is a matrix with p columns; in this case MATLAB

solves AX(:; j) = B(:; j) for j = 1: p.

9.2.1. Square System

If A is an n-by-n nonsingular matrix then A\b is the solution x to Ax = b, computed

by LU factorization with partial pivoting. During the solution process MATLAB

computes rcond(A), and it prints a warning message if the result is smaller than

about eps:

>> x = hilb(15)\ones(15,1);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.178404e-019.

These warning messages can be turned o� using warning off; see Section 14.1.

MATLAB recognizes two special forms of square systems and takes advantage of

them to reduce the computation.

� Triangular matrix, or permutation of a triangular matrix. The system is solved

by substitution.

� Hermitian positive de�nite matrix. (The Hermitian matrix A is positive de�nite

if x�Ax > 0 for all nonzero vectors x, or, equivalently, if all the eigenvalues are

real and positive.) Cholesky factorization is used instead of LU factorization.

How does MATLAB know the matrix is de�nite? When \ is called with a

Hermitian matrix that has positive diagonal elements MATLAB attempts to

Cholesky factorize the matrix. If the Cholesky factorization succeeds it is used

to solve the system; otherwise an LU factorization is carried out.

9.2.2. Overdetermined System

If A has dimension m-by-n with m > n then Ax = b is an overdetermined system:

there are more equations than unknowns. In general, there is no x satisfying the

system. MATLAB's A\b gives a least squares solution to the system, that is, it

minimizes norm(A*x-b) (the 2-norm of the residual) over all vectors x. If A has full

rank n there is a unique least squares solution. If A has rank k less than n then

A\b is a basic solution|one with at most k nonzero elements (k is determined, and

x computed, using the QR factorization with column pivoting). In the latter case

MATLAB displays a warning message.

A least squares solution to Ax = b can also be computed as x min = pinv(A)*b,

where the function pinv computes the pseudo-inverse; see Section 9.3. In the case

where A is rank-de�cient x min is the unique solution of minimal 2-norm.
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A vector that minimizes the 2-norm of Ax� b over all nonnegative vectors x, for

real A and b, is computed by lsqnonneg. The simplest usage is x = lsqnonneg(A,b),

and several other input and output arguments can be speci�ed, including a starting

vector for the iterative algorithm that is used. Example:

>> A = gallery('lauchli',3,0.25), b = [1 2 4 8]';

A =

1.0000 1.0000 1.0000

0.2500 0 0

0 0.2500 0

0 0 0.2500

>> x = A\b; % Least squares solution.

>> xn = lsqnonneg(A,b); % Nonnegative least squares solution.

Optimization terminated successfully.

>> [x xn], [norm(A*x-b) norm(A*xn-b)]

ans =

-9.9592 0

-1.9592 0

14.0408 2.8235

ans =

7.8571 8.7481

9.2.3. Underdetermined System

If A has dimension m-by-n with m < n then Ax = b is an underdetermined system:

there are fewer equations than unknowns. The system has either no solution or

in�nitely many. In the latter case A\b produces a basic solution, one with at most

k nonzero elements, where k is the rank of A. This solution is generally not the

solution of minimal 2-norm, which can be computed as pinv(A)*b. If the system has

no solution (that is, it is inconsistent) then A\b is a least squares solution. Here is an

example that illustrates the di�erence between the \ and pinv solutions:

>> A = [1 1 1; 1 1 -1], b = [3; 1]

A =

1 1 1

1 1 -1

b =

3

1

>> x = A\b; y = pinv(A)*b;

>> [x y]

ans =

2.0000 1.0000

0 1.0000

1.0000 1.0000
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>> [norm(x) norm(y)]

ans =

2.2361 1.7321

9.3. Inverse, Pseudo-Inverse and Determinant

The inverse of an n-by-n matrix A is a matrix X satisfying AX = XA = I , where

I is the identity matrix (eye(n)). A matrix without an inverse is called singular. A

singular matrix can be characterized in several ways: in particular, its determinant

is zero and it has a nonzero null vector, that is, there exists a nonzero vector v such

that Av = 0.

The matrix inverse is computed by the function inv. For example:

>> A = pascal(3), X = inv(A)

A =

1 1 1

1 2 3

1 3 6

X =

3 -3 1

-3 5 -2

1 -2 1

>> norm(A*X-eye(3))

ans =

0

The inverse is formed using LU factorization with partial pivoting and the recipro-

cal condition estimate rcond is computed. A warning message is produced if exact

singularity is detected or if rcond is very small.

Note that it is rarely necessary to compute the inverse of a matrix. For example,

solving a square linear system Ax = b by A\b is 2{3 times faster than by inv(A)*b and

often produces a smaller residual. It is usually possible to reformulate computations

involving a matrix inverse in terms of linear system solving, so that explicit inversion

is avoided.

The determinant of a square matrix is computed by the function det. It is calcu-

lated from the LU factors. Although the computation is a�ected by rounding errors

in general, det(A) returns an integer when A has integer entries:

>> A = vander(1:5)

A =

1 1 1 1 1

16 8 4 2 1

81 27 9 3 1

256 64 16 4 1

625 125 25 5 1

>> det(A)

ans =

288
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It is not recommended to test for nearness to singularity using det. Instead, cond,

rcond or condest should be used.

The (Moore{Penrose) pseudo-inverse generalizes the notion of inverse to rectan-

gular and rank-de�cient matrices A and is written A+. It is computed with pinv(A).

The pseudo-inverse A+ of A can be characterized as the unique matrix X = A
+ sat-

isfying the four conditions AXA = A, XAX = X , (XA)� = XA and (AX)� = AX .

It can also be written explicitly in terms of the singular value decomposition (SVD):

if the SVD of A is given by (9.1) on p. 115 then A
+ = V �

+
U
�, where �+ is n-by-m

diagonal with (i; i) entry 1=�i if �i > 0 and otherwise 0. To illustrate,

>> pinv(ones(3))

ans =

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

and if

A =

0 0 0 0

0 1 0 0

0 0 2 0

then

>> pinv(A)

ans =

0 0 0

0 1.0000 0

0 0 0.5000

0 0 0

9.4. LU and Cholesky Factorizations

An LU factorization of a square matrix A is a factorization A = LU where L is unit

lower triangular (that is, lower triangular with 1s on the diagonal) and U is upper

triangular. Not every matrix can be factorized in this way, but when row interchanges

are incorporated the factorization always exists. The lu function computes an LU fac-

torization with partial pivoting PA = LU , where P is a permutation matrix. The call

[L,U,P] = lu(A) returns the triangular factors and the permutation matrix. With

just two output arguments, [L,U] = lu(A) returns L = P
T
L, so L is a triangular

matrix with its rows permuted. Example:

>> format short g

>> A = gallery('fiedler',3), [L,U] = lu(A)

A =

0 1 2

1 0 1

2 1 0

L =

0 1 0
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0.5 -0.5 1

1 0 0

U =

2 1 0

0 1 2

0 0 2

Note that the LU factorization is mathematically de�ned for rectangular matrices,

but lu accepts only square matrices as input.

Using x = A\b to solve a linear system Ax = b with a square A is equivalent to LU

factorizing the matrix and then solving with the factors:

[L,U] = lu(A); x = U\(L\b);

As noted in Section 9.2.1, MATLAB takes advantage of the fact that L is a permuted

triangular matrix when forming L\b. An advantage of this two-step approach is that

if further linear systems involving A are to be solved then the LU factors can be reused,

with a saving in computation.

Any Hermitian positive de�nite matrix has a Cholesky factorization A = R
�
R,

where R is upper triangular with real, positive diagonal elements. The Cholesky

factor is computed by R = chol(A). For example:

>> A = pascal(4)

A =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

>> R = chol(A)

R =

1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

Note that chol looks only at the elements in the upper triangle of A (including the

diagonal)|it factorizes the Hermitian matrix agreeing with the upper triangle of A.

An error is produced if A is not positive de�nite. The chol function can be used

to test whether a matrix is positive de�nite (indeed, this is as good a test as any)

using the call [R,p] = chol(A), where the integer p will be zero if the factorization

succeeds and positive otherwise; see help chol for more details about p.

Function cholupdatemodi�es the Cholesky factorization when the original matrix

is subjected to a rank 1 perturbation (either an update, +xx�, or a downdate, �xx�).

9.5. QR Factorization

A QR factorization of an m-by-n matrix A is a factorization A = QR, where Q is

m-by-m unitary and R ism-by-n upper triangular. This factorization is very useful for

the solution of least squares problems and for constructing an orthonormal basis for

the columns of A. The command [Q,R] = qr(A) computes the factorization, while
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when m > n [Q,R] = qr(A,0) produces an \economy size" version in which Q has

only n columns and R is n-by-n. Here is an example, with an already constructed A:

>> format short e, A

A =

1 0 1

1 -1 1

2 0 0

>> [Q,R] = qr(A)

Q =

-4.0825e-001 1.8257e-001 -8.9443e-001

-4.0825e-001 -9.1287e-001 -6.1745e-017

-8.1650e-001 3.6515e-001 4.4721e-001

R =

-2.4495e+000 4.0825e-001 -8.1650e-001

0 9.1287e-001 -7.3030e-001

0 0 -8.9443e-001

A QR factorization with column pivoting has the form AP = QR, where P is

a permutation matrix. The permutation strategy that is used produces a factor R

whose diagonal elements are nonincreasing: jr11j � jr22j � � � � � jrnnj. Column

pivoting is particularly appropriate when A is suspected of being rank-de�cient, as

it helps to reveal near rank-de�ciency. Roughly speaking, if A is near a matrix of

rank r < n then the last n� r diagonal elements of R will be of order eps*norm(A).

A third output argument forces function qr to use column pivoting and return the

permutation matrix: [Q,R,P] = qr(A). Continuing the previous example, we make

A nearly singular and see how column pivoting reveals the near singularity in the last

diagonal element of R:

>> A(2,2) = eps

A =

1.0000e+000 0 1.0000e+000

1.0000e+000 2.2204e-016 1.0000e+000

2.0000e+000 0 0

>> [Q,R,P] = qr(A); R, P

R =

-2.4495e+000 -8.1650e-001 -9.0649e-017

0 -1.1547e+000 -1.2820e-016

0 0 1.5701e-016

P =

1 0 0

0 0 1

0 1 0

Functions qrdelete, qrinsert and qrupdate modify the QR factorization when

a column of the original matrix is deleted or inserted and when a rank 1 perturbation

is added.
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9.6. Singular Value Decomposition

The singular value decomposition of an m-by-n matrix A has the form

A = U�V
�
; (9.1)

where U is an m-by-m unitary matrix, V is an n-by-n unitary matrix and � is a

real m-by-n diagonal matrix with (i; i) entry �i. The singular values �i satisfy �1 �
�2 � � � � � �min(m;n) � 0. The SVD is an extremely useful tool [21]. For example,

the rank of A is the number of nonzero singular values and the smallest singular

value is the 2-norm distance to the nearest rank-de�cient matrix. The complete

SVD is computed using [U,S,V] = svd(A); if only one output argument is speci�ed

then a vector of singular values is returned. When m > n the command [U,S,V] =

svd(A,0) produces an \economy size" SVD in which U is m-by-n with orthonormal

columns and S is n-by-n. Example:

>> A = reshape(1:9,3,3); format short e

>> svd(A)'

ans =

1.6848e+001 1.0684e+000 5.5431e-016

Here, the matrix is singular. The smallest computed singular value is at the level of

the unit roundo� rather than zero because of rounding errors.

Functions rank, null and orth compute, respectively, the rank, an orthonormal

basis for the null space and an orthonormal basis for the range of their matrix argu-

ment. All three base their computation on the SVD, using a tolerance proportional to

eps to decide when a computed singular value can be regarded as zero. For example,

using the previous matrix:

>> format

>> rank(A)

ans =

2

>> null(A)

ans =

0.4082

-0.8165

0.4082

>> orth(A)

ans =

-0.4797 0.7767

-0.5724 0.0757

-0.6651 -0.6253

Another function connected with rank computations is rref, which computes the

reduced row echelon form. Since the computation of this form is very sensitive to

rounding errors, this function is mainly of pedagogical interest.

The generalized singular value decomposition of anm-by-pmatrix A and an n-by-p

matrix B can be written

A = UCX
�
; B = V SX

�
; C

�
C + S

�
S = I;
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where U and V are unitary and C and S are real diagonal matrices with nonnegative

diagonal elements. The numbers C(i; i)=S(i; i) are the generalized singular values.

This decomposition is computed by [U,V,X,C,S] = gsvd(A,B). See help gsvd for

more details about the dimensions of the factors.

9.7. Eigenvalue Problems

Algebraic eigenvalue problems are straightforward to de�ne, but their e�cient and

reliable numerical solution is a complicated subject. MATLAB's eig function simpli-

�es the solution process by recognizing and taking advantage of the number of input

matrices, as well as their structure and the output requested. It automatically chooses

among 16 di�erent algorithms or algorithmic variants, corresponding to

� standard (eig(A)) or generalized (eig(A,B)) problem,

� real or complex matrices A and B,

� symmetric/Hermitian A and B with B positive de�nite, or not,

� eigenvectors requested or not.

9.7.1. Eigenvalues

The scalar � and nonzero vector x are an eigenvalue and corresponding eigenvector

of the n-by-n matrix A if Ax = �x. The eigenvalues are the n roots of the degree n

characteristic polynomial det(�I � A). The n+ 1 coe�cients of this polynomial are

computed by p = poly(A):

det(�I �A) = p1�
n + p2�

n�1 + � � �+ pn�+ pn+1:

The eigenvalues of A are computed with the eig function: e = eig(A) assigns the

eigenvalues to the vector e. More generally, [V,D] = eig(A) computes an n-by-n

diagonal matrix D and an n-by-n matrix V such that A*V = V*D. Thus D contains

eigenvalues on the diagonal and the columns of V are eigenvectors. Not every matrix

has n linearly independent eigenvectors, so the matrix V returned by eig may be

singular (or, because of roundo�, nonsingular but very ill conditioned). The matrix

in the following example has two eigenvalues 1 and only one eigenvector:

>> [V,D] = eig([2 -1; 1 0])

V =

0.7071 0.7071

0.7071 0.7071

D =

1 0

0 1

The scaling of eigenvectors is arbitrary (if x is an eigenvector then so is any nonzero

multiple of x). As the last example illustrates, MATLAB normalizes so that each

column of V has unit 2-norm. Note that eigenvalues and eigenvectors can be complex,

even for a real (non-Hermitian) matrix.

A Hermitian matrix has real eigenvalues and its eigenvectors can be taken to be

mutually orthogonal. For Hermitian matrices MATLAB returns eigenvalues sorted in

increasing order and the matrix of eigenvectors is unitary to working precision:
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>> [V,D] = eig([2 -1; -1 1])

V =

-0.5257 -0.8507

-0.8507 0.5257

D =

0.3820 0

0 2.6180

>> norm(V'*V-eye(2))

ans =

2.2204e-016

In the following example eig is applied to the (non-Hermitian) Frank matrix:

>> F = gallery('frank',5)

F =

5 4 3 2 1

4 4 3 2 1

0 3 3 2 1

0 0 2 2 1

0 0 0 1 1

>> e = eig(F)'

e =

10.0629 3.5566 1.0000 0.0994 0.2812

This matrix has some special properties, one of which we can see by looking at the

reciprocals of the eigenvalues:

>> 1./e

ans =

0.0994 0.2812 1.0000 10.0629 3.5566

Thus if � is an eigenvalue then so is 1=�. The reason is that the characteristic

polynomial is anti-palindromic:

>> poly(F)

ans =

1.0000 -15.0000 55.0000 -55.0000 15.0000 -1.0000

Thus det(F � �I) = ��5 det(F � �
�1
I).

Function condeig computes condition numbers for the eigenvalues: a large condi-

tion number indicates an eigenvalue that is sensitive to perturbations in the matrix.

The following example displays eigenvalues in the �rst row and condition numbers in

the second:

>> A = gallery('frank',6);

>> [V,D,s] = condeig(A);

>> [diag(D)'; s']

ans =

12.9736 5.3832 1.8355 0.5448 0.0771 0.1858

1.3059 1.3561 2.0412 15.3255 43.5212 56.6954

For this matrix the small eigenvalues are slightly ill conditioned.
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9.7.2. More about Eigenvalue Computations

The function eig works in several stages. First, when A is nonsymmetric, it balances

the matrix, that is, it carries out a similarity transformation A  Y
�1
AY , where

Y is a permutation of a diagonal matrix chosen to give A rows and columns of ap-

proximately equal norm. The motivation for balancing is that it can lead to a more

accurate computed eigensystem. However, balancing can worsen rather than improve

the accuracy (see doc eig for an example), so it may be necessary to turn balancing

o� with eig(A,'nobalance').

After balancing, eig reduces A to Hessenberg form, then uses the QR algorithm to

reach Schur form, after which eigenvectors are computed by substitution if required.

The Hessenberg factorization takes the form A = QHQ
�, where H is upper Hessen-

berg (hij = 0 for i > j + 1) and Q is unitary. If A is Hermitian then H is Hermitian

and tridiagonal. The Hessenberg factorization is computed by H = hess(A) or [Q,H]

= hess(A). The real Schur decomposition of a real A has the form A = QTQ
T ,

where T is upper quasi-triangular, that is, block triangular with 1-by-1 and 2-by-2

diagonal blocks, and Q is orthogonal. The (complex) Schur decomposition has the

form A = QTQ
�, where T is upper triangular and Q is unitary. If A is real then T

= schur(A) and [Q,T] = schur(A) produce the real Schur decomposition. If A is

complex then schur produces the complex Schur form. The complex Schur form can

be obtained for a real matrix with schur(A,'complex') (it di�ers from the real form

only when A has one or more nonreal eigenvalues).

If A is real and symmetric (complex Hermitian), [V,D] = eig(A) reduces initially

to symmetric (Hermitian) tridiagonal form then iterates to produce a diagonal Schur

form, resulting in an orthogonal (unitary) V and a real, diagonal D.

9.7.3. Generalized Eigenvalues

The generalized eigenvalue problem is de�ned in terms of two n-by-n matrices A

and B: � is an eigenvalue and x 6= 0 an eigenvector if Ax = �Bx. The generalized

eigenvalues are computed by e = eig(A,B), while [V,D] = eig(A,B) computes an n-

by-n diagonal matrix D and an n-by-nmatrix V of eigenvectors such that A*V = B*V*D.

The theory of the generalized eigenproblem is more complicated than that of the

standard eigenproblem, with the possibility of zero, �nitely many or in�nitely many

eigenvalues and of eigenvalues that are in�nitely large. When B is singular eig

may return computed eigenvalues containing NaNs. To illustrate the computation of

generalized eigenvalues:

>> A = gallery('triw',3), B = magic(3)

A =

1 -1 -1

0 1 -1

0 0 1

B =

8 1 6

3 5 7

4 9 2

>> [V,D] = eig(A,B); V, eivals = diag(D)'

V =

-1.0000 -1.0000 0.3526
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0.4844 -0.4574 0.3867

0.2199 -0.2516 -1.0000

eivals =

0.2751 0.0292 -0.3459

When A is Hermitian and B is Hermitian positive de�nite (the Hermitian de�nite

generalized eigenproblem) the eigenvalues are real and A and B are simultaneously

diagonalizable. In this case eig returns real computed eigenvalues sorted in increasing

order, with the eigenvectors normalized (up to roundo�) so that V'*B*V = eye(n);

moreover, V'*A*V is diagonal. The method that eig uses (Cholesky factorization of B,

followed by reduction to a standard eigenproblem and solution by the QR algorithm)

can be numerically unstable when B is ill conditioned. You can force eig to ignore the

structure and solve the problem in the same way as for general A and B by invoking it

as eig(A,B,'qz'); the QZ algorithm (see below) is then used, which has guaranteed

numerical stability but does not guarantee real computed eigenvalues. Example:

>> A = gallery('fiedler',3), B = gallery('moler',3)

A =

0 1 2

1 0 1

2 1 0

B =

1 -1 -1

-1 2 0

-1 0 3

>> format short g

>> [V,D] = eig(A,B); V, eivals = diag(D)'

V =

0.55335 0.23393 2.3747

0.15552 -0.57301 1.2835

-0.36921 0.19163 0.90938

eivals =

-0.75993 -0.30839 17.068

>> V'*A*V

ans =

-0.75993 -2.1748e-016 -2.6845e-015

-2.1982e-016 -0.30839 1.8584e-015

-2.6665e-015 1.7522e-015 17.068

>> V'*B*V

ans =

1 -8.4568e-018 -2.9295e-016

2.1549e-018 1 -7.7954e-017

-2.4248e-016 -7.7927e-017 1

The generalized Schur decomposition of a pair of matrices A and B has the form

QAZ = T; QBZ = S;

where Q and Z are unitary and T and S are upper triangular. The generalized

eigenvalues are the ratios T(i,i)=S(i,i) of the diagonal elements of T and S. The
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generalized real Schur decomposition of real A and B has the same form with Q and Z

orthogonal and T and S upper quasi-triangular. These decompositions are computed

by the qz function with the command [T,S,Q,Z,V] = qz(A,B), where the �nal out-

put argument V is a matrix of generalized eigenvectors; the function is named after

the QZ algorithm that it implements. By default the (possibly) complex form with

upper triangular T and S is produced. For real matrices, qz(A,B,'real') produces

the real form and qz(A,B,'complex') the default complex form.

Function polyeig solves the polynomial eigenvalue problem (�pAp+ �
p�1

Ap�1+

� � � + �A1 + A0)x = 0, where the Ai are given square coe�cient matrices. The

generalized eigenproblem is obtained for p = 1, with A0 = I then giving the standard

eigenproblem. The quadratic eigenproblem (�2A + �B + C)x = 0 corresponds to

p = 2. If Ap is n-by-n and nonsingular then there are pn eigenvalues. MATLAB's

syntax is e = polyeig(A0,A1,..,Ap) or [X,e] = polyeig(A0,A1,..,Ap), with e a

pn-vector of eigenvalues and X an n-by-pnmatrix whose columns are the corresponding

eigenvectors. Example:

>> A = eye(2); B = [20 -10; -10 20]; C = [15 -5; -5 15];

>> [X,e] = polyeig(C,B,A)

X =

-0.7071 -0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071

e =

-29.3178

-0.6822

-1.1270

-8.8730

9.8. Iterative Linear Equation and Eigenproblem Solvers

In this section we describe functions that are based on iterative methods and primarily

intended for large, possibly sparse problems, for which solution by one of the methods

described earlier in the chapter could be prohibitively expensive. Sparse matrices are

discussed further in Chapter 15.

Several functions implement iterative methods for solving square linear systems

Ax = b; see Table 9.1. All apply to general A except minres and symmlq, which

require A to be Hermitian, and pcg, which requires A to be Hermitian positive

de�nite. All the methods employ matrix{vector products Ax and possibly A
�
x

and do not require explicit access to the elements of A. The functions have iden-

tical calling sequences, apart from gmres (see below). The simplest usage is x =

solver(A,b) (where solver is one of the functions in Table 9.1). Alternatively, x =

solver(A,b,tol) speci�es a convergence tolerance tol, which defaults to 1e-6. Con-

vergence is declared when an iterate x satis�es norm(b-A*x) <= tol*norm(b). The

argument A can be a full or sparse matrix, or the name of an operator afun such that

afun(x) returns A*x and, in the case of bicg and qmr, such that afun(x,'transp')

returns A'*x. This operator can be a function handle, a string expression or an inline

object (see Section 10.1).

These iterative methods usually need preconditioning if they are to be e�cient.

All accept further arguments M1 and M2 or M = M1M2 and e�ectively solve the
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preconditioned system

M
�1
1 AM

�1
2 �M2x =M

�1
1 b or M

�1
Ax =M

�1
b:

The aim is to choose M1 and M2 so that M�1
1 AM

�1
2 or M�1

A is in some sense

close to the identity matrix. Choosing a good preconditioner is a di�cult task and

usually requires knowledge of the application from which the linear system came.

The functions luinc and cholinc compute incomplete factorizations that provide

one way of constructing preconditioners; see doc luinc, doc cholinc and doc bicg.

For background on iterative linear equation solvers and preconditioning see [7], [22],

[38].

To illustrate the usage of the iterative solvers we give an example involving pcg,

which implements the preconditioned conjugate gradient method. For A we take a

symmetric positive de�nite �nite element matrix called the Wathen matrix, which

has a �xed sparsity pattern and random entries.

>> A = gallery('wathen',12,12); n = length(A)

n =

481

>> b = ones(n,1);

>> x = pcg(A,b);

pcg stopped at iteration 20 without converging to the desired

tolerance 1e-006 because the maximum number of iterations was

reached.

The iterate returned (number 20) has relative residual 0.063

>> x = pcg(A,b,1e-6,100);

pcg converged at iteration 86 to a solution with relative residual

8.8e-007

The bare minimum of arguments to pcg is the matrix and the right-hand side. The

conjugate gradient method did not converge to the default tolerance (10�6) within

the default of 20 iterations, so we tried again with the same tolerance and a new limit

of 100 iterations; convergence was then achieved. For this matrix it can be shown

that M = diag(diag(A)) is a good preconditioner. Supplying this preconditioner as

a �fth argument leads to a useful reduction in the number of iterations:

>> [x,flag,relres,iter] = pcg(A,b,1e-6,100,diag(diag(A)));

>> flag, relres, iter

flag =

0

relres =

9.0568e-007

iter =

28

Notice that when more than one output argument is requested the messages are

suppressed. A zero value of flag denotes convergence with relative residual relres

= norm(b-A*x)/norm(b) after iter iterations.

All the other functions in Table 9.1 have the same calling sequence as pcg with

the exception of gmres, which has an extra argument restart in the third position

that speci�es at which iteration to restart the method.
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Table 9.1. Iterative linear equation solvers.

Function Matrix type Method

bicg General BiConjugate gradient method

bicgstab General BiConjugate gradient stabilized method

cgs General Conjugate gradient squared method

gmres General Generalized minimum residual method

minres Hermitian Minimum residual method

lsqr General Conjugate gradients on normal equations

pcg Hermitian pos. def. Preconditioned conjugate gradient method

qmr General Quasi-minimal residual method

symmlq Hermitian Symmetric LQ method

Function eigs computes a few selected eigenvalues and eigenvectors for the stan-

dard eigenvalue problem or for the symmetric de�nite generalized eigenvalue problem

Ax = �Bx with B real and symmetric positive de�nite. This is in contrast to eig,

which always computes the full eigensystem. Like the iterative linear equation solvers,

eigs needs just the ability to form matrix{vector products, so A can be given either

as an explicit matrix or as a function that performs matrix{vector products. In its

simplest form, eigs can be called in the same way as eig, with [V,D] = eigs(A),

when it computes the six eigenvalues of largest magnitude and the corresponding

eigenvectors. See doc eigs and doc arpack for more details and examples of usage.

This function is an interface to the ARPACK package [49]. As an example, we form

a sparse symmetric matrix and compute its six algebraically largest eigenvalues using

eigs. For comparison, we also apply eig, which requires that the matrix �rst be

converted to a full matrix and always computes all the eigenvalues:

>> A = delsq(numgrid('N',40));

>> n = length(A)

n =

1444

>> nnz(A)/n^2 % Percentage of nonzeros

ans =

0.0034

>> tic, e_all = eig(full(A))'; toc

elapsed_time =

28.9400

>> e_all(n:-1:n-4)

ans =

7.9870 7.9676 7.9676 7.9482 7.9354

>> options.disp = 0; % Turn off intermediate output.

>> tic, e_big = eigs(A,5,'LA',options)'; toc % LA = largest algebraic

elapsed_time =

3.2400

>> e_big
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e_big =

7.9870 7.9676 7.9676 7.9482 7.9354

The tic and toc functions provide an easy way of timing (in seconds) the code that

they surround. Clearly, eigs is much faster than eig in this example, and it also uses

much less storage.

A corresponding function svds computes a few singular values and singular vectors

of an m-by-n matrix A. It does so by applying eigs to the Hermitian matrix�
0m A

A
� 0n

�
:

9.9. Functions of a Matrix

As mentioned in Section 5.3, some of the elementary functions de�ned for arrays have

counterparts de�ned in the matrix sense, implemented in functions whose names end

in m. The three main examples are expm, logm and sqrtm. The exponential of a

square matrix A can be de�ned by

e
A = I +A+

A
2

2!
+
A
3

3!
+ � � �

It is computed by expm. The logarithm of a matrix is an inverse to the exponential.

A nonsingular matrix has in�nitely many logarithms. Function logm computes the

principal logarithm, which, for a matrix with no nonpositive real eigenvalues, is the

logarithm whose eigenvalues have imaginary parts lying strictly between �� and �.

A square root of a square matrix A is a matrix X for which X
2 = A. Every

nonsingular matrix has at least two square roots. Function sqrtm computes the

principal square root, which, for a matrix with no nonpositive real eigenvalues, is the

square root with eigenvalues having positive real part.

Other matrix functions can be computed as funm(A,'fun'), where fun is a func-

tion that evaluates the required function in the array sense. Note, however, that funm

uses an algorithm that can be unstable; see help funm for how to detect instability.

We give some examples. The matrix

A =

17 8 1 0

8 18 8 1

1 8 18 8

0 1 8 17

has a tridiagonal square root:

>> sqrtm(A)

ans =

4.0000 1.0000 -0.0000 0.0000

1.0000 4.0000 1.0000 -0.0000

-0.0000 1.0000 4.0000 1.0000

0.0000 -0.0000 1.0000 4.0000

The Jordan block
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>> A = gallery('jordbloc',4,1)

A =

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

has exponential

>> X = expm(A)

X =

2.7183 2.7183 1.3591 0.4530

0 2.7183 2.7183 1.3591

0 0 2.7183 2.7183

0 0 0 2.7183

and we can recover the original matrix using logm:

>> real(logm(X))

ans =

1.0000 1.0000 0.0000 0.0000

-0.0000 1.0000 1.0000 -0.0000

-0.0000 0.0000 1.0000 1.0000

0.0000 0.0000 -0.0000 1.0000

Note that we have used real to suppress tiny imaginary parts which are introduced

by rounding errors in this example.

Nichols: \Transparent aluminum?"

Scott: \That's the ticket, laddie."

Nichols: \It'd take years just to �gure out the dynamics of this matrix."

McCoy: \Yes, but you would be rich beyond the dreams of avarice!"

| Star Trek IV: The Voyage Home (Stardate 8390)

We share a philosophy about linear algebra:

we think basis-free,

we write basis-free,

but when the chips are down we close the o�ce door and

compute with matrices like fury.

| IRVING KAPLANSKY, Reminiscences [of Paul Halmos] (1991)

The matrix of that equation system is negative de�nite|which is a

positive de�nite system that has been multiplied through by �1.

For all practical geometries the common �nite di�erence

Laplacian operator gives rise to these,

the best of all possible matrices.

Just about any standard solution method will succeed,

and many theorems are available for your pleasure.

| FORMAN S. ACTON, Numerical Methods That Work (1970)



Chapter 10

More on Functions

10.1. Passing a Function as an Argument

Common to many problems tackled with MATLAB is the need to pass a function as

an argument to another function. This can be done in several ways, depending on how

the function being called has been written. We illustrate using ezplot, which plots

a function f(x) over a default range of [�2�; 2�]. First, the function can be passed

via a function handle. A function handle is a MATLAB datatype that contains all

the information necessary to evaluate a function. A function handle can be created

by putting the @ character before the function name. Thus if fun is a function M-�le

of the form required by ezplot then we can write

ezplot(@fun)

As well as being an M-�le, fun can be the name of a built-in function:

ezplot(@sin)

The name of a function can also be passed as a string:

ezplot('exp')

Function handles are new to MATLAB 6 and are preferred to the use of strings,

as they are more e�cient and more versatile. However, you may occasionally come

across a function that accepts a function argument in the form of a string but will not

accept a function handle. You can convert between function handles and strings using

func2str and str2func. For help on function handles type help function_handle.

There are two further ways to pass a function to ezplot: as a string expression,

ezplot('x^2-1'), ezplot('1/(1+x^2)')

or as an inline object,

ezplot(inline('exp(x)-1'))

An inline object is essentially a \one line" function de�ned by a string and it can be

assigned to a variable and then evaluated:

>> f = inline('exp(x)-1'), f(2)

f =

Inline function:

f(x) = exp(x)-1

ans =

6.3891
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MATLAB automatically determines and orders the arguments to an inline function.

If its choice is not suitable then the arguments can be explicitly de�ned and ordered

via extra arguments to inline:

>> f = inline('log(a*x)/(1+y^2)')

f =

Inline function:

f(a,x,y) = log(a*x)/(1+y^2)

>> f = inline('log(a*x)/(1+y^2)','x','y','a')

f =

Inline function:

f(x,y,a) = log(a*x)/(1+y^2)

The key to writing a function that accepts another function as an argument is to

use feval to evaluate the passed function. The syntax is feval(fun,x1,x2,...,xn),

where fun is the function and x1, x2, . . . , xn are its arguments. Consider the function

fd deriv in Listing 10.1. This function evaluates the �nite di�erence approximation

f
0(x) �

f(x+ h)� f(x)

h

to the function passed as its �rst argument. When we type

>> fd_deriv(@sqrt,0.1)

ans =

1.5811

the �rst feval call in fd deriv is equivalent to sqrt(x+h). We can use our Newton

square root function sqrtn (Listing 7.5) instead of the built-in square root:

>> fd_deriv(@sqrtn,0.1)

k x_k rel. change

1: 5.5000000745058064e-001 8.18e-001

% Remaining output from sqrtn omitted.

ans =

1.5811

We can pass an inline object to fd deriv, but a string expression does not work:

>> f = inline('exp(-x)/(1+x^2)');

>> fd_deriv(f,pi)

ans =

-0.0063

>> fd_deriv('exp(-x)/(1+x^2)',pi)

??? Cannot find function 'exp(-x)/(1+x^2)'.

Error in ==> FD_DERIV.M

On line 8 ==> y = (feval(f,x+h) - feval(f,x))/h;

To convert fd deriv into a function that accepts a string expression we simply need

to insert

f = fcnchk(f);
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Listing 10.1. Function fd deriv.

function y = fd_deriv(f,x,h)

%FD_DERIV Finite difference approximation to derivative.

% FD_DERIV(F,X,H) is a finite difference approximation

% to the derivative of function F at X with difference

% parameter H. H defaults to SQRT(EPS).

if nargin < 3, h = sqrt(eps); end

y = (feval(f,x+h) - feval(f,x))/h;

at the top of the function (this is how ezplot does it).

It is sometimes necessary to \vectorize" an inline object or string expression, that

is, to convert multiplication, exponentiation and division to array operations, so that

vector and matrix arguments can be used. This can be done with the vectorize

function:

>> f = inline('log(a*x)/(1+y^2)');

>> f = vectorize(f)

f =

Inline function:

f(a,x,y) = log(a.*x)./(1+y.^2)

If fcnchk is given a �nal argument 'vectorized', as in fcnchk(f,'vectorized'),

then it vectorizes the string f.

10.2. Subfunctions

A function M-�le may contain other functions, called subfunctions, which appear in

any order after the main (or primary) function. Subfunctions are visible only to the

main function and to any other subfunctions. They typically carry out a task that

needs to be separated from the main function but that is unlikely to be needed in other

M-�les, or they may override existing functions of the same names (since subfunctions

take precedence). The use of subfunctions helps to avoid proliferation of M-�les.

For an example of a subfunction see poly1err4 in Listing 10.2, which approximates

the maximum error in the linear interpolating polynomial to subfunction f on [0; 1]

based on n sample points on the interval:

>> poly1err(5)

ans =

0.0587

>> poly1err(50)

ans =

0.0600

Alternative ways to code poly1err are to de�ne f as an inline object rather than a

subfunction, or to make f an input argument.

4This function is readily vectorized; see Section 20.1.
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Listing 10.2. Function poly1err.

function max_err = poly1err(n)

%POLY1ERR Error in linear interpolating polynomial.

% POLY1ERR(N) is an approximation based on N sample points

% to the maximum difference between subfunction F and its

% linear interpolating polynomial at 0 and 1.

max_err = 0;

f0 = f(0); f1 = f(1);

for x = linspace(0,1,n)

p = x*f1 + (x-1)*f0;

err = abs(f(x)-p);

max_err = max(max_err,err);

end

% Subfunction.

function y = f(x)

%F Function to be interpolated, F(X).

y = sin(x);

Help for a subfunction is displayed by specifying the main function name followed

by \/" and the subfunction name. Thus help for subfunction f of poly1err is listed

by

>> help poly1err/f

F Function to be interpolated, F(X).

A subfunction can be passed to another function as a function handle. Thus, for

example, in the main body of poly1err we can write ezplot(@f) in order to plot

the subfunction f.

For less trivial examples of subfunctions see Listings 12.2{12.6.

10.3. Variable Numbers of Arguments

In certain situations a function must accept or return a variable, possibly unlimited,

number of input or output arguments. This can be achieved using the varargin and

varargout functions. Suppose we wish to write a function companb to form the mn-

by-mn block companion matrix corresponding to the n-by-n matrices A1, A2, . . . ,

Am:

C =

2
666664

�A1 �A2 : : : : : : �Am

I 0 0

I
. . .

...
. . . 0

...

I 0

3
777775 :

We could use a standard function de�nition such as

function C = companb(A_1,A_2,A_3,A_4,A_5)
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but m is then limited to 5 and handling the di�erent values of m between 1 and 5 is

tedious. The solution is to use varargin, as shown in Listing 10.3. When varargin

is speci�ed as the input argument list, the input arguments supplied are copied into a

cell array called varargin. Cell arrays, described in Section 18.3, are a special kind of

array in which each element can hold a di�erent type and size of data. The elements

of a cell array are accessed using curly braces. Consider the call

>> X = ones(2); C = companb(X, 2*X, 3*X)

C =

-1 -1 -2 -2 -3 -3

-1 -1 -2 -2 -3 -3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

If we insert the line

varargin

at the beginning of companb then the above call produces

varargin =

[2x2 double] [2x2 double] [2x2 double]

Thus varargin is a 1-by-3 cell array whose elements are the 2-by-2 matrices passed

as arguments to companb, and varargin{j} is the jth input matrix, Aj .

It is not necessary for varargin to be the only input argument but it must be the

last one, appearing after any named input arguments.

An example using the analogous statement varargout for output arguments is

shown in Listing 10.4. Here we use nargout to determine how many output arguments

have been requested and then create a varargout cell array containing the required

output. To illustrate:

>> m1 = moments(1:4)

m1 =

2.5000

>> [m1,m2,m3] = moments(1:4)

m1 =

2.5000

m2 =

7.5000

m3 =

25

10.4. Global Variables

Variables within a function are local to that function's workspace. Occasionally it

is convenient to create variables that exist in more than one workspace including,

possibly, the main workspace. This can be done using the global statement. As an

example, suppose we wish to study plots of the function f(x) = 1=(a+ (x � b)2) on

[0; 1] for various a and b. We can de�ne a function
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Listing 10.3. Function companb.

function C = companb(varargin)

%COMPANB Block companion matrix.

% C = COMPANB(A_1,A_2,...,A_m) is the block companion matrix

% corresponding to the n-by-n matrices A_1,A_2,...,A_m.

m = nargin;

n = length(varargin{1});

C = diag(ones(n*(m-1),1),-n);

for j = 1:m

Aj = varargin{j};

C(1:n,(j-1)*n+1:j*n) = -Aj;

end

Listing 10.4. Function moments.

function varargout = moments(x)

%MOMENTS Moments of a vector.

% [m1,m2,...,m_k] = MOMENTS(X) returns the first, second, ...,

% k'th moments of the vector X, where the j'th moment

% is SUM(X.^j)/LENGTH(X).

for j=1:nargout, varargout(j) = {sum(x.^j)/length(x)}; end
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function f = myfun(x)

global A B

f = 1/(A + (x-B)^2);

At the command line we type

>> global A B

>> A = 0.01; B = 0.5;

>> fplot(@myfun,[0 1])

The values of A and B set at the command line are available within myfun. New

values for A and B can be assigned and fplot called again without editing myfun.m.

Note that it is possible to avoid the use of global in this example by passing the

parameters a and b through the argument list of fplot, as in the example on p. 87.

For a good use of global look at the timing functions tic and toc (type them).

Within a function, the global declaration should appear before the �rst occur-

rence of the relevant variables, ideally at the top of the �le. By convention the names

of global variables are comprised of capital letters, and ideally the names are long in

order to reduce the chance of clashes with other variables.

10.5. Recursive Functions

Functions can be recursive, that is, they can call themselves, as we have seen with

function gasket in Listing 1.7 and function land in Listing 8.1. Recursion is a power-

ful tool, but not all computations that are described recursively are best programmed

this way.

The function koch in Listing 10.5 uses recursion to draw a Koch curve [64, Sec. 2.4].

The basic construction in koch is to replace a line by four shorter lines. The upper

left-hand picture in Figure 10.1 shows the four lines that result from applying this

construction to a horizontal line. The upper right-hand picture then shows what

happens when each of these four lines is processed. The lower left- and right-hand

pictures show the next two levels of recursion.

We see that koch has three input arguments. The �rst two, pl and pr, give

the (x; y) coordinates of the current line and the third, level, indicates the level of

recursion required. If level = 0 then a line is drawn; otherwise koch calls itself four

times with level one less and with endpoints that de�ne the four shorter lines.

Figure 10.1 was produced by the following code:

pl = [0;0]; % Left endpoint

pr = [1;0]; % Right endpoint

for k = 1:4

subplot(2,2,k)

koch(pl,pr,k)

axis('equal')

title(['Koch curve: level = ' num2str(k)],'FontSize',16)

end

hold off
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Listing 10.5. Function koch.

function koch(pl,pr,level)

%KOCH Recursively generated Koch curve.

% KOCH(PL, PR, LEVEL) recursively generates a Koch curve,

% where PL and PR are the current left and right endpoints and

% LEVEL is the level of recursion.

if level == 0

plot([pl(1),pr(1)],[pl(2),pr(2)]); % Join pl and pr.

hold on

else

A = (sqrt(3)/6)*[0 1; -1 0]; % Rotate/scale matrix.

pmidl = (2*pl + pr)/3;

koch(pl,pmidl,level-1) % Left branch.

ptop = (pl + pr)/2 + A*(pl-pr);

koch(pmidl,ptop,level-1) % Left mid branch.

pmidr = (pl + 2*pr)/3;

koch(ptop,pmidr,level-1) % Right mid branch.

koch(pmidr,pr,level-1) % Right branch.

end

To produce Figure 10.2 we called koch with pairs of endpoints equally spaced

around the unit circle, so that each edge of the snowake is a copy of the same Koch

curve. The relevant code is

level = 4; edges = 7;

for k = 1:edges

pl = [cos(2*k*pi/edges); sin(2*k*pi/edges)];

pr = [cos(2*(k+1)*pi/edges); sin(2*(k+1)*pi/edges)];

koch(pl,pr,level)

end

axis('equal')

title('Koch snowflake','FontSize',16,'FontAngle','italic')

hold off

For another example of recursion, look at the functions quad and quadl described

in Section 12.1.

10.6. Exemplary Functions in MATLAB

Perhaps the best way to learn how to write functions is by studying well-written ex-

amples. An excellent source of examples is MATLAB itself, since all functions that
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Figure 10.1. Koch curves created with function koch.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Koch snowflake

Figure 10.2. Koch snowake created with function koch.
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are not built into the interpreter are M-�les that can be examined. We list below some

M-�les that illustrate particular aspects of MATLAB programming. The source can

be viewed with type function name, by loading the �le into the Editor/Debugger

with edit function name (the editor searches the path for the function, so the path-

name need not be given), or by loading the �le into your favorite editor (in which

case you will need to know the path, which we indicate).

� datafun/cov: use of varargin.

� datafun/var: argument checking.

� elmat/hadamard: matrix building.

� elmat/why: switch construct, subfunctions.

� funfun/fminbnd: argument checking, loop constructs.

� funfun/quad, funfun/quadl: recursive functions.

� matfun/gsvd: subfunctions.

� sparfun/pcg: sophisticated argument handling and error checking.

Use recursive procedures for recursively-de�ned data structures.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Great eas have little eas upon their backs to bite 'em,

And little eas have lesser eas and so ad in�nitum.

And the great eas themselves, in turn, have greater eas to go on;

While these again have greater still, and greater still, and so on.

| AUGUSTUS DEMORGAN



Chapter 11

Numerical Methods: Part I

This chapter describes MATLAB's functions for solving problems involving polynomi-

als, nonlinear equations, optimization and the fast Fourier transform. In many cases

a function fun must be passed as an argument. As described in Section 10.1, fun can

be a function handle, a string expression or an inline object. The MATLAB functions

described in this chapter place various demands on the function that is to be passed,

but most require it to return a vector of values when given a vector of inputs.

For mathematical background on the methods described in this and the next

chapter suitable textbooks are [5], [6], [11], [18], [35], [61], [70], [81].

11.1. Polynomials and Data Fitting

MATLAB represents a polynomial

p(x) = p1x
n + p2x

n�1 + � � �+ pnx+ pn+1

by a row vector p = [p(1) p(2) ... p(n+1)] of the coe�cients. (Note that com-

pared with the representation
Pn

i=0 pix
i used in many textbooks, MATLAB's vector

is reversed and its subscripts are increased by 1.)

Here are three problems related to polynomials:

Evaluation: Given the coe�cients evaluate the polynomial at one or more points.

Root �nding: Given the coe�cients �nd the roots (the points at which the polyno-

mial evaluates to zero).

Data �tting: Given a set of data fxi; yigmi=1, �nd a polynomial that \�ts" the data.

The standard technique for evaluating p(x) is Horner's method, which corresponds

to the nested representation

p(x) =

�
: : :

�
(p1x+ p2)x+ p3

�
x+ � � �+ pn

�
x+ pn+1:

Function polyval carries out Horner's method: y = polyval(p,x). In this command

x can be a matrix, in which case the polynomial is evaluated at each element of the

matrix (that is, in the array sense). Evaluation of the polynomial p in the matrix (as

opposed to array) sense is de�ned for a square matrix argument X by

p(X) = p1X
n + p2X

n�1 + � � �+ pnX + pn+1I:

The command Y = polyvalm(p,X) carries out this evaluation.

135
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The roots (or zeros) of p are obtained with z = roots(p). Of course, some of the

roots may be complex even if p is a real polynomial. The function poly carries out

the converse operation: given a set of roots it constructs a polynomial. Thus if z is

an n-vector then p = poly(z) gives the coe�cients of the polynomial

p1x
n + p2x

n�1 + � � �+ pnx+ pn+1 = (x� z1)(x � z2) : : : (x � zn):

(The normalization p1 = 1 is always used.) The function poly also accepts a matrix

argument: as explained in Section 9.7, for a square matrix A, p = poly(A) returns

the coe�cients of the characteristic polynomial det(xI � A).

Function polyder computes the coe�cients of the derivative of a polynomial, but

it does not evaluate the polynomial.

As an example, consider the quadratic p(x) = x
2�x� 1. First, we �nd the roots:

>> p = [1 -1 -1]; z = roots(p)

z =

1.6180

-0.6180

The next command veri�es that these are roots, up to roundo�:

>> polyval(p,z)

ans =

1.0e-015 *

-0.1110

0.2220

Next, we observe that a certain 2-by-2 matrix has p as its characteristic polynomial:

>> A = [0 1; 1 1]; cp = poly(A)

cp =

1.0000 -1.0000 -1.0000

The Cayley{Hamilton theorem says that every matrix satis�es its own characteristic

polynomial. This is con�rmed, modulo roundo�, for our matrix:

>> polyvalm(cp, A)

ans =

1.0e-015 *

0.1110 0

0 0.1110

Polynomials can be multiplied and divided using conv and deconv, respectively.

When a polynomial g is divided by a polynomial h there is a quotient q and a re-

mainder r: g(x) = h(x)q(x) + r(x), where the degree of r is less than that of h.

The syntax for deconv is [q,r] = deconv(g,h). In the following example we divide

x
3� 6x2+12x� 8 by x� 2, obtaining quotient x2� 4x� 4 and zero remainder. Then

we reproduce the original polynomial using conv.

>> g = [1 -6 12 -8]; h = [1 -2];

>> [q,r] = deconv(g,h)

q =
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Figure 11.1. Left: least squares polynomial �t of degree 3. Right: cubic spline. Data

is from 1=(x+ (1� x)2).

1 -4 4

r =

0 0 0 0

>> conv(h,q)

ans =

1 -6 12 -8

The data �tting problem can be addressed with polyfit. Suppose the data

fxi; yigmi=1 has distinct xi values, and we wish to �nd a polynomial p of degree at

most n such that p(xi) � yi, i = 1:m. The polyfit function computes the least

squares polynomial �t, that is, it determines p so that
Pm

i=1(p(xi) � yi)
2 is mini-

mized. The syntax is p = polyfit(x,y,n). Specifying the degree n so that n � m

produces an interpolating polynomial, that is, p(xi) = yi, i = 1:m, so the polynomial

�ts the data exactly. However, high-degree polynomials can be extremely oscilla-

tory, so small values of n are generally preferred. The following example computes

and plots a least squares polynomial �t of degree 3. The data comprises the function

1=(x+(1�x)2) evaluated at 20 equally spaced points on the interval [�2; 2], generated
by linspace. The resulting plot is on the left-hand side of Figure 11.1.

x = linspace(-2,2,20);

y = 1./(x+(1-x).^2);

p = polyfit(x,y,3);

plot(x,y,'*',x,polyval(p,x),'--')

The spline function can be used if exact data interpolation is required. It �ts

a cubic spline, sp(x), to the data: sp(x) is a cubic polynomial between successive x

points and sp(xi) = yi, i = 1:m. Given data vectors x and y, the command yy =

spline(x,y,xx) returns in the vector yy the value of the spline at the points given

by xx. In the next example we use this approach to �t a spline to the data used

for the polynomial example above. The resulting curve is on the right-hand side of

Figure 11.1.

x = linspace(-2,2,20);
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y = 1./(x+(1-x).^2);

xx = linspace(-2,2,60);

yy = spline(x,y,xx);

plot(x,y,'*',xx,yy,'--')

It is also possible to work with the coe�cients of the spline curve. The command

pp = spline(x,y) stores the coe�cients in a structure (see Section 18.3) that is

interpreted by the ppval function, so plot(x,y,'*',xx,ppval(pp,xx),'--')would

then produce the same plot as in the example above. Low-level manipulation of splines

is possible with the functions mkpp and unmkpp.

MATLAB has functions for interpolation in one, two and more dimensions. Func-

tion interp1 accepts x(i),y(i) data pairs and a further vector xi. It �ts an in-

terpolant to the data and then returns the values of the interpolant at the points in

xi:

yi = interp1(x,y,xi)

The vector x must have monotonically increasing elements. Four types of interpolant

are supported, as speci�ed by a fourth input parameter, which is one of

'nearest' nearest neighbor interpolation

'linear' linear interpolation (default)

'spline' cubic spline interpolation

'cubic' cubic interpolation

Linear interpolation puts a line between adjacent data pairs, while nearest neighbor

interpolation reproduces the y-value of the nearest x point. The following example

illustrates interp1.

x = [0 pi/4 3*pi/8 3*pi/4 pi]; y = sin(x);

xi = linspace(0,pi,40)';

ys = interp1(x,y,xi,'spline');

yn = interp1(x,y,xi,'nearest');

yl = interp1(x,y,xi,'linear');

xx = linspace(0,pi,50);

plot(xx,sin(xx),'-',x,y,'.','MarkerSize',20), hold on

set(gca,'XTick',x), set(gca,'XTickLabel','0|pi/4|3pi/8|3pi/4|2pi')

set(gca,'XGrid','on')

h = plot(xi,ys,'x', xi,yn,'o', xi,yl,'+');

axis([-0.25 3.5 -0.1 1.1])

legend(h,'spline','nearest','linear'), hold off

This code samples 5 points from a sine curve on [0; �], computes interpolants using

three of the methods (cubic is omitted, as the results are the same to visual accu-

racy as for spline), and evaluates the interpolants at 40 points on the interval. In

Figure 11.2 the solid circles plot the x(i),y(i) data pairs and the symbols plot the

interpolants. The graphics commands are discussed in Chapters 8 and 17.

MATLAB has two functions for two-dimensional interpolation: griddata and

interp2. The syntax for griddata is

ZI = griddata(x,y,z,XI,YI)

Here, the vectors x, y and z are the data and ZI is a matrix of interpolated values

corresponding to the matrices XI and YI, which are usually produced using meshgrid.

A sixth string argument speci�es the method:
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Figure 11.2. Interpolating a sine curve using interp1.

'linear' Triangle-based linear interpolation (default)

'cubic' Triangle-based cubic interpolation

'nearest' Nearest neighbor interpolation

Function interp2 has a similar argument list, but it requires x and y to be monotonic

matrices in the form produced by meshgrid. Here is an example in which we use

griddata to interpolate values on a surface.

x = rand(100,1)*4-2; y = rand(100,1)*4-2;

z = x.*exp(-x.^2-y.^2);

hi = -2:.1:2;

[XI,YI] = meshgrid(hi);

ZI = griddata(x,y,z,XI,YI);

mesh(XI,YI,ZI), hold

plot3(x,y,z,'o'), hold off

The result is shown in Figure 11.3, which plots the original data points as circles and

the interpolated surface as a mesh.

Other interpolation functions include interp3 and interpn for three- and n-

dimensional interpolation, respectively.

11.2. Nonlinear Equations and Optimization

MATLAB has routines for �nding a zero of a function of one variable (fzero) and for

minimizing a function of one variable (fminbnd) or of n variables (fminsearch). In all

cases the function must be real-valued and have real arguments. Unfortunately, there

is no provision for directly solving a system of n nonlinear equations in n unknowns.5

5However, an attempt at solving such a system could be made by minimizing the sum of squares

of the residual. The Optimization Toolbox contains a nonlinear equation solver.
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Figure 11.3. Interpolation with griddata.

The simplest invocation of fzero is x = fzero(fun,x0), with x0 a scalar, which

attempts to �nd a zero of fun near x0. For example,

>> fzero('cos(x)-x',0)

Zero found in the interval: [-0.9051, 0.9051].

ans =

0.7391

More precisely, fzero looks for a point where fun changes sign, and will not �nd

zeros of even multiplicity. An initial search is carried out starting from x0 to �nd an

interval on which fun changes sign. The function fun must return a real scalar when

passed a real scalar argument. Failure of fzero is signalled by the return of a NaN.

If instead of being a scalar x0 is a 2-vector such that fun(x0(1)) and fun(x0(2))

have opposite sign, then fzero works on the interval de�ned by x0. Providing a

starting interval in this way can be important when the function has a singularity.

Consider the example

>> [x, fval] = fzero('x-tan(x)',1)

Zero found in the interval: [0.36, 1.64].

x =

1.5708

fval =

1.2093e+015

The second output argument is the function value at x, the purported zero. Clearly,

in this example x is not a zero but an approximation to the point �=2 at which

the function has a singularity; see Figure 11.4. To force fzero to keep away from

singularities we can give it a starting interval that encloses a zero but not a singularity:

>> [x, fval] = fzero('x-tan(x)',[-1 1])

Zero found in the interval: [-1, 1].
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Figure 11.4. Plot produced by ezplot('x-tan(x)',[-pi,pi]), grid.

x =

0

fval =

0

The convergence tolerance and the display of output in fzero are controlled by

a third argument, the structure options, which is best de�ned using the optimset

function. (A structure is one of MATLAB's data types; see Section 18.3.) Only two of

the �elds of the options structure are used: Display speci�es the level of reporting,

with values off for no output, iter for output at each iteration, and final for just

the �nal output; and TolX is a convergence tolerance. Example uses are

fzero(fun,x0,optimset('Display','iter'))

fzero(fun,x0,optimset('TolX',1e-4))

The default corresponds to optimset('display','final','TolX',eps). (Note that

the �eld names passed to optimset can be any combination of upper and lower case.)

Arguments p1, p2, . . . in addition to x can be passed to fun using the syntax

x = fzero(fun,x0,options,p1,p2,...)

If p1, p2, . . . are being passed and the default options structure is required, the

empty matrix [] can be speci�ed in the options position. Functions fminbnd and

fminsearch described below allow extra arguments to be passed in the same way.

The algorithm used by fzero, a combination of the bisection method, the secant

method, and inverse quadratic interpolation, is described in [18, Chap. 7].

The command x = fminbnd(fun,x1,x2) attempts to �nd a local minimizer x of

the function of one variable speci�ed by fun over the interval [x1; x2]. A point x

is a local minimizer of f if it minimizes f in an interval around x. In general, a



142 Numerical Methods: Part I

function can have many local minimizers. MATLAB does not provide a function for

the di�cult problem of computing a global minimizer (one that minimizes f(x) over

all x). Example:

>> [x,fval] = fminbnd('sin(x)-cos(x)',-pi,pi)

Optimization terminated successfully:

the current x satisfies the termination criteria using

OPTIONS.TolX of 1.000000e-004

x =

-0.7854

fval =

-1.4142

As for fzero, options can be speci�ed using a structure options set via the optimset

function. In addition to the �elds used by fzero, fminbnd uses MaxFunEvals (the

maximum number of function evaluations allowed) and MaxIter (the maximum num-

ber of iterations allowed). The defaults correspond to

optimset('Display','final','MaxFunEvals',500,'MaxIter',500,...

'TolX',1e-4)

The algorithm used by fminbnd, a combination of golden section search and parabolic

interpolation, is described in [18, Chap. 8].

If you wish to maximize a function f rather than minimize it you can minimize

�f , since maxx f(x) = �minx(�f(x)).
Function fminsearch searches for a local minimum of a real function of n real

variables. The syntax is similar to fminbnd except that a starting vector rather than

an interval is supplied: x = fminsearch(fun,x0,options). The �elds in options

are those supported by fminbnd plus TolFun, a termination tolerance on the function

value. Both TolX and TolFun default to 1e-4. To illustrate the use of fminsearch

we consider the quadratic function

F (x) = x
2
1 + x

2
2 � x1x2;

which has a minimum at x = [0 0]T . Given the function

function f = fquad(x)

f = x(1)^2 + x(2)^2 - x(1)*x(2);

we can type

>> [x,fval] = fminsearch(@fquad,ones(2,1))

Optimization terminated successfully:

the current x satisfies the termination criteria using

OPTIONS.TolX of 1.000000e-04

and F(X) satisfies the convergence criteria using

OPTIONS.TolFun of 1.000000e-04

x =

1.0e-04 *

-0.4582

-0.4717

fval =

2.1635e-09
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Alternatively, we can de�ne F in the argument list:

[x,fval] = fminsearch('x(1)^2+x(2)^2-x(1)*x(2)',ones(2,1))

Function fminsearch is based on the Nelder{Mead simplex algorithm [67, Sec. 10.4],

a direct search method that uses function values but not derivatives. The method

can be very slow to converge, or may fail to converge to a local minimum. However,

it has the advantage of being insensitive to discontinuities in the function. More

sophisticated minimization functions can be found in the Optimization Toolbox.

11.3. The Fast Fourier Transform

The discrete Fourier transform of an n-vector x is the vector y = Fnx where Fn is an

n-by-n unitary matrix made up of roots of unity and illustrated by

F4 =

2
64
1 1 1 1

1 ! !
2

!
3

1 !
2

!
4

!
6

1 !
3

!
6

!
9

3
75 ; ! = e

�2�i=4
:

The fast Fourier transform (FFT) is a more e�cient way of forming y than the obvious

matrix{vector multiplication. The fft function implements the FFT and is called as

y = fft(x). The e�ciency of fft depends on the value of n; prime values are bad,

highly composite numbers are better, and powers of 2 are best. A second argument

can be given to fft: y = fft(x,n) causes x to be truncated or padded with zeros to

make x of length n before the FFT algorithm is applied. The inverse FFT, x = F
�

ny,

is carried out by the ifft function: x = ifft(y). Example:

>> y = fft([1 1 -1 -1]')

y =

0

2.0000 - 2.0000i

0

2.0000 + 2.0000i

>> x = ifft(y)

x =

1

1

-1

-1

MATLAB also implements higher dimensional discrete Fourier transforms and

their inverses: see functions fft2, fftn, ifft2 and ifftn.



144 Numerical Methods: Part I

Life as we know it would be very di�erent without the FFT.

| CHARLES F. VAN LOAN, Computational

Frameworks for the Fast Fourier Transform (1992)

Do you ever want to kick the computer?

Does it iterate endlessly on your newest algorithm

that should have converged in three iterations?

And does it �nally come to a crashing halt

with the insulting message that you divided by zero?

These minor trauma are, in fact,

the ways the computer manages to kick you and,

unfortunately, you almost always deserve it!

For it is a sad fact that most of us

can more easily compute than think|

which might have given rise to that famous de�nition,

\Research is when you don't know what you're doing."

| FORMAN S. ACTON, Numerical Methods That Work (1970)



Chapter 12

Numerical Methods: Part II

We now move on to MATLAB's capabilities for evaluating integrals and solving or-

dinary and partial di�erential equations.

Most of the functions discussed in this chapter support mixed absolute/relative

error tests, with tolerances AbsTol and RelTol, respectively. This means that they

test whether an estimate err of some measure of the error in the vector x is small

enough by testing whether, for all i,

err(i) <= max(AbsTol,RelTol*abs(x(i)))

If AbsTol is zero this is a pure relative error test and if RelTol is zero it is a pure

absolute error test. Since we cannot expect to obtain an answer with more correct

signi�cant digits than the 16 or so to which MATLAB works, RelTol should be

no smaller than about eps; and since x = 0 is a possibility we should also take

AbsTol > 0. A rough way of interpreting the mixed error test above is that err(i)

is acceptably small if x(i) has as many correct digits as speci�ed by RelTol or is

smaller than AbsTol in absolute value. AbsTol can be a vector of absolute tolerances,

in which case the test is

err(i) <= max(AbsTol(i),RelTol*abs(x(i)))

12.1. Quadrature

Quadrature is a synonym for numerical integration, the approximation of de�nite

integrals
R b
a
f(x) dx. MATLAB has two main functions for quadrature, quad and

quadl. Both require a and b to be �nite and the integrand to have no singularities on

[a; b]. For in�nite integrals and integrals with singularities a variety of approaches can

be used in order to produce an integral that can be handled by quad and quadl; these

include change of variable, integration by parts, and analytic treatment of the integral

over part of the range. See numerical analysis textbooks for details, for example, [5,

Sec. 5.6], [11, Sec. 7.4.3], and [70, Sec. 5.4].

The basic usage is q = quad(fun,a,b,tol) (similarly, for quadl), where fun

speci�es the function to be integrated. The function fun must accept a vector argu-

ment and return a vector of function values. The argument tol is an absolute error

tolerance, which defaults to a small multiple of eps times an estimate of the integral.

Given the function

function f = fxlog(x)

f = x.*log(x);

we type

145
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>> quad(@fxlog,2,4)

ans =

6.7041

to obtain an approximation to
R 4
2
x logx dx. Note the use of array multiplication (.*)

in fxlog to make the function work for vectors.

The number of (scalar) function evaluations is returned in a second output argu-

ment:

[q,count] = quad(fun,a,b)

The quad routine is based on Simpson's rule, which is a Newton{Cotes 3-point rule

(exact for polynomials of degree up to 3), whereas quadl employs a more accurate

4-point Gauss{Lobatto rule together with a 7-point Kronrod extension [19] (exact

for polynomials of degrees up to 5 and 9, respectively). Both routines use adaptive

quadrature. They break the range of integration into subintervals and apply the

basic integration rule over each subinterval. They choose the subintervals according

to the local behavior of the integrand, placing the smallest ones where the integrand

is changing most rapidly. Warning messages are produced if the subintervals become

very small or if an excessive number of function evaluations is used, either of which

could indicate that the integrand has a singularity.

To illustrate how quad and quadl work, we consider the integralZ 1

0

�
1

(x� 0:3)2 + 0:01
+

1

(x� 0:9)2 + 0:04
� 6

�
dx = 29:858 : : : :

The integrand is the function humps provided with MATLAB, which has a large peak

at 0.3 and a smaller one at 0.9. We applied quad to this integral, using a tolerance of

1e-4. Figure 12.1 plots the integrand and shows with tick marks on the x-axis where

the integrand was evaluated; circles mark the corresponding values of the integrand.

The �gure shows that the subintervals are smallest where the integrand is most rapidly

varying.

For another example we take the Fresnel integrals

x(t) =

Z t

0

cos(u2) du; y(t) =

Z t

0

sin(u2) du:

Plotting x(t) against y(t) produces a spiral [24, Sec. 2.6]. The following code plots

the spiral by sampling at 1000 equally spaced points t on the interval [�4�; 4�]; the
result is shown in Figure 12.2. For e�ciency we exploit symmetry and avoid repeatedly

integrating from 0 to t by integrating over each subinterval and then evaluating the

cumulative sums using cumsum:

n = 1000;

x = zeros(1,n); y = x;

t = linspace(0,4*pi,n);

for i=1:n-1

x(i) = quadl(inline('cos(x.^2)'),t(i),t(i+1),1e-3);

y(i) = quadl(inline('sin(x.^2)'),t(i),t(i+1),1e-3);

end

x = cumsum(x); y = cumsum(y);

plot([-x(end:-1:1) 0 x], [-y(end:-1:1) 0 y])

axis equal
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Figure 12.1. Integration of humps function by quad.
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Figure 12.2. Fresnel spiral.
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Another quadrature function is trapz, which applies the repeated trapezium rule.

It di�ers from quad and quadl in that its input comprises vectors of xi and f(xi)

values rather than a function representing the integrand f ; therefore it is not adaptive.

Example:

>> x = linspace(0,2*pi,10);

>> f = sin(x).^2./sqrt(1+cos(x).^2);

>> trapz(x,f)

ans =

2.8478

In this example the error in the computed integral is of the order 10�7, which is

much smaller than the standard error expression for the repeated trapezium rule

would suggest. The reason is that we are integrating a periodic function over a whole

number of periods and the repeated trapezium rule is known to be highly accurate

in this situation [5, Sec. 5.4], [70, p. 182]. In general, provided that a function is

available to evaluate the integrand at arbitrary points, quad and quadl are preferable

to trapz.

Double integrals can be evaluated with dblquad. To illustrate, suppose we wish

to approximate the integral

Z 6

4

Z 1

0

�
y
2
e
x + x cos y

�
dx dy:

Using the function

function out = fxy(x,y)

out = y^2*exp(x)+x*cos(y);

we type

>> dblquad(@fxy,0,1,4,6)

ans =

87.2983

The function passed to dblquad must accept a vector x and a scalar y and return

a vector as output. Additional arguments to dblquad can be used to specify the

tolerance and the integrator (the default is quad).

12.2. Ordinary Di�erential Equations

MATLAB has a range of functions for solving initial value ordinary di�erential equa-

tions (ODEs). These mathematical problems have the form

d

dt
y(t) = f(t; y(t)); y(t0) = y0;

where t is a real scalar, y(t) is an unknown m-vector, and the given function f of t

and y is also an m-vector. To be concrete, we regard t as representing time. The

function f de�nes the ODE and the initial condition y(t0) = y0 then de�nes an initial

value problem. The simplest way to solve such a problem is to write a function that

evaluates f and then call one of MATLAB's ODE solvers. The minimum information

that the solver must be given is the function name, the range of t values over which the
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solution is required and the initial condition y0. However, MATLAB's ODE solvers

allow for extra (optional) input and output arguments that make it possible to specify

more about the mathematical problem and how it is to be solved. Each of MATLAB's

ODE solvers is designed to be e�cient in speci�c circumstances, but all are essentially

interchangeable. In the next subsection we develop examples that illustrate the use of

ode45. This function implements an adaptive Runge{Kutta algorithm and is typically

the most e�cient solver for the classes of ODEs that concern MATLAB users. The full

range of ODE solving functions is discussed in Section 12.2.3 and listed in Table 12.1

on p. 160. The functions follow a naming convention: all names begin ode and are

followed by digits denoting the orders of the underlying integration formulae, with a

�nal \s", \t" or \tb" denoting a function intended for sti� problems.

Note that the ODE solvers in MATLAB 6 use a di�erent syntax than was used in

MATLAB 5. For an explanation of the old syntax, see help odefile.

12.2.1. Examples with ode45

In order to solve the scalar (m = 1) ODE

d

dt
y(t) = �y(t)� 5e�t sin 5t; y(0) = 1;

for 0 � t � 3 with ode45, we create in the �le myf.m the function

function yprime = myf(t,y)

%MYF ODE example function.

% YPRIME = MYF(T,Y) evaluates derivative.

yprime = -y - 5*exp(-t)*sin(5*t);

and then type

tspan = [0 3]; yzero = 1;

[t,y] = ode45(@myf,tspan,yzero);

plot(t,y,'*--')

xlabel t, ylabel y(t)

This produces the plot in Figure 12.3. (Note that here we have exploited com-

mand/function duality in setting the x- and y-axis labels|see Section 7.4.) The

input arguments to ode45 are the function myf, the 2-vector tspan that speci�es the

time interval, and the initial condition yzero. Two output arguments t and y are

returned. The t values are ordered in the range [0; 3] and y(i) approximates the solu-

tion at time t(i). So t(1) = 0 and t(end) = 3, with the points t(2:end-1) chosen

automatically by ode45 in much the same way that the adaptive quadrature routines

choose their subintervals|the points are more closely spaced in regions where the

solution is rapidly varying.

The solution to the scalar ODE above is y(t) = e
�t cos 5t, so we may check the

maximum error in the ode45 approximation:

>> max(abs(y - exp(-t).*cos(5*t)))

ans =

2.8991e-04
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Figure 12.3. Scalar ODE example.

If more than two time values are speci�ed, then ode45 returns the solution at

these times only, suppressing any solution values that may have been computed for

intervening times.

>> tspan2 = 0:4;

>> [t2,y2] = ode45(@myf,tspan2,yzero);

>> disp([t2 y2])

0 1.0000

1.0000 0.1043

2.0000 -0.1136

3.0000 -0.0378

4.0000 0.0075

Requesting the solution at speci�c times in this way has little e�ect on the computa-

tional cost of the integration. A decreasing list of times is allowed, so that integration

is backward in time:

>> tspan3 = [0 -0.5 -1];

>> [t3,y3] = ode45(@myf,tspan3,yzero);

>> disp([t3 y3])

0 1.0000

-0.5000 -1.3209

-1.0000 0.7711

Higher order ODEs can be solved if they are �rst rewritten as a larger system

of �rst-order ODEs [69, Chap. 1]. For example, the simple pendulum equation [74,

Sec. 6.7] has the form

d
2

dt
2
�(t) + sin �(t) = 0:
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De�ning y1(t) = �(t) and y2(t) = d�(t)=dt, we may rewrite this equation as the two

�rst-order equations

d

dt
y1(t) = y2(t);

d

dt
y2(t) = � sin y1(t):

This information can be encoded for use by ode45 in the function pend as follows.

function yprime = pend(t,y)

%PEND Simple pendulum.

% YPRIME = PEND(T,Y).

yprime = [y(2); -sin(y(1))];

The following commands compute solutions over 0 � t � 10 for three di�erent initial

conditions. Since we are solving a system of m = 2 equations, in the output [t,y]

from ode45 the ith row of the matrix y approximates (y1(t); y2(t)) at time t = t(i).

tspan = [0 10];

yazero = [1; 1]; ybzero = [-5; 2]; yczero = [5; -2];

[ta,ya] = ode45(@pend,tspan,yazero);

[tb,yb] = ode45(@pend,tspan,ybzero);

[tc,yc] = ode45(@pend,tspan,yczero);

To produce phase plane plots, that is, plots of y1(t) against y2(t), we simply plot

the �rst column of the numerical solution against the second. In this context, it

is often informative to superimpose a \vector �eld" using quiver (see Table 8.4 on

p. 89). The commands below generate phase plane plots of the solutions ya, yb and

yc computed above, and make use of quiver. The arrows produced by quiver point

in the direction of the vector [y2;� sin y1] and have length proportional to the 2-norm

of this vector. The resulting picture is shown in Figure 12.4.

[y1,y2] = meshgrid(-5:.5:5,-3:.5:3);

Dy1Dt = y2; Dy2Dt = -sin(y1);

quiver(y1,y2,Dy1Dt,Dy2Dt)

hold on

plot(ya(:,1),ya(:,2),yb(:,1),yb(:,2),yc(:,1),yc(:,2))

axis equal, axis([-5 5 -3 3])

xlabel y_1(t), ylabel y_2(t), hold off

The pendulum ODE preserves energy: any solution keeps y2(t)
2
=2 � cos y1(t)

constant for all t. We can check that this is approximately true for yc as follows.

>> Ec = .5*yc(:,2).^2 - cos(yc(:,1));

>> max(abs(Ec(1)-Ec))

ans =

0.0263

The general form of a call to ode45 is6

6In this argument list, and in those in the rest of the chapter, we assume that functions passed

as arguments are speci�ed by their handles (see Section 10.1), which is usually the case for the

di�erential equation solvers.
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Figure 12.4. Pendulum phase plane solutions.

[t,y] = ode45(@fun,tspan,yzero,options,p1,p2,...);

The optional trailing arguments p1, p2, . . . represent problem parameters that, if

provided, are passed on to the function fun. The optional argument options is a

structure that controls many features of the solver and can be set via the odeset

function. In our next example we create a structure options by the assignment

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

Passing this structure as an input argument to ode45 causes the absolute and relative

error tolerances to be set to 10�7 and 10�4, respectively. (The default values are

10�6 and 10�3; see help odeset for the precise meaning of the tolerances.) These

tolerances apply on a local, step-by-step, basis and it is not generally the case that

the overall error is kept within these limits. However, under reasonable assumptions

about the ODE, it can be shown that decreasing the tolerances by some factor, say

100, will decrease the overall error by a similar factor, so the error is usually roughly

proportional to the tolerances. See [69, Chap. 7] for further details about error control

in ODE solvers.

Our example below solves the R�ossler system [74, Secs. 10.6, 12.3],

d

dt
y1(t) = �y2(t)� y3(t);

d

dt
y2(t) = y1(t) + ay2(t);

d

dt
y3(t) = b+ y3(t) (y1(t)� c) ;

where a, b and c are parameters. These parameters can be included in the function

that de�nes the ODE as follows:

function yprime = rossler(t,y,a,b,c)

%ROSSLER Rossler system, parameterized.

% YPRIME = ROSSLER(T,Y,A,B,C).

yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];
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Figure 12.5. R�ossler system phase space solutions.

Here, the third, fourth and �fth input arguments are parameter values. These are

supplied to ode45, which passes them on to rossler unchanged. The following script

�le solves the R�ossler system over 0 � t � 100 with initial condition y(0) = [1; 1; 1]

for (a; b; c) = (0:2; 0:2; 2:5) and (a; b; c) = (0:2; 0:2; 5). Figure 12.5 shows the results.

The 221 subplot gives the 3D phase space solution for c = 2:5 and the 223 subplot

gives the 2D projection onto the y1-y2 plane. The 222 and 224 subplots give the

corresponding pictures for c = 5.

tspan = [0,100]; yzero = [1;1;1];

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

a = 0.2; b = 0.2; c = 2.5;

[t,y] = ode45(@rossler,tspan,yzero,options,a,b,c);

subplot(221), plot3(y(:,1),y(:,2),y(:,3)), title('c=2.5'), grid

xlabel y_1(t), ylabel y_2(t), zlabel y_3(t)

subplot(223), plot(y(:,1),y(:,2)), title('c=2.5')

xlabel y_1(t), ylabel y_2(t)

c = 5;

[t,y] = ode45(@rossler,tspan,yzero,options,a,b,c);

subplot(222), plot3(y(:,1),y(:,2),y(:,3)), title('c=5'), grid

xlabel y_1(t), ylabel y_2(t), zlabel y_3(t)

subplot(224), plot(y(:,1),y(:,2)), title('c=5')

xlabel y_1(t), ylabel y_2(t)
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12.2.2. Case Study: Pursuit Problem with Event Location

Next we consider a pursuit problem [12, Chap. 5]. Suppose that a rabbit follows a

prede�ned path (r1(t); r2(t)) in the plane, and that a fox chases the rabbit in such a

way that (a) at each moment the tangent of the fox's path points towards the rabbit

and (b) the speed of the fox is some constant k times the speed of the rabbit. Then

the path (y1(t); y2(t)) of the fox is determined by the ODE

d

dt
y1(t) = s(t) (r1(t)� y1(t)) ;

d

dt
y2(t) = s(t) (r2(t)� y2(t)) ;

where

s(t) =
k

q�
d
dtr1(t)

�2
+
�
d
dtr2(t)

�2q
(r1(t)� y1(t))

2
+ (r2(t)� y2(t))

2
:

Note that this ODE system becomes ill-de�ned if the fox approaches the rabbit. We

let the rabbit follow an outward spiral,�
r1(t)

r2(t)

�
=
p
1 + t

�
cos t

sin t

�
;

and start the fox at y1(0) = 3; y2(0) = 0. The function fox1 implements the ODE,

with k set to 0:75:

function yprime = fox1(t,y)

%FOX1 Fox-rabbit pursuit simulation.

% YPRIME = FOX1(T,Y).

k = 0.75;

r = sqrt(1+t)*[cos(t); sin(t)];

r_p =(0.5/sqrt(1+t))*[cos(t)-2*(1+t)*sin(t);sin(t)+2*(1+t)*cos(t)];

dist = norm(r-y);

if dist > 1e-4

factor = k*norm(r_p)/dist;

yprime = factor*(r-y);

else

error('ODE model ill-defined.')

end

The error function (see Section 14.1) has been used so that execution terminates

with an error message if the denominator of s(t) in the ODE becomes too small.

The script below calls fox1 to produce Figure 12.6. Initial conditions are denoted by

circles and the dashed and solid lines show the phase plane paths of the rabbit and

fox, respectively.

tspan = [0 10]; yzero = [3;0];

[tfox,yfox] = ode45(@fox1,tspan,yzero);

plot(yfox(:,1),yfox(:,2)), hold on

plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).*sin(tfox),'--')

plot([3 1],[0 0],'o');

axis equal, axis([-3.5 3.5 -2.5 3.1])

legend('Fox','Rabbit',0), hold off



12.2 Ordinary Differential Equations 155

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3
Fox   
Rabbit

Figure 12.6. Pursuit example.

The implementation above is unsatisfactory for k > 1, that is, when the fox is

faster than the rabbit. In this case, if the rabbit is caught within the speci�ed time

interval then no solution is displayed. It would be more natural to ask ode45 to

return with the computed solution if the fox and rabbit become close. This can be

done using the event location facility. The following script �le uses the functions fox2

and events, which are given in Listing 12.1, to produce Figure 12.7. We have allowed

k to be a parameter, and set k = 1.1 in the script �le. The initial condition and the

rabbit's path are as for Figure 12.6.

k = 1.1;

tspan = [0;10]; yzero = [3;0];

options = odeset('RelTol',1e-6,'AbsTol',1e-6,'Events',@events);

[tfox,yfox,te,ye,ie] = ode45(@fox2,tspan,yzero,options,k);

plot(yfox(:,1),yfox(:,2)), hold on

plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).*sin(tfox),'--')

plot([3 1],[0 0],'o'), plot(yfox(end,1),yfox(end,2),'*')

axis equal, axis([-3.5 3.5 -2.5 3.1])

legend('Fox','Rabbit',0), hold off

Here, we use odeset to set the event location property to the handle of the func-

tion events in Listing 12.1. This function has the three output arguments value,

isterminal, and direction. It is the responsibility of ode45 to use events to

check whether any component passes through zero by monitoring the quantity re-

turned in value. In our example value is a scalar, corresponding to the distance

between the rabbit and fox, minus a threshold of 10�4. Hence, ode45 checks if the

fox has approached within distance 10�4 of the rabbit. We set direction = -1,

which signi�es that value must be decreasing through zero in order for the event

to be considered. The alternative choice direction = 1 tells MATLAB to consider

only crossings where value is increasing, and direction = 0 allows for any type of
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Listing 12.1. Functions fox2 and events.

function yprime = fox2(t,y,k)

%FOX2 Fox-rabbit pursuit simulation with relative speed parameter.

% YPRIME = FOX2(T,Y,K).

r = sqrt(1+t)*[cos(t); sin(t)];

r_p = (0.5/sqrt(1+t)) * [cos(t)-2*(1+t)*sin(t); sin(t)+2*(1+t)*cos(t)];

dist = max(norm(r-y),1e-6);

factor = k*norm(r_p)/dist;

yprime = factor*(r-y);

function [value,isterminal,direction] = events(t,y,k)

%EVENTS Events function for FOX2.

% Locate when fox is close to rabbit.

r = sqrt(1+t)*[cos(t); sin(t)];

value = norm(r-y) - 1e-4; % Fox close to rabbit.

isterminal = 1; % Stop integration.

direction = -1; % Value must be decreasing through zero.

−3 −2 −1 0 1 2 3
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0

1

2

3
Fox   
Rabbit

Figure 12.7. Pursuit example, with capture.
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zero. Since we set isterminal = 1, integration will cease when a suitable zero cross-

ing is detected. With the other option, isterminal = 0, the event is recorded and

the integration continues. Note that the function events must accept the additional

parameter k passed to ode45, even though it does not need it in this example.

The output arguments from ode45 are [tfox,yfox,te,ye,ie]. Here, tfox and

yfox are the usual solution approximations, so yfox(i) approximates y(t) at time

t = tfox(i). The arguments te and ye record those t and y values at which the

event(s) were recorded and, for vector valued events, ie speci�es which component

of the event occurred each time. (If no events are detected then te, ye and ie are

returned as empty matrices.) In our example, we have

>> te, ye

te =

5.0710

ye =

0.8646 -2.3073

showing that the rabbit was captured after 5:07 time units at the point (0:86;�2:31).

12.2.3. Sti� Problems and the Choice of Solver

The Robertson ODE system

d

dt
y1(t) = �0:04y1(t) + 104y2(t)y3(t);

d

dt
y2(t) = 0:04y1(t)� 104y2(t)y3(t)� 3� 107y2(t)

2
;

d

dt
y3(t) = 3� 107y2(t)

2

models a reaction between three chemicals [25, p. 3], [69, p. 418]. We set the system

up as the function chem:

function yprime = chem(t,y)

%CHEM Robertson's chemical reaction model.

% YPRIME = CHEM(T,Y).

yprime = [-0.04*y(1) + 1e4*y(2)*y(3);

0.04*y(1) - 1e4*y(2)*y(3) - 3e7*y(2)^2;

3e7*y(2)^2];

The script �le below solves this ODE for 0 � t � 3 with initial condition [1; 0; 0], �rst

using ode45 and then using another solver, ode15s, which is based on implicit linear

multistep methods. (Implicit means that a nonlinear equation must be solved at each

step.) The results for y2(t) are plotted in Figure 12.8.

tspan = [0 3]; yzero = [1;0;0];

[ta,ya] = ode45(@chem,tspan,yzero);

subplot(121), plot(ta,ya(:,2),'-*')

ax = axis; ax(1) = -0.2; axis(ax) % Make initial transient clearer.

xlabel('t'), ylabel('y_2(t)'), title('ode45','FontSize',14)

[tb,yb] = ode15s(@chem,tspan,yzero);

subplot(122), plot(tb,yb(:,2),'-*'), axis(ax)

xlabel('t'), ylabel('y_2(t)'), title('ode15s','FontSize',14)
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Figure 12.8. Chemical reaction solutions. Left: ode45. Right: ode15s.
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Figure 12.9. Zoom of chemical reaction solution from ode45.
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We see from Figure 12.8 that the solutions agree to within a small absolute toler-

ance (note the scale factor 10�5 for the y-axis labels). However, the left-hand solution

from ode45 has been returned at many more time values than the right-hand solution

from ode15s and seems to be less smooth. To emphasize these points, Figure 12.9

plots ode45's y2(t) for 2:0 � t � 2:1. We see that the t values are densely packed

and spurious oscillations are present at the level of the default absolute error tol-

erance, 10�6. The Robertson problem is a classic example of a sti� ODE; see [25]

or [69, Chap. 8] for full discussions about sti�ness and its e�ects. Sti� ODEs arise

in a number of application areas, including the modelling of chemical reactions and

electrical circuits. Semi-discretized time-dependent partial di�erential equations are

also a common source of sti�ness (we give an example below). Many solvers behave

ine�ciently on sti� ODEs|they take an unnecessarily large number of intermediate

steps in order to complete the integration and hence make an unnecessarily large

number of calls to the ODE function (in this case, chem). We can obtain statistics on

the computational cost of the integration by setting

options = odeset('Stats','on');

and providing options as an input argument:

[ta,ya] = ode45(@chem,tspan,yzero,options);

On completion of the run of ode45, the following statistics are then printed:

2051 successful steps

448 failed attempts

14995 function evaluations

0 partial derivatives

0 LU decompositions

0 solutions of linear systems

Using the same options argument with ode15s gives

33 successful steps

5 failed attempts

73 function evaluations

2 partial derivatives

13 LU decompositions

63 solutions of linear systems

The behavior of ode45 typi�es what happens when an adaptive algorithm designed for

nonsti� ODEs operates in the presence of sti�ness. The solver does not break down

or compute an inaccurate solution, but it does behave nonsmoothly and extremely

ine�ciently in comparison with solvers that are customized for sti� problems. This

is one reason why MATLAB provides a suite of ODE solvers.

Note that in the computation above, we have

>> disp([length(ta), length(tb)])

8205 34

showing that ode45 returned output at almost 250 times as many points as ode15s.

However, the statistics show that ode45 took 2051 steps, only about 62 times as

many as ode15s. The explanation is that by default ode45 uses interpolation to
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Table 12.1. MATLAB's ODE solvers.

Solver Problem type Type of algorithm

ode45 Nonsti� Explicit Runge{Kutta pair, orders 4 and 5

ode23 Nonsti� Explicit Runge{Kutta pair, orders 2 and 3

ode113 Nonsti� Explicit linear multistep, orders 1 to 13

ode15s Sti� Implicit linear multistep, orders 1 to 5

ode23s Sti� Modi�ed Rosenbrock pair (one-step), orders 2 and 3

ode23t Mildly sti� Trapezoidal rule (implicit), orders 2 and 3

ode23tb Sti� Implicit Runge{Kutta type algorithm, orders 2 and 3

return four solution values at equally spaced points over each \natural" step. The

default interpolation level can be overridden via the Refine property with odeset.

A full list of MATLAB's ODE solvers is given in Table 12.1. The authors of

these solvers, Shampine and Reichelt, discuss some of the theoretical and practical

issues that arose during their development in [72]. The functions are designed to

be interchangeable in basic use. So, for example, the illustrations in the previous

subsection continue to work if ode45 is replaced by any of the other solvers. The

functions mainly di�er in (a) their e�ciency on di�erent problem types and (b) their

capacity for accepting information about the problem in connection with Jacobians

and mass matrices. With regard to e�ciency, Shampine and Reichelt write in [72]:

The experiments reported here and others we have made suggest that

except in special circumstances, ode45 should be the code tried �rst. If

there is reason to believe the problem to be sti�, or if the problem turns

out to be unexpectedly di�cult for ode45, the ode15s code should be

tried.

The sti� solvers in Table 12.1 use information about the Jacobian matrix, @fi=@yj ,

at various points along the solution. By default, they automatically generate approx-

imate Jacobians using �nite di�erences. However, the reliability and e�ciency of the

solvers is generally improved if a function that evaluates the Jacobian is supplied.

Further options are also available for providing information about whether the Ja-

cobian is sparse, constant or written in vectorized form. To illustrate how Jacobian

information can be encoded, we look at the system of ODEs

d

dt
y(t) = Ay(t) + y(t): � (1� y(t)) + v;

where A is N -by-N and v is N -by-1 with

A = r1

2
6666664

0 1

�1 0 1

. . .
. . .

. . .

. . .
. . . 1

�1 0

3
7777775
+ r2

2
6666664

�2 1

1 �2 1

. . .
. . .

. . .

. . .
. . . 1

1 �2

3
7777775
;

v = [r2�r1; 0; : : : ; 0; r2+r1]T , r1 = �a=(2�x) and r2 = b=�x
2. Here, a, b and �x are

parameters with values a = 1, b = 5� 10�2 and �x = 1=(N + 1). This ODE system
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Figure 12.10. Sti� ODE example, with Jacobian information supplied.

arises when the method of lines based on central di�erences is used to semi-discretize

the partial di�erential equation (PDE)

@

@t
u(x; t) + a

@

@x
u(x; t) = b

@
2

@x2
u(x; t) + u(x; t)(1� u(x; t)); 0 � x � 1;

with Dirichlet boundary conditions u(0; t) = u(1; t) = 1. This PDE is of reaction-

convection-di�usion type (and could be solved directly with pdepe, described in Sec-

tion 12.4). The ODE solution component yj(t) approximates u(j�x; t). We suppose

that the PDE comes with the initial data u(x; 0) = (1+cos 2�x)=2, for which it can be

shown that u(x; t) tends to the steady state u(x; t) � 1 as t!1. The corresponding

ODE initial condition is (y0)j = (1 + cos(2�j=(N + 1)))=2. The Jacobian for this

ODE has the form A+ I � 2 diag(y(t)), where I denotes the identity.

Listing 12.2 shows a function rcd that implements and solves this system using

ode15s. It illustrates how a complete problem speci�cation and solution can be

encapsulated in a single function, by making use of subfunctions and function handles.

We have set N = 38 and 0 � t � 2. We specify via the Jacobian property of odeset

the subfunction jacobian that evaluates the Jacobian, and the sparsity pattern of

the Jacobian, encoded as a sparse matrix of 0s and 1s, is assigned to the Jpattern

property. See Chapter 15 for details about sparse matrices and the function spdiags.

The jth column of the output matrix y contains the approximation to yj(t), and we

have created U by appending an extra column ones(size(t)) at each end of y to

account for the PDE boundary conditions. The plot produced by rcd is shown in

Figure 12.10.

The ODE solvers can be applied to problems of the form

M(t; y(t))
d

dt
y(t) = f(t; y(t)); y(t0) = y0;

where the mass matrix, M(t; y(t)), is square and nonsingular. (The ode23s solver

applies only whenM is independent of t and y(t).) Mass matrices arise naturally when
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Listing 12.2. Function rcd.

function rcd

%RCD Stiff ODE from method of lines on reaction-convection-diffusion problem.

N = 38; a = 1; b = 5e-2;

tspan = [0;2]; space = [1:N]/(N+1);

y0 = 0.5*(1+cos(2*pi*space));

y0 = y0(:);

options = odeset('Jacobian',@jacobian,'Jpattern',jpattern(N));

options = odeset(options,'RelTol',1e-3,'AbsTol',1e-3);

[t,y] = ode15s(@f,tspan,y0,options,N,a,b);

e = ones(size(t)); U = [e y e];

waterfall([0:1/(N+1):1],t,U)

xlabel('space','FontSize',16), ylabel('time','FontSize',16)

% ---------------------------------------------------------------------------

% Subfunctions.

% ---------------------------------------------------------------------------

function dydt = f(t,y,N,a,b)

%F Differential equation.

r1 = -a*(N+1)/2;

r2 = b*(N+1)^2;

up = [y(2:N);0]; down = [0;y(1:N-1)];

e1 = [1;zeros(N-1,1)]; eN = [zeros(N-1,1);1];

dydt = r1*(up-down) + r2*(-2*y+up+down) + (r2-r1)*e1 + (r2+r1)*eN + y.*(1-y);

% ---------------------------------------------------------------------------

function dfdy = jacobian(t,y,N,a,b)

%JACOBIAN Jacobian matrix.

r1 = -a*(N+1)/2;

r2 = b*(N+1)^2;

u = (r2-r1)*ones(N,1);

v = (-2*r2+1)*ones(N,1) - 2*y;

w = (r2+r1)*ones(N,1);

dfdy = spdiags([u v w],[-1 0 1],N,N);

% ---------------------------------------------------------------------------

function S = jpattern(N)

%JPATTERN Sparsity pattern of Jacobian matrix.

e = ones(N,1);

S = spdiags([e e e],[-1 0 1],N,N);
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semi-discretization is performed with a �nite element method. A mass matrix can

be speci�ed in a similar manner to a Jacobian, via odeset. The ode15s and ode23t

functions can solve certain problems where M is singular but does not depend on

y(t)|more precisely, they can be used if the resulting di�erential-algebraic equation

is of index 1 and y0 is close to being consistent.

The ODE solvers o�er other features that you may �nd useful. Type help odeset

to see the full range of properties that can be controlled through the options struc-

ture. The function odeget extracts the current value of the options structure. The

MATLAB ODE solvers are well documented and are supported by a rich variety of

example �les, some of which we list below. In each case, help filename gives an

informative description of the �le, type filename lists the contents of the �le, and

typing filename runs a demonstration.

rigidode: nonsti� ODE.

brussode, vdpode: sti� ODEs.

ballode: event location problem.

orbitode: problem involving event location and the use of an output function (odephas2)

to process the solution as the integration proceeds.

fem1ode, fem2ode, batonode: ODEs with mass matrices.

hb1dae, amp1dae: di�erential-algebraic equations.

Type odedemo to run the example ODEs from a Graphical User Interface that o�ers

a choice of solvers and plots the solutions.

12.3. Boundary Value Problems with bvp4c

The function bvp4c uses a collocation method to solve systems of ODEs in two-point

boundary value form. These systems may be written

d

dx
y(x) = f(x; y(x)); g(y(a); y(b)) = 0:

Here, as for the initial value problem in the previous section, y(x) is an unknown

m-vector and f is a given function of x and y that also produces an m-vector. The

solution is required over the range a � x � b and the given function g speci�es the

boundary conditions. Note that the independent variable was labeled t in the previous

section and is now labeled x. This is consistent with MATLAB's documentation and

reects the fact that two-point boundary value problems (BVPs) usually arise over

an interval of space rather than time. Generally, BVPs are more computationally

challenging than initial value problems. In particular, it is common for more than

one solution to exist. For this reason, bvp4c requires an initial guess to be supplied

for the solution. The initial guess and the �nal solution are stored in structures (see

Section 18.3). We introduce bvp4c through a simple example before giving more

details.

A scalar BVP describing the cross-sectional shape of a water droplet on a at

surface is given by [66]

d
2

dx2
h(x) + (1� h(x))

 
1 +

�
d

dx
h(x)

�2
!3=2

= 0; h(�1) = 0; h(1) = 0:
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Here, h(x) measures the height of the droplet at point x. We set y1(x) = h(x) and

y2(x) = dh(x)=dx and rewrite the equation as a system of two �rst-order equations:

d

dx
y1(x) = y2(x);

d

dx
y2(x) = (y1(x)� 1)

�
1 + y2(x)

2
�3=2

:

This system is represented by the function

function yprime = drop(x,y)

%DROP ODE/BVP water droplet example.

% YPRIME = DROP(X,Y) evaluates derivative.

yprime = [y(2); (y(1)-1)*((1+y(2)^2)^(3/2))];

The boundary conditions are speci�ed via a residual function. This function returns

zero when evaluated at the boundary values. Our boundary conditions y1(�1) =

y1(1) = 0 can be encoded in the following function:

function res = dropbc(ya,yb)

%DROPBC ODE/BVP water droplet boundary conditions.

% RES = DROPBC(YA,YB) evaluates residual.

res = [ya(1); yb(1)];

As an initial guess for the solution, we use y1(x) =
p
1� x2 and y2(x) = �x=(0:1 +p

1� x2). This information is set up by the function dropinit:

function yinit = dropinit(x)

%DROPINIT ODE/BVP water droplet initial guess.

% YINIT = DROPINIT(X) evaluates initial guess at X.

yinit = [sqrt(1-x.^2); -x./(0.1+sqrt(1+x.^2))];

The following code solves the BVP and produces Figure 12.11.

solinit = bvpinit(linspace(-1,1,20),@dropinit);

sol = bvp4c(@drop,@dropbc,solinit);

fill(sol.x,sol.y(1,:),[0.7 0.7 0.7])

axis([-1 1 0 1])

xlabel('x','FontSize',16)

ylabel('h','Rotation',0,'FontSize',16)

Here, the call to bvpinit sets up the structure solinit, which contains the data

produced by evaluating dropinit at 20 equally spaced values between �1 and 1. We

then call bvp4c, which returns the solution in the structure sol. The fill command

�lls the curve that the solution makes in the x-y1 plane.

In general, bvp4c can be called in the form

sol = bvp4c(@odefun,@bcfun,solinit,options,p1,p2,...);

Here, odefun evaluates the di�erential equations and bcfun gives the residual for the

boundary conditions. The function odefun has the general form
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Figure 12.11. Water droplet BVP solved by bvp4c.

yprime = odefun(x,y,p1,p2,...)

and bcfun has the general form

res = bcfun(ya,yb,p1,p2,...)

The arguments p1,p2,... are optional; they represent problem parameters that may

be required by the two functions. Both functions must return column vectors. The

initial guess structure solinit has two required �elds: solinit.x contains the x val-

ues at which the initial guess is supplied, ordered from left to right with solinit.x(1)

and solinit.x(end) giving a and b, respectively. Correspondingly, solinit.y(:,i)

gives the initial guess for the solution at the point solinit.x(i). The helper function

bvpinit can be used to create the initial guess structure, as in the example above.

The remaining arguments for bvp4c are optional. The options structure allows var-

ious properties of the collocation algorithm to be altered from their default values,

including the error tolerances and the maximum number of meshpoints allowed. The

function bvpset can be used to create the required structure; we do not give details

here. The remaining optional input arguments p1, p2, . . . to bvp4c are parameters

to be passed to odefun and bcfun.

The output argument sol is a structure that contains the numerical solution.

The �eld sol.x gives the array of x values at which the solution has been computed.

(These points are chosen automatically by bvp4c.) The approximate solution at

sol.x(i) is given by sol.y(:,i). Similarly, an approximate solution to the �rst

derivative of the solution at sol.x(i) is given by sol.yp(:,i).

Note that the structures solinit and sol above can be given any names, but the

�eld names x, y and yp must be used.

Our next example shows how a parameter can be passed through bvp4c and
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emphasizes that nonlinear BVPs can have nonunique solutions. The equation

d
2

dx2
�(x) + � sin �(x) cos �(x) = 0; �(�1) = 0; �(1) = 0;

arises in liquid crystal theory [50]. Here, �(x) quanti�es the average local molecular

orientation and the constant parameter � > 0 is a measure of an applied magnetic

�eld. If � is small then the only solution to this problem is the trivial one, �(x) � 0.

However, for � > �
2
=4 a solution with �(x) > 0 for �1 < x < 1 exists, and ��(x)

is then also a solution. (Physically, a distorted state of the material may arise if the

magnetic �eld is su�ciently strong.) For the positive solution the midpoint value, �(0),

increases monotonically with � and approaches �=2 as � tends to in�nity. Writing

y1(x) = �(x) and y2(x) = d�(x)=dx the ODE becomes

d

dx
y1(x) = y2(x);

d

dx
y2(x) = �� sin y1(x) cos y1(x):

The function lcrun in Listing 12.3 solves the BVP for parameter values � = 2:4, 2:5,

3 and 10, producing Figure 12.12. In this example, as for the initial value problem

in Listing 12.2 on p. 162, we have written a function lcrun that has no input or

output arguments and created lc, lcbc and lcinit as subfunctions of lcrun. This

allows us to solve the BVP with a single M-�le. The subfunction lc evaluates the

ODE right-hand side. The boundary conditions, which are the same as those in the

previous example, are coded in lcbc. Note that lambda must be passed to lcbc

even though it is not used. As an initial guess, we use y1(x) = sin((x + 1)�=2) and

y2(x) = � cos((x+1)�=2)=2, which is set up by lcinit. In the calls to bvp4c we use

the empty matrix [] as a placeholder for the options argument. From Figure 12.12

we see that bvp4c has found the nontrivial positive solution for the three lambda

values beyond �2=4 � 2:467.

Our �nal example involves the equation

d
2

dx2
y(x) + �y(x) = 0;

with boundary conditions

y(0) = 0;

�
d

dx
y(x)

�
x=0

= 1;

�
y(x) +

d

dx
y(x)

�
x=1

= 0:

This equation models the displacement of a skipping rope that is �xed at x = 0, has

elastic support at x = 1, and rotates with uniform angular velocity about its equilib-

rium position along the x-axis [31, Sec. 5.2]. This BVP is an eigenvalue problem|we

must �nd a value of the parameter � for which a solution exists. (We can regard

the two conditions at x = 0 as de�ning an initial value problem; we must then �nd

a value of � for which the solution matches the boundary condition at x = 1.) We

can use bvp4c to solve this eigenvalue problem if we supply a guess for the unknown

parameter � as well as a guess for the corresponding solution y(x). This is done in

the function skiprun in Listing 12.4. As a �rst-order system, the di�erential equation

may be written

d

dx
y1(x) = y2(x);

d

dx
y2(x) = ��y1(x):
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Listing 12.3. Function lcrun.

function lcrun

%LCRUN Liquid crystal BVP.

% Solves the liquid crystal BVP for four different lambda values.

lambda = [2.4, 2.5, 3, 10];

solinit = bvpinit(linspace(-1,1,20),@lcinit);

sola = bvp4c(@lc,@lcbc,solinit,[],lambda(1));

solb = bvp4c(@lc,@lcbc,solinit,[],lambda(2));

solc = bvp4c(@lc,@lcbc,solinit,[],lambda(3));

sold = bvp4c(@lc,@lcbc,solinit,[],lambda(4));

plot(sola.x,sola.y(1,:),'-','LineWidth',4), hold on

plot(solb.x,solb.y(1,:),'--','LineWidth',2)

plot(solc.x,solc.y(1,:),'--','LineWidth',4)

plot(sold.x,sold.y(1,:),'--','LineWidth',6), hold off

legend([repmat('\lambda = ',4,1) num2str(lambda')])

xlabel('x','FontSize',16)

ylabel('\theta','Rotation',0,'FontSize',16)

% ----------------------------------------------------------------------

% Subfunctions.

% ----------------------------------------------------------------------

function yprime = lc(x,y,lambda)

%LC ODE/BVP liquid crystal system.

% YPRIME = LC(X,Y,LAMBDA) evaluates derivative.

yprime = [y(2); -lambda*sin(y(1))*cos(y(1))];

% ----------------------------------------------------------------------

function res = lcbc(ya,yb,lambda)

%LCBC ODE/BVP liquid crystal boundary conditions.

% RES = LCBC(YA,YB,LAMBDA) evaluates residual.

res = [ya(1); yb(1)];

% ----------------------------------------------------------------------

function yinit = lcinit(x)

%LCINIT ODE/BVP liquid crystal initial guess.

% YINIT = LCINIT(X) evaluates initial guess at X.

yinit = [sin(0.5*(x+1)*pi); 0.5*pi*cos(0.5*(x+1)*pi)];
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Figure 12.12. Liquid crystal BVP solved by bvp4c.

This system is encoded in the subfunction skip and the boundary conditions in

skipbc. Our initial guess for the solution is y1(x) = sin(x), y2(x) = cos(x), speci�ed

in skipinit. Note that the input argument 5 is added in the call to bvpinit. This is

our guess for �, and it is stored in the parameters �eld of the structure solinit and

hence passed to bvp4c. Figure 12.13 shows the solution computed by bvp4c. The

computed value for � is returned in the parameters �eld of the structure sol. We

have

>> sol = skiprun

sol =

x: [0 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667 ...

0.7778 0.8889 1]

y: [2x10 double]

yp: [2x10 double]

parameters: 4.1159

It is known that this BVP has eigenvalues given by � = 
2, where  is a solution of

tan() +  = 0. Using fzero to locate a  value near 2, we can check the accuracy of

the computed � as follows:

>> gam = fzero('tan(x)+x',2); mu = gam^2;

Zero found in the interval: [1.9434, 2.0566].

>> error = abs(sol.parameters - mu)

error =

2.5541e-05

The tutorial [71] gives a range of examples that illustrate the versatility of bvp4c.

The examples deal with a number of issues, including
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Listing 12.4. Function skiprun.

function sol = skiprun

%SKIPRUN Skipping rope BVP/eigenvalue example.

solinit = bvpinit(linspace(0,1,10),@skipinit,5);

sol = bvp4c(@skip,@skipbc,solinit);

plot(sol.x,sol.y(1,:),'-', sol.x,sol.yp(1,:),'--', 'LineWidth',4)

xlabel('x','FontSize',12)

legend('y_1','y_2',0)

% ------------------------------------------------------------------

% Subfunctions.

% ------------------------------------------------------------------

function yprime = skip(x,y,mu)

%SKIP ODE/BVP skipping rope example.

% YPRIME = SKIP(X,Y,MU) evaluates derivative.

yprime = [y(2); -mu*y(1)];

% ------------------------------------------------------------------

function res = skipbc(ya,yb,mu)

%SKIPBC ODE/BVP skipping rope boundary conditions.

% RES = SKIPBC(YA,YB,MU) evaluates residual.

res = [ya(1); ya(2)-1; yb(1)+yb(2)];

% ------------------------------------------------------------------

function yinit = skipinit(x)

%SKIPINIT ODE/BVP skipping rope initial guess.

% YINIT = SKIPINIT(X) evaluates initial guess at X.

yinit = [sin(x); cos(x)];
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Figure 12.13. Skipping rope eigenvalue BVP solved by bvp4c.

� changing the error tolerances,

� evaluating the solution at any point in the range [a; b],

� choosing appropriate initial guesses by continuation,

� dealing with singularities,

� solving problems with periodic boundary conditions,

� solving problems over an in�nite interval,

� solving multipoint BVPs (where non-endpoint conditions are speci�ed for the

solution).

Further information can also be obtained from the help for the functions bvp4c,

bvpget, bvpinit, bvpval, bvpset, and the example �les

twobvp: solves a BVP that has exactly two solutions;

mat4bvp: �nds the fourth eigenvalue of Mathieu's equation;

shockbvp: solves a di�cult BVP with a shock layer.

12.4. Partial Di�erential Equations with pdepe

MATLAB's pdepe solves a class of parabolic/elliptic partial di�erential equation

(PDE) systems. These systems involve a vector-valued unknown function u that
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depends on a scalar space variable, x, and a scalar time variable, t. The general class

to which pdepe applies has the form

c

�
x; t; u;

@u

@x

�
@u

@t
= x

�m @

@x

�
x
m
f

�
x; t; u;

@u

@x

��
+ s

�
x; t; u;

@u

@x

�
;

where a � x � b and t0 � t � tf . The integer m can be 0, 1 or 2, corresponding to

slab, cylindrical and spherical symmetry, respectively. The function c is a diagonal

matrix and the ux and source functions f and s are vector valued. Initial and

boundary conditions must be supplied in the following form. For a � x � b and

t = t0 the solution must satisfy u(x; t0) = u0(x) for a speci�ed function u0. For x = a

and t0 � t � tf the solution must satisfy

pa(x; t; u) + qa(x; t)f

�
x; t; u;

@u

@x

�
= 0;

for speci�ed functions pa and qa. Similarly, for x = b and t0 � t � tf ,

pb(x; t; u) + qb(x; t)f

�
x; t; u;

@u

@x

�
= 0

must hold for speci�ed functions pb and qb. Certain other restrictions are placed on

the class of problems that can be solved by pdepe; see doc pdepe for details.

A call to pdepe has the general form

sol = pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,tspan,options,p1,p2,...);

which is similar to the syntax for bvp4c. The input argument m can take the values

0, 1 or 2, as described above. The function pdefun has the form

function [c,f,s] = pdefun(x,t,u,DuDx,p1,p2,...)

It accepts the space and time variables together with vectors u and DuDx that approx-

imate the solution u and the partial derivative @u=@x, and returns vectors containing

the diagonal of the matrix c and the ux and source functions f and s. Initial condi-

tions are encoded in the function pdeic, which takes the form

function u0 = pdeic(x,p1,p2,...)

The function pdebc of the form

function [pa,qa,pb,qb] = pdebc(xa,ua,xb,ub,t,p1,p2,...)

evaluates pa, qa, pb and qb for the boundary conditions at xa = a and xb = b. The

vector xmesh in the argument list of pdepe is a set of points in [a; b] with xmesh(1)= a

and xmesh(end) = b, ordered so that xmesh(i) < xmesh(i+1). This de�nes the x

values at which the numerical solution is computed. The algorithm uses a second-

order spatial discretization method based on the xmesh values. Hence the choice of

xmesh has a strong inuence on the accuracy and cost of the numerical solution.

Closely spaced xmesh points should be used in regions where the solution is likely to

vary rapidly with respect to x. The vector tspan speci�es the time points in [t0; tf ]

where the solution is to be returned, with tspan(1) = t0, tspan(end) = tf and

tspan(i) < tspan(i+1). The time integration in pdepe is performed by ode15s

and the actual timestep values are chosen dynamically|the tspan points simply
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determine where the solution is returned and have little impact on the cost or accuracy.

The default properties of ode15s can be overridden via the optional input argument

options, which can be created with the odeset function (see Section 12.2.1). Altering

the defaults is not usually necessary so we do not discuss this further. The remaining

input arguments p1,p2,... are optional problem parameters that are passed to the

functions pdefun, pdeic and pdebc. These functions should have p1,p2,... as input

arguments only if they are present in the call to pdepe.

The output argument sol is a three-dimensional array such that sol(j,k,i) is the

approximation to the ith component of u at the point t = tspan(j), x = xmesh(k).

A postprocessing function pdeval is available for computing u and @u=@x at points

that are not in xmesh.

To illustrate the use of pdepe, we begin with the Black{Scholes PDE, famous for

modelling derivative prices in �nancial mathematics. In transformed and dimension-

less form [84, Sec. 5.4], using parameter values from [63, Chap. 13], we have

@u

@t
=
@
2
u

@x2
+ (k � 1)

@u

@x
� ku; a � x � b; t0 � t � tf ;

where k = r=(�2=2), r = 0:065, � = 0:8, a = log(2=5), b = log(7=5), t0 = 0, tf = 5,

with initial condition

u(x; 0) = max(exp(x)� 1; 0)

and boundary conditions

u(a; t) = 0; u(b; t) =
7� 5 exp(�kt)

5
:

This is of the general form allowed by pdepe with m = 0 and

c(x; t; u) = 1; f

�
x; t; u;

@u

@x

�
=
@u

@x
; s

�
x; t; u;

@u

@x

�
= (k � 1)

@u

@x
� ku:

At x = a the boundary conditions have p(x; t; u) = u and q(x; t; u) = 0, and at x = b

they have p(x; t; u) = u � (7 � 5 exp(�kt))=5 and q(x; t; u) = 0. The function bs in

Listing 12.5 implements the problem. Here, we have used linspace to generate 40

equally spaced x-values between a and b for the spatial mesh and 20 equally spaced

t-values between t0 and tf for the output times. The call to pdepe includes the input

argument [] as a placeholder for options. The subfunction bspde de�nes the PDE

in terms of c, f and s and bsic speci�es the initial condition. Similarly, in the

subfunction bsbc the boundary conditions at x = a and x = b are returned in pa, qa,

pb and qb. Note that the parameter k must be passed to each of these subfunctions.

We use the 3D plotting function mesh to display the solution. Figure 12.14 shows the

resulting picture.

Next, we look at a system of two reaction-di�usion equations of a type that arises

in mathematical biology [33, Chap. 11]:

@u

@t
=

1

2

@
2
u

@x2
+

1

1 + v2
;

@v

@t
=

1

2

@
2
v

@x2
+

1

1 + u2
;

for 0 � x � 1 and 0 � t � 0:2. Our initial conditions are

u(x; 0) = 1 + 1
2
cos(2�x); v(x; 0) = 1� 1

2
cos(2�x);
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Listing 12.5. Function bs.

function bs

%BS Black-Scholes PDE.

% Solves the transformed Black-Scholes equation.

m = 0;

r = 0.065;

sigma = 0.8;

k = r/(0.5*sigma^2);

a = log(2/5);

b = log(7/5);

t0 = 0;

tf = 5;

xmesh = linspace(a,b,40);

tspan = linspace(t0,tf,20);

sol = pdepe(m,@bspde,@bsic,@bsbc,xmesh,tspan,[],k);

u = sol(:,:,1);

mesh(xmesh,tspan,u)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

zlabel('u','FontSize',12,'Rotation',0)

% ---------------------------------------------------------

% Subfunctions.

% ---------------------------------------------------------

function [c,f,s] = bspde(x,t,u,DuDx,k)

%BSPDE Black-Scholes PDE.

c = 1;

f = DuDx;

s = (k-1)*DuDx-k*u;

% ---------------------------------------------------------

function u0 = bsic(x,k)

%BSIC Initial condition at t = t0.

u0 = max(exp(x)-1,0);

% ---------------------------------------------------------

function [pa,qa,pb,qb] = bsbc(xa,ua,xb,ub,t,k)

%BSBC Boundary conditions at x = a and x = b.

pa = ua;

qa = 0;

pb = ub - (7 - 5*exp(-k*t))/5;

qb = 0;
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Figure 12.14. Black{Scholes solution with pdepe.

and our boundary conditions are

@u

@x
(0; t) =

@u

@x
(1; t) =

@v

@x
(0; t) =

@v

@x
(1; t) = 0:

To put this into the framework of pdepe we write (u; v) as (u1; u2) and express the

PDE as �
1 0

0 1

�
�

@

@t

�
u1

u2

�
=

@

@x

"
1
2
@u1=@x

1
2
@u2=@x

#
+

�
1=(1 + u

2
2)

1=(1 + u
2
1)

�
:

The function mbiol in Listing 12.6 solves the PDE system. Note that the output

arguments c, f, s, pa, qa, pb and qb in the subfunctions mbpde and mbbc are 2-by-1

arrays, because there are two PDEs in the system. The solutions plotted with surf

can be seen in the upper part of Figure 12.15. It follows from [33, Ex. 11.5] that the

energy

E(t) =
1

2

Z 1

0

"�
@u

@x

�2
+

�
@v

@x

�2#
dx

decays exponentially to zero as t ! 1. To verify this fact numerically, we use

simple �nite di�erences and quadrature in mbiol to approximate the energy integral.

(Alternatively, the function pdeval could be used to obtain approximations to @u=@x

and @v=@x.) The resulting plot of E(t) is given in the lower part of Figure 12.15.

Further examples of pdepe in use can be found in doc pdepe. We note that

pdepe is designed to solve a subclass of small systems of parabolic and elliptic PDEs

to modest accuracy. If your PDE is not suitable for pdepe then the Partial Di�erential

Equation Toolbox might be appropriate.
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Listing 12.6. Function mbiol.

function mbiol

%MBIOL Reaction-diffusion system from mathematical biology.

% Solves the PDE and tests the energy decay condition.

m = 0;

xmesh = linspace(0,1,15);

tspan = linspace(0,0.2,10);

sol = pdepe(m,@mbpde,@mbic,@mbbc,xmesh,tspan);

u1 = sol(:,:,1);

u2 = sol(:,:,2);

subplot(221)

surf(xmesh,tspan,u1)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

title('u_1','FontSize',16)

subplot(222)

surf(xmesh,tspan,u2)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

title('u_2','FontSize',16)

% Estimate energy integral.

dx = xmesh(2) - xmesh(1); % Constant spacing.

energy = 0.5*sum( (diff(u1,1,2)).^2 + (diff(u2,1,2)).^2, 2)/dx;

subplot(212)

plot(tspan',energy)

xlabel('t','FontSize',12)

title('Energy','FontSize',16)

% ---------------------------------------------------------------

% Subfunctions.

% ---------------------------------------------------------------

function [c,f,s] = mbpde(x,t,u,DuDx)

c = [1; 1];

f = DuDx/2;

s = [1/(1+u(2)^2); 1/(1+u(1)^2)];

% ---------------------------------------------------------------

function u0 = mbic(x);

u0 = [1+0.5*cos(2*pi*x); 1-0.5*cos(2*pi*x)];

% ---------------------------------------------------------------

function [pa,qa,pb,qb] = mbbc(xa,ua,xb,ub,t)

pa = [0; 0];

qa = [1; 1];

pb = [0; 0];

qb = [1; 1];
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Figure 12.15. Reaction-di�usion system solution with pdepe.

Multidimensional integrals are another whole multidimensional bag of worms.

| WILLIAM H. PRESS, SAUL A. TEUKOLSKY,

WILLIAM T. VETTERLING and BRIAN P. FLANNERY,

Numerical Recipes in FORTRAN (1992)

Perhaps the crudest way to evaluate
R
x

y
f(u)du

is to plot the graph of f(u) on uniformly squared paper

and then count the squares that lie inside the desired area.

This method gives numerical integration its other name:

numerical quadrature.

Another way, suitable for chemists,

is to plot the graph on paper of uniform density,

cut out the area in question, and weigh it.

| WILLIAM M. KAHAN, Handheld Calculator Evaluates Integrals (1980)

The options vector is optional.

| LAWRENCE F. SHAMPINE and MARK W. REICHELT,

The MATLAB ODE Suite (1997)

Just about any BVP can be formulated for solution with bvp4c.

| LAWRENCE F. SHAMPINE, JACEK KIERZENKA and MARK W. REICHELT,

Solving Boundary Value Problems for Ordinary

Di�erential Equations in MATLAB with bvp4c (2000)



Chapter 13

Input and Output

In this chapter we discuss how to obtain input from the user, how to display informa-

tion on the screen, and how to read and write text �les. Note that textual output can

be captured into a �le (perhaps for subsequent printing) using the diary command,

as described on p. 29. How to print and save �gures is discussed in Section 8.4.

13.1. User Input

User input can be obtained with the input function, which displays a prompt and

waits for a user response:

>> x = input('Starting point: ')

Starting point: 0.5

x =

0.5000

Here, the user has responded by typing \0.5", which is assigned to x. The input is

interpreted as a string when an argument 's' is appended:

>> mytitle = input('Title for plot: ','s')

Title for plot: Experiment 2

mytitle =

Experiment 2

The function ginput collects data via mouse clicks. The command

[x,y] = ginput(n)

returns in the vectors x and y the coordinates of the next n mouse clicks from the

current �gure window. Input can be terminated before the nth mouse click by pressing

the return key. One use of ginput is to �nd the approximate location of points on

a graph. For example, with Figure 8.7 in the current �gure window, you might type

[x,y] = ginput(1) and click on one of the places where the curves intersect. As

another example, the �rst two lines of the Bezier curve example on p. 85 can be

replaced by

axis([0 1 0 1])

[x,y] = ginput(4);

P = [x';y'];

Now the control points are determined by the user's mouse clicks.

The pause command suspends execution until a key is pressed, while pause(n)

waits for n seconds before continuing. Typical use of pause is between plots displayed

in sequence. It is also used in conjunction with the echo command for M-�les intended

for demonstration; to see an example, type type census.
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13.2. Output to the Screen

The results of MATLAB computations are displayed on the screen whenever a semi-

colon is omitted after an assignment and the format of the output can be varied using

the format command. But much greater control over the output is available with the

use of several functions.

The disp function displays the value of a variable, according to the current format,

without �rst printing the variable name and \=". If its argument is a string, disp

displays the string. Example:

>> disp('Here is a 3-by-3 magic square'), disp(magic(3))

Here is a 3-by-3 magic square

8 1 6

3 5 7

4 9 2

More sophisticated formatting can be done with the fprintf function. The syntax

is fprintf(format,list-of-expressions), where format is a string that speci�es the

precise output format for each expression in the list. In the example

>> fprintf('%6.3f\n', pi)

3.142

the % character denotes the start of a format speci�er requesting a �eld width of

6 with 3 digits after the decimal point and \n denotes a new line (without which

subsequent output would continue on the same line). If the speci�ed �eld width is

not large enough MATLAB expands it as necessary:

>> fprintf('%6.3f\n', pi^10)

93648.047

The �xed point notation produced by f is suitable for displaying integers (using %n.0f)

and when a �xed number of decimal places are required, such as when displaying

dollars and cents (using %n.2f). If f is replaced by e then the digit after the period

denotes the number of signi�cant digits to display in exponential notation:

>> fprintf('%12.3e\n', pi)

3.142e+000

When choosing the �eld width remember that for a negative number a minus sign

occupies one position:

>> fprintf('%5.2f\n%5.2f\n',exp(1),-exp(1))

2.72

-2.72

A minus sign just after the % character causes the �eld to be left-justi�ed. Compare

>> fprintf('%5.0f\n%5.0f\n',9,103)

9

103

>> fprintf('%-5.0f\n%-5.0f\n',9,103)

9

103
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The format string can contain characters to be printed literally, as the following

example shows:

>> m = 5; iter = 11; U = orth(randn(m)) + 1e-10;

>> fprintf('iter = %2.0f\n', iter)

iter = 11

>> fprintf('norm(U''*U-I) = %11.4e\n', norm(U'*U - eye(m)))

norm(U'*U-I) = 8.4618e-010

Note that, within a string, '' represents a single quote.

To print % and \ use \% and \\ in the format string. Another useful format

speci�er is g, which uses whichever of e and f produces the shorter result:

>> fprintf('%g %g\n', exp(1), exp(20))

2.71828 4.85165e+008

Various other speci�ers and special characters are supported by fprintf, which be-

haves similarly to the C function of the same name; see doc fprintf.

If more numbers are supplied to be printed than there are format speci�ers in the

fprintf statement then the format speci�ers are reused, with elements being taken

from a matrix down the �rst column, then down the second column, and so on. This

feature can be used to avoid a loop. Example:

>> A = [30 40 60 70];

>> fprintf('%g miles/hour = %g kilometers/hour\n', [A; 8*A/5])

30 miles/hour = 48 kilometers/hour

40 miles/hour = 64 kilometers/hour

60 miles/hour = 96 kilometers/hour

70 miles/hour = 112 kilometers/hour

The function sprintf is analogous to fprintf but returns its output as a string. It

is useful for producing labels for plots. A simpler to use but less versatile alternative

is num2str: num2str(x,n) converts x to a string with n signi�cant digits, with n

defaulting to 4. For converting integers to strings, int2str can be used. Here are

three examples, the second and third of which make use of string concatenation (see

Section 18.1).

>> n = 16;

>> err_msg = sprintf('Must supply a %d-by-%d matrix', n, n)

err_msg =

Must supply a 16-by-16 matrix

>> disp(['Pi is given to 6 significant figures by ' num2str(pi,6)])

Pi is given to 6 significant figures by 3.14159

>> i = 3;

>> title_str = ['Result of experiment ' int2str(i)]

title_str =

Result of experiment 3
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13.3. File Input and Output

A number of functions are provided for reading and writing binary and formatted

text �les; type help iofun to see the complete list.

We show by example how to write data to a formatted text �le and then read it

back in. Before operating on a �le it must be opened with the fopen function, whose

�rst argument is the �lename and whose second argument is a �le permission, which

has several possible values including 'r' for read and 'w' for write. A �le identi�er

is returned by fopen; it is used in subsequent read and write statements to specify

the �le. Data is written using the fprintf function, which takes as its �rst argument

the �le identi�er. Thus the code

A = [30 40 60 70];

fid = fopen('myoutput','w');

fprintf(fid,'%g miles/hour = %g kilometers/hour\n', [A; 8*A/5]);

fclose(fid);

creates a �le myoutput containing

30 miles/hour = 48 kilometers/hour

40 miles/hour = 64 kilometers/hour

60 miles/hour = 96 kilometers/hour

70 miles/hour = 112 kilometers/hour

The �le can be read in as follows.

>> fid = fopen('myoutput','r');

>> X = fscanf(fid,'%g miles/hour = %g kilometers/hour')

X =

30

48

40

64

60

96

70

112

>> fclose(fid);

The fscanf function reads data formatted according to the speci�ed format string,

which in this example says \read a general oating point number (%g), skip over the

string ' miles/hour = ', read another general oating point number and skip over

the string ' kilometers/hour'. The format string is recycled until the entire �le

has been read and the output is returned in a vector. We can convert the vector to

the original matrix format using

>> X = reshape(X,2,4)'

X =

30 48

40 64

60 96

70 112
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Alternatively, a matrix of the required shape can be obtained directly:

>> X = fscanf(fid,'%g miles/hour = %g kilometers/hour',[2 inf]);

>> X = X'

X =

30 48

40 64

60 96

70 112

The third argument to fprintf speci�es the dimensions of the output matrix, which

is �lled column by column. We specify inf for the number of columns, to allow for

any number of lines in the �le, and transpose to recover the original format.

Binary �les are created and read using the functions fread and fwrite. See the

online help for details of their usage.

Make input easy to prepare and output self-explanatory.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Output is almost like input but it's not input, it's output.

To correlate the output with the input and

to verify that the input was put in correctly,

it's a good idea to output the input along with the output.

| ROGER EMANUEL KAUFMAN, A FORTRAN Coloring Book (1978)

On two occasions I have been asked [by members of Parliament],

\Pray, Mr. Babbage,

if you put into the machine wrong �gures,

will the right answers come out?"

I am not able rightly to apprehend

the kind of confusion of ideas

that could provoke such a question.

| CHARLES BABBAGE
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Troubleshooting

14.1. Errors and Warnings

Errors in MATLAB are of two types: syntax errors and runtime errors. A syntax

error is illustrated by

>> for i=1#10, x(i) = 1/i; end

??? for i=1#10, x(i) = 1/i; end

|

Error: Missing variable or function.

Here a # has been typed instead of a colon and the error message pinpoints where the

problem occurs. If an error occurs in an M-�le then the name of the M-�le and the line

on which the error occurred are shown. If you move the cursor onto the error message

and press the enter key then the M-�le is opened in the MATLAB Editor/Debugger

(see Section 7.2) and the cursor is placed on the line containing the error.

A runtime error occurs with the script fib in Listing 14.1. The loop should begin

at i = 3 to avoid referencing x(0). When we run the script, MATLAB produces an

informative error message:

>> fib

??? Index into matrix is negative or zero.

Error in ==> FIB.M

On line 4 ==> x(i) = x(i-1) + x(i-2);

When an error occurs in a nested sequence of M-�le calls, the history of the calls is

shown in the error message. The �rst \Error in" line is the one describing the M-�le

in which the error is located.

MATLAB's error messages are sometimes rather unhelpful and occasionally mis-

leading. It is perhaps inevitable with such a powerful language that an error message

does not always make it immediately clear what has gone wrong. We give a few ex-

amples illustrating error messages generated for reasons that are perhaps not obvious.

� "end" expected, "End of Input" found. This message indicates a missing

end, which is usually easy to correct. The message is produced by the following code,

which is one way of implementing the sign function (MATLAB's sign):

if x > 0

f = 1;

else if x == 0

f = 0;

else
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Listing 14.1. Script fib that generates a runtime error.

%FIB Fibonacci numbers.

x = ones(50,1);

for i = 2:50

x(i) = x(i-1) + x(i-2);

end

f = -1;

end

The problem is an unwanted space between else and if. MATLAB (correctly)

interprets the if after the else as starting a new if statement and then complains

when it runs out of ends to match the ifs.

� Undefined function or variable. Several commands, such as clear, load

and global, take a list of arguments separated by spaces. If a comma is used in

the list it is interpreted as separating statements, not arguments. For example, the

command clear a,b clears a and prints b, so if b is unde�ned the above error message

is produced.

� Matrix must be square. This message is produced when an attempt is made

to exponentiate a nonsquare matrix, and can be puzzling. For example, it is generated

by the expression (1:5)^3, which was presumably meant to be an elementwise cubing

operation and thus should be expressed as (1:5).^3.

� At least one operand must be scalar. This message is generated when el-

ementwise exponentiation is intended but ^ is typed instead of .^, as in (1:5)^(1:5).

� Missing operator, comma, or semicolon. This message can be produced by

a typing error, for example in response to hlp qr or typ peaks.

Many functions check for error conditions, issuing an error message and terminat-

ing when one occurs. For example:

>> mod(3,sqrt(-2))

??? Error using ==> mod

Arguments must be real.

In an M-�le this behavior can be achieved with the error command:

if ~isreal(arg2), error('Arguments must be real.'), end

produces the result just shown when arg2 is not real.

The function warning, like error, displays its string argument, but execution

continues instead of stopping. The reason for using warning rather than displaying

a string with disp (for example) is that the display of warning messages can be con-

trolled via certain special string arguments to warning. In particular, warning('off')

or warning off turns o� the display of warning messages and warning('on') or

warning on turns them back on again. See help warning for further options. If you

change the warning state in an M-�le it is good practice to save the old state and

restore it before the end of the M-�le, as in the following example:

warns = warning;

warning('off')
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...

warning(warns)

The most recent error and warning messages can be recalled with the lasterr

and lastwarn functions.

14.2. Debugging

Debugging MATLAB M-�les is in principle no di�erent to debugging any other type

of computer program, but several facilities are available to ease the task. When an M-

�le runs but does not perform as expected it is often helpful to print out the values of

key variables, which can be done by removing semicolons from assignment statements

or adding statements consisting of the relevant variable names.

When it is necessary to inspect several variables and the relations between them

the keyboard statement is invaluable. When a keyboard statement is encountered in

an M-�le execution halts and a command line with the special prompt K>> appears.

Any MATLAB command can be executed and variables in the workspace can be

inspected or changed. When keyboard mode is invoked from within a function the

visible workspace is that of the function. The command dbup changes the workspace

to that of the calling function or the main workspace; dbdown reverses the e�ect of

dbup. Typing return followed by the return key causes execution of the M-�le to

be resumed. The dbcont command has the same e�ect. Alternatively, the dbquit

command quits keyboard mode and terminates the M-�le.

Another way to invoke keyboard mode is via the debugger. Typing

dbstop at 5 in foo

sets a breakpoint at line 5 of foo.m; this causes subsequent execution of foo.m to

stop just before line 5 and keyboard mode to be entered. A listing of foo.m with line

numbers is obtained with dbtype foo. Breakpoints are cleared using the dbclear

command.

We illustrate the use of the debugger on the script fib discussed in the last section

(Listing 14.1). Here, we set a breakpoint on a runtime error and then inspect the

value of the loop index when the error occurs:

>> dbstop if error

>> fib

??? Index into matrix is negative or zero.

Error in ==> FIB.M

On line 4 ==> x(i) = x(i-1) + x(i-2);

K>> i

i =

2

K>> dbquit

>>

MATLAB's debugger is a powerful tool with several other features that we do not

describe here. In addition to the command line interface to the debugger illustrated

above, an Editor/Debugger window is available that provides a visual interface (see

Section 7.2).
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A useful tip for debugging is to execute

>> clear all

and one of

>> clf

>> close all

before executing the code with which you are having trouble. The �rst command

clears variables and functions from memory. This is useful when, for example, you are

working with scripts because it is possible for existing variables to cause unexpected

behavior or to mask the fact that a variable is accessed before being initialized in the

script. The other commands are useful for clearing the e�ects of previous graphics

operations.

14.3. Pitfalls

We give some suggestions to help avoid pitfalls particular to MATLAB.

� If you use functions i or j for the imaginary unit, make sure that they have not

previously been overridden by variables of the same name (clear i or clear

j clears the variable and reverts to the functional form). In general it is not

advisable to choose variable names that are the names of MATLAB functions.

For example, if you assign

>> rand = 1;

then subsequent attempts to use the rand function generate an error:

>> A = rand(3)

??? Index exceeds matrix dimensions.

In fact, MATLAB is still aware of the function rand, but the variable takes

precedence, as can be seen from

>> which -all rand

rand is a variable.

rand is a built-in function.

C:\MATLAB\toolbox\matlab\elmat\rand.m % Shadowed

� Confusing behavior can sometimes result from the fact that max, min and sort

behave di�erently for real and for complex data|in the complex case they

work with the absolute values of the data. For example, suppose we compute

the following 4-vector, which should be real but has a tiny nonzero imaginary

part due to rounding errors:

e =

4.0076e+000 -2.7756e-016i

-6.2906e+000 +3.8858e-016i

-2.9444e+000 +4.9061e-017i

9.3624e-001 +1.6575e-016i
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To �nd the most negative element we need to use min(real(e)) rather than

min(e):

>> min(e)

ans =

9.3624e-001 +1.6575e-016i

>> min(real(e))

ans =

-6.2906e+000

� Mathematical formulae and descriptions of algorithms often index vectors and

matrices so that their subscripts start at 0. Since subscripts of MATLAB ar-

rays start at 1, translation of subscripts is necessary when implementing such

formulae and algorithms in MATLAB.

The road to wisdom?

Well, it's plain and simple to express:

Err

and err

and err again

but less

and less

and less.

| PIET HEIN, Grooks (1966)

Beware of bugs in the above code;

I have only proved it correct, not tried it.

| DONALD E. KNUTH7 (1977)

Test programs at their boundary values.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

By June 1949 people had begun to realize that

it was not so easy to get a program right as had at one time appeared. . .

The realization came over me with full force that

a good part of the remainder of my life was going to be spent in

�nding errors in my own programs.

| MAURICE WILKES, Memoirs of a Computer Pioneer (1985)

7See http://www-cs-faculty.stanford.edu/~knuth/faq.html





Chapter 15

Sparse Matrices

A sparse matrix is one with a large percentage of zero elements. When dealing with

large, sparse matrices, it is desirable to take advantage of the sparsity by storing and

operating only on the nonzeros. MATLAB has a sparse data type that stores just

the nonzero entries of a matrix together with their row and column indices. In this

chapter we will use the term \sparse matrix" for a matrix stored in the sparse data

type and \full matrix" for a matrix stored in the (default) double data type.

15.1. Sparse Matrix Generation

Sparse matrices can be created in various ways, several of which involve the sparse

function. Given a t-vector s of matrix entries and t-vectors i and j of indices, the

command A = sparse(i,j,s) de�nes a sparse matrix A of dimension max(i)-by-

max(j) with A(i(k),j(k)) = s(k), for k=1: t and all other elements zero. Example:

>> A = sparse([1 2 2 4 4],[3 1 4 2 4],1:5)

A =

(2,1) 2

(4,2) 4

(1,3) 1

(2,4) 3

(4,4) 5

MATLAB displays a sparse matrix by listing the nonzero entries preceded by their

indices, sorted by columns. A sparse matrix can be converted to a full one using the

full function:

>> B = full(A)

B =

0 0 1 0

2 0 0 3

0 0 0 0

0 4 0 5

Conversely, a full matrix B is converted to the sparse storage format by A = sparse(B).

The number of nonzeros in a sparse (or full) matrix is returned by nnz:

>> nnz(A)

ans =

5

After de�ning A and B, we can use the whos command to check the amount of storage

used:

189



190 Sparse Matrices

>> whos

Name Size Bytes Class

A 4x4 80 sparse array

B 4x4 128 double array

Grand total is 21 elements using 208 bytes

The matrix B comprises 16 double precision numbers of 8 bytes each, making a total

of 128 bytes. The storage required for a sparse n-by-n matrix with nnz nonzeros is

8*nnz + 4*(nnz+n+1) bytes, which includes the nnz double precision numbers plus

some 4-byte integers.

The sparse function accepts three extra arguments. The command

A = sparse(i,j,s,m,n)

constructs an m-by-n sparse matrix; the last two arguments are necessary when the

last row or column of A is all zero. The command

A = sparse(i,j,s,m,n,nzmax)

allocates space for nzmax nonzeros, which is useful if extra nonzeros, not in s, are to

be introduced later, for example when A is generated column by column.

A sparse matrix of zeros is produced by sparse(m,n) (both arguments must be

speci�ed), which is an abbreviation for sparse([],[],[],m,n,0).

The sparse identity matrix is produced by speye(n) or speye(m,n), while the

command spones(A) produces a matrix with the same sparsity pattern as A and with

ones in the nonzero positions.

The arguments that sparse would need to reconstruct an existing matrix A via

sparse(i,j,s,m,n) can be obtained using

[i,j,s] = find(A);

[m,n] = size(A);

The function spdiags is an analogue of diag for sparse matrices. The command

A = spdiags(B,d,m,n) creates an m-by-n matrix A whose diagonals indexed by d are

taken from the columns of B. This function is best understood by looking at examples.

Given

B =

1 2 0

1 2 3

0 2 3

0 2 3

d =

-2 0 1

we can de�ne

>> A = spdiags(B,d,4,4)

A =

(1,1) 2

(3,1) 1



15.2 Linear Algebra 191

(1,2) 3

(2,2) 2

(4,2) 1

(2,3) 3

(3,3) 2

(3,4) 3

(4,4) 2

>> full(A)

ans =

2 3 0 0

0 2 3 0

1 0 2 3

0 1 0 2

Note that the subdiagonals are taken from the leading parts of the columns of B and

the superdiagonals from the trailing parts. Diagonals can be extracted with spdiags:

[B,d] = spdiags(A) recovers B and d above. The next example sets up a particular

tridiagonal matrix:

>> n = 5; e = ones(n,1);

>> A = spdiags([-e 4*e -e],[-1 0 1],n,n);

>> full(A)

ans =

4 -1 0 0 0

-1 4 -1 0 0

0 -1 4 -1 0

0 0 -1 4 -1

0 0 0 -1 4

Random sparse matrices are generated with sprand and sprandn. The command A

= sprand(S) generates a matrix with the same sparsity pattern as S and with nonzero

entries uniformly distributed on [0; 1]. Alternatively, A = sprand(m,n,density)

generates an m-by-n matrix of a random sparsity pattern containing approximately

density*m*n nonzero entries uniformly distributed on [0; 1]. With four input argu-

ments, A = sprand(m,n,density,rc) produces a matrix for which the reciprocal of

the condition number is about rc. The syntax for sprandn is the same, but random

numbers from the normal (0,1) distribution are produced.

An invaluable command for visualizing sparse matrices is spy, which plots the

sparsity pattern with a dot representing a nonzero; see the plots in the next section.

A sparse array can be distinguished from a full one using the logical function

issparse (there is no \isfull" function); see Table 6.1.

15.2. Linear Algebra

MATLAB is able to solve sparse linear equation, eigenvalue and singular value prob-

lems, taking advantage of sparsity.

As for full matrices, the backslash operator \ can be used to solve linear systems.

The e�ect of x = A\b when A is sparse is as follows. If A is square then the same oper-

ations as in the full case are performed (see Section 9.2.1), except that a reordering is

used in the LU or Cholesky factorization to try to reduce the computation and storage
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and no warning message is produced if A is nearly singular. If A is rectangular then

QR factorization is used; a rank de�ciency test is performed based on the diagonal

elements of the triangular factor.

To compute or estimate the condition number of a sparse matrix condest should

be used (see Section 9.1), as cond and rcond are designed only for full matrices.

The lu function for LU factorization and the chol function for Cholesky factor-

ization behave in a similar way for sparse matrices as for full matrices. The same

factorizations are produced (using partial pivoting in the case of LU factorization),

but the computations are done using sparse data structures. The lu function has one

option not present in the full case: lu(A,thresh) sets a pivoting threshold thresh,

which must lie between 0 and 1. The pivoting strategy requires that the pivot element

have magnitude at least thresh times the magnitude of the largest element below the

diagonal in the pivot column. The default is 1, corresponding to partial pivoting, and

a threshold of 0 forces no pivoting.

Since lu and chol do not pivot for sparsity (that is, they do not use row or column

interchanges in order to try to reduce the cost of the factorizations), it is advisable

to consider reordering the matrix before factorizing it. A full discussion of reordering

algorithms is beyond the scope of this book, but we give some examples.

We illustrate reorderings with the Wathen matrix:

A = gallery('wathen',8,8);

subplot(121), spy(A), subplot(122), spy(chol(A))

The spy plots of A and its Cholesky factor are shown in Figure 15.1. Now we reorder

the matrix using the symmetric reverse Cuthill{McKee permutation and refactorize:

r = symrcm(A);

subplot(121), spy(A(r,r)), subplot(122), spy(chol(A(r,r)))

Note that all the reordering functions return an integer permutation vector rather

than a permutation matrix (see Section 21.3 for more on permutation vectors and

matrices). The spy plots are shown in Figure 15.2. Finally, we try the symmetric

minimum degree ordering:

m = symmmd(A);

subplot(121), spy(A(m,m)), subplot(122), spy(chol(A(m,m)))

The spy plots are shown in Figure 15.3. For this matrix the minimum degree ordering

leads to the sparsest Cholesky factor|the one with the least nonzeros. Another re-

ordering function is symamd, the symmetric approximate minimum degree ordering,

which for this example produces an even sparser Cholesky factor.

For LU factorization, possible reorderings include

p = colamd(A); p = colmmd(A); p = colperm(A);

after which A(:,p) is factorized.

In the QR factorization [Q,R] = qr(A) of a sparse rectangular matrix A the or-

thogonal factor Q can be much less sparse than A, so it is usual to try to avoid

explicitly forming Q. When given a sparse matrix and one output argument, the

qr function returns just the upper triangular factor R: R = qr(A). When called as

[C,R] = qr(A,B), the matrix C = Q'*B is returned along with R. This enables an

overdetermined system Ax = b to be solved in the least squares sense by
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Figure 15.1. Wathen matrix (left) and its Cholesky factor (right).
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Figure 15.2. Wathen matrix (left) and its Cholesky factor (right) with symmetric

reverse Cuthill{McKee ordering.
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Figure 15.3. Wathen matrix (left) and its Cholesky factor (right) with symmetric

minimum degree ordering.
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[c,R] = qr(A,b);

x = R\c;

The backslash operator (A\b) uses this method for rectangular A.

The iterative linear system solvers in Table 9.1 are also designed to handle large

sparse systems. See Section 9.8 for details of how to use them. Sparse eigenvalue and

singular value problems can be solved using eigs and svds, which are also described

in Section 9.8.

How much of the matrix must be zero for it to be considered sparse

depends on the computation to be performed,

the pattern of the nonzeros,

and even the architecture of the computer.

Generally, we say that a matrix is sparse

if there is an advantage in exploiting its zeros.

| I. S. DUFF, A. M. ERISMAN and J. K. REID,

Direct Methods for Sparse Matrices (1986)

Sparse matrices are created explicitly rather than automatically.

If you don't need them, you won't see them mysteriously appear.

| The MATLAB EXPO: An Introduction to MATLAB,

SIMULINK and the MATLAB Application Toolboxes (1993)

An objective of a good sparse matrix algorithm should be:

The time required for a sparse matrix operation should be

proportional to the number of arithmetic operations on nonzero quantities.

We call this the \time is proportional to ops" rule;

it is a fundamental tenet of our design.

| JOHN R. GILBERT, CLEVE B. MOLER and ROBERT S. SCHREIBER,

Sparse Matrices in MATLAB: Design and Implementation (1992)
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Further M-Files

16.1. Elements of M-File Style

As you use MATLAB you will build up your own collection of M-�les. Some may be

short scripts that are intended to be used only once, but others will be of potential

use in future work. Based on our experience with MATLAB we o�er some guidelines

on making M-�les easy to use, understand, and maintain.

In Chapter 7 we explained the structure of the leading comment lines of a function,

including the H1 line. Adhering to this format and fully documenting the function in

the leading comment lines is vital if you are to be able to reuse and perhaps modify

the function some time after writing it. A further bene�t is that writing the comment

lines forces you to think carefully about the design of the function, including the

number and ordering of the input and output arguments.

It is helpful to include in the leading comment lines an example of how the func-

tion is used, in a form that can be cut and pasted into the command line (hence

function names should not be given in capitals). MATLAB functions that provide

such examples include fzero, meshgrid, null and texlabel.

In formatting the code, it is advisable to follow the example of the M-�les provided

with MATLAB, and to use

� spaces around logical operators and = in assignment statements,

� one statement per line (with exceptions such as a short if),

� indentation to emphasize if, for, switch and while structures (as provided

automatically by MATLAB's Editor/Debugger|see Section 7.2),

� variable names beginning with capital letters for matrices.

Compare the code segment

if stopit(4)==1

% Right-angled simplex based on coordinate axes.

alpha=norm(x0,inf)*ones(n+1,1);

for j=2:n+1, V(:,j)=x0+alpha(j)*V(:,j); end

end

with the more readable

if stopit(4) == 1

% Right-angled simplex based on coordinate axes.

alpha = norm(x0,inf)*ones(n+1,1);

for j=2:n+1

195
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V(:,j) = x0 + alpha(j)*V(:,j);

end

end

In this book we usually follow these rules, occasionally breaking them to save space.

A rough guide to choosing variable names is that the length and complexity of a

name should be proportional to the variable's scope (the region in which it is used).

Loop index variables are typically one character long because they have local scope

and are easily recognized. Constants used throughout an M-�le merit longer, more

descriptive names.

If you want to give someone else an M-�le myfun that you have written, you also

need to give them all the M-�les that it calls that are not provided with MATLAB.

This list can be determined in two ways. First, you can type depfun('myfun'), which

returns a list of the M-�les that are called by myfun or by a function called by myfun,

and so on. More generally,

[Mfiles,builtins] = depfun('myfun')

returns lists of the M-�les and the built-in functions that are used. Another way to

obtain this information is with the inmem command, which lists all M-�les that have

been parsed into memory. If you begin by clearing all functions (clear functions),

run the M-�le in question and then invoke inmem, you can deduce which M-�les have

been called.

16.2. Pro�ling

MATLAB has a pro�ler that reports, for a given sequence of computations, how much

time is spent in each line of each M-�le, and how many times each M-�le is called.

Pro�ling has several uses.

� Identifying \hot spots"|those parts of a computation that dominate the exe-

cution time. If you wish to optimize the code then you should concentrate on

the hot spots.

� Spotting ine�ciencies, such as code that can be taken outside a loop.

� Revealing lines in an M-�le that are never executed. This enables you to spot

unnecessary code and to check whether your test data fully exercises the code.

To illustrate the use of the pro�ler, we apply it to MATLAB's membrane function

(used on p. 93):

profile on

A = membrane(1,50);

profile report

profile off

The profile report command generates an html report that is displayed in the

Help Browser. The part that deals with the membrane function itself (rather than the

functions called by membrane) is:
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membrane C:\MATLAB\toolbox\matlab\demos\membrane.m

Time: 0.38 s (100.0%)

Calls: 1

Self time: 0.05 s (100.0%)

Function: Time Calls Time/call

membrane 0.38 1 0.380

Parent functions:

none

Child functions:

besselj 0.33 86.8% 4 0.083

rot90 0.00 0.0% 1 0.000

100% of the total time in this function was spent on the following

lines:

70: t = sqrt(lambda)*r;

0.05 13% 71: b1 = besselj(alf1,t);

0.06 16% 72: b2 = besselj(alf2,t);

73: A = [b1(:,k1) b2(:,k2)];

96: S = zeros(m+1,mm);

0.05 13% 97: r = sqrt(lambda)*r;

98: for j = 1:np

0.22 58% 99: S = S + c(j) * besselj(alfa(j),r) .* ...

sin(alfa(j)*theta);

100: end

The pro�le reveals that membrane spends most if its time evaluating Bessel functions.

The \self time" is the time spent in membrane excluding the time spent in functions

called by membrane. Note that the numbers followed by a colon are line numbers.

The command profile plot produces a bar graph in a �gure window showing

the M-�les that took the most time. For the above example the plot is shown in

Figure 16.1.

Next, consider the script ops in Listing 16.1. In order to compare the relative

costs of the elementary operations +, -, *, / and the elementary functions sqrt, exp,

sin, tan, we pro�led the script down to the level of individual operators (see help

profile for details of the various options of profile):

profile on -detail operator

ops

profile report

profile off

Part of the report is as follows:

Name Time

tan 1.31 25.3%
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.8 0.9 1

membrane

besselj

besselmx

besschk

log10

meshgrid

profile

rot90

realmax

realmin

Total time (seconds)

Figure 16.1. profile plot for membrane example.

exp 1.04 20.1%

sqrt 1.00 19.3%

sin 0.83 16.1%

./ 0.33 6.4%

.* 0.22 4.3%

+ 0.11 2.1%

- 0.05 1.0%

The precise results will vary with the computer. As expected, the exponential and

trigonometric functions are much more costly than the four elementary operations.
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Listing 16.1. Script ops.

%OPS Profile this file to check costs of various elementary ops and funs.

rand('state',1), randn('state',1)

a = 100*rand(100);

b = randn(100);

for i = 1:100

a+b;

a-b;

a.*b;

a./b;

sqrt(a);

exp(a);

sin(a);

tan(a);

end

I've become convinced that all compilers written from now on

should be designed to provide all programmers with feedback indicating

what parts of their programs are costing the most.

| DONALD E. KNUTH, Structured Programming with go to Statements (1974)

Instrument your programs.

Measure before making \e�ciency" changes.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Arnold was unhappily aware that the complete Jurassic Park program contained

more than half a million lines of code,

most of it undocumented, without explanation.

| MICHAEL CRICHTON, Jurassic Park (1990)





Chapter 17

Handle Graphics

The graphics functions described in Chapter 8 can produce a wide range of output

and are su�cient to satisfy the needs of many MATLAB users. These functions are

part of an object-oriented graphics system known as Handle Graphics that provides

full control over the way MATLAB displays data. A knowledge of Handle Graphics

is useful if you want to �ne-tune the appearance of your plots, and it enables you

to produce displays that are not possible with the existing functions. This chapter

provides a brief introduction to Handle Graphics. More information can be found

in [57].

17.1. Objects and Properties

Handle Graphics builds graphs out of objects organized in a hierarchy, as shown in

Figure 17.1. The Root object corresponds to the whole screen and a Figure object to

a �gure window. Of the objects on the third level of the tree we will be concerned

only with the Axes object, which is a region of the �gure window in which objects

from the bottom level of the tree are displayed. A �gure window may contain more

than one Axes object, as we will see in an example below. From the bottom level of

the tree we will be concerned only with the Line, Surface and Text objects.

Each object has a unique identi�er called a handle, which is a oating point number

(sometimes an integer). The handle of the Root object is always 0. The handle of

a Figure object is, by default, the �gure number displayed on the title bar (but this

can be changed). To use Handle Graphics you create objects and manipulate their

properties by reference to their handles, making use of the get and set functions.

We begin with a simple example:

>> plot(1:10,'o-')

This produces the left-hand plot in Figure 17.2. Now we interactively investigate the

objects comprising the plot, beginning by using the findobj function to obtain the

handles of all the objects:

>> h = findobj

h =

0

1.0000

73.0011

1.0050

We know from the conventions that the �rst handle, 0, is that of the root, and the

second, 1, is that of the �gure. We can determine the types of all the objects that

these handles represent using the get function:

201
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Image Light Line Patch Rectangle Surface Text

Axes Uicontrol Uimenu Uicontextmenu

Figure

Root

Figure 17.1. Hierarchical structure of Handle Graphics objects.

>> get(h,'type')

ans =

'root'

'figure'

'axes'

'line'

Thus h(3) is the handle to an Axes object and h(4) that to a Line object.

A handle provides access to the various properties of an object that govern its

appearance. A list of properties can be obtained by calling the set function with the

appropriate handle. For the Axes object the properties are illustrated by

>> set(h(3))

ALim

ALimMode: [ {auto} | manual ]

AmbientLightColor

Box: [ on | {off} ]

CameraPosition

CameraPositionMode: [ {auto} | manual ]

...

Visible: [ {on} | off ]

Here we have replaced about 80 lines of output with \...". The property names are

listed one per line. For those properties that take string values the possible values are

listed in square brackets; the default is enclosed in curly braces. For the Line object

the properties are listed by

>> set(h(4))

Color

EraseMode: [ {normal} | background | xor | none ]

LineStyle: [ {-} | -- | : | -. | none ]

LineWidth

...

Visible: [ {on} | off ]
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Figure 17.2. Left: original. Right: modi�ed by set commands.

We see, for example, that the LineStyle property of the Line object has �ve possible

values (those listed in Table 8.1 together with none, for use when only a marker

is required) and the default is '-'. Full documentation of all object properties is

available under the \Handle Graphics Object Properties" topic of the Help Browser.

For direct access to the relevant help pages you can type doc name props, where

name is replaced by rootobject or by any of the names of objects below the root in

Figure 17.1. Thus doc line props displays information about Line object properties.

To obtain the allowable string values of a single property the property name is

added as a second argument to set:

>> set(h(4),'Marker')

[ + | o | * | . | x | square | diamond | v | ^ | > | < | ...

pentagram | hexagram | {none} ]

Property values are assigned by providing set with the handle and pairs of prop-

erty names and property values. Thus the command

>> set(h(4),'Marker','s','MarkerSize',16)

replaces the original 'o' marker by a square of size 16 in the line object in our

example. It is only necessary to provide enough characters of the property name or

value to uniquely identify it, so 's' above is equivalent to 'square', and any mixture

of upper and lower case letters can be used. Next, we check the possible values of the

XScale property for the Axes object:

>> set(h(3),'XScale')

[ {linear} | log ]

We set this property to log to make the x-axis scale logarithmic (as for semilogx):

set(h(3),'XScale','log')

The modi�ed plot is shown on the right-hand side of Figure 17.2.

For a further example, we consider the following code, which produces Figure 17.3:
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x = linspace(0,2*pi,35);

a1 = subplot(2,1,1); % Axes object.

l1 = plot(x,sin(x),'x'); % Line object.

a2 = subplot(2,1,2); % Axes object.

l2 = plot(x,cos(x).*sin(x)); % Line object.

tx2 = xlabel('x'); ty2 = ylabel('y'); % Text objects.

When the following code is executed it modi�es properties of objects to produce

Figure 17.4.

set(a1,'Box','off') % box off.

set(a1,'XTick',[])

set(a1,'YAxisLocation','right')

set(a1,'TickDir','out')

set(l1,'Marker','<')

set(a2,'Position',[0.2 0.15 0.65 0.35])

set(a2,'XLim',[0 2*pi]) % xlim([0 2*pi]).

set(a2,'FontSize',14)

set(a2,'XTick',[0 pi/2 pi 2*pi])

set(a2,'XTickLabel','0|pi/2|pi|2pi')

set(a2,'XGrid','on')

set(a2,'XScale','log')

set(l2,'LineWidth',6)

set(tx2,'FontAngle','italic','FontSize',20)

set(ty2,'Rotation',0,'FontAngle','italic','FontSize',20)

Some of the e�ects of these set commands can be produced using commands discussed

in Chapter 8, as indicated in the comments, or by appending property name-value

pairs to argument lists of plot and text. For example, box off can be used in place

of set(a1,'Box','off'), provided that the �rst Axes is current. However, certain

e�ects can be conveniently achieved only by using set.

The properties altered here are mostly fairly self-explanatory. An exception is the

Position property of Axes, which is speci�ed by a vector of the form [left bottom

width height], where left and bottom are the distances from the left edge and

bottom edge, respectively, of the Figure window to the bottom left corner of the Axes

rectangle, and width and height de�ne the dimensions of the rectangle. The units of

measurement are de�ned by the Units property, whose default is normalized, which

maps the lower left corner of the �gure window to (0; 0) and the upper right corner to

(1:0; 1:0). Note that tick labels do not support TEX notation, so we could not produce

the symbol � in the x-axis labels speci�ed by the XTickLabel property.

A counterpart to the set function is get, which queries the current values of

properties. With just a handle as argument, get lists all the properties:

>> get(l1)

Color = [0 0 1]

EraseMode = normal

LineStyle = none

LineWidth = [0.5]
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Figure 17.3. Straightforward use of subplot.
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Figure 17.4. Modi�ed version of Figure 17.3 postprocessed using Handle Graphics.
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Marker = .

MarkerSize = [18]

...

Visible = on

When invoked with a second argument specifying a property name, get lists just that

value:

>> get(a3,'XTick')

ans =

0 1.5708 3.1416 4.7124 6.2832

The delete function deletes an object with the speci�ed handle. Thus delete(l1)

removes the sine curve from the top plot in Figure 17.4 and delete(tx2) removes

the x-axis label from the bottom plot.

Generally, if you plan to change the properties of an object after creating it then

you should save the handle when you create it, as in the example above. However,

handles of existing objects can be retrieved using gca, gcf and gco, which return the

handles of the current Axes, the current Figure, and the current Object, respectively.

In the following example we check the current and possible values of the FontWeight

property for the current Axes and then change the property to bold:

>> get(gca,'FontWeight')

ans =

normal

>> set(gca,'FontWeight')

[ light | {normal} | demi | bold ]

>> set(gca,'FontWeight','bold')

The \current Object" whose handle is returned by gco is the object last clicked on

with the mouse. Thus if we want to change the marker to '*' for the curve in the

upper plot of Figure 17.4 we can click on the curve and then type

>> set(gco,'Marker','*')

In addition to setting graphics properties from the command line or in M-�les it

is possible to set them interactively using the Property Editor. The Property Editor

is invoked on a particular graphic object by �rst enabling plot editing, by clicking on

the plot editing icon in the �gure window toolbar, and then double-clicking on the

object. Experimenting with the Property Editor is an excellent way to learn about

Handle Graphics.

The importance of the hierarchical nature of the Handle Graphics structure is not

completely apparent in the simple examples described above. A particular object, say

the Root, contains the handles of all its children, which makes it possible to traverse

the tree structure, using get(h,'Children'), get(h,'Parent'), and the findobj

and findall functions. Furthermore, it is possible to set default values for properties,

and if these are set on a particular Axes, for example, they are inherited by all the

children of that Axes. These aspects are beyond the scope of this book|see [57] for

details.
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Also beyond the scope of this book are MATLAB's Graphical User Interface (GUI)

tools, described in [52] (type help uitools for a list of the relevant functions). How-

ever, we mention one GUI function that is of broad interest: waitbar displays a

graphical bar in a window that can be used to show the progress of a computation.

Its usage is illustrated by

h = waitbar(0,'Computing...')

for j = 1:n

% Some computation ...

waitbar(j/n) % Set bar to show fraction j/n complete.

end

close(h)

17.2. Animation

Two types of animation are possible in MATLAB. A sequence of �gures can be saved

and then replayed as a movie, and an animated plot can be produced by manipulating

the XData, YData and ZData properties of objects. We give one example of each type.

For further details see [57].

To create a movie, you draw the �gures one at a time, use the getframe function

to save each one as a pixel snapshot in a structure, and then invoke the movie function

to replay the �gures. Here is an example:8

clear % Remove existing variables.

Z = peaks; surf(Z)

axis tight

set(gca,'nextplot','replacechildren')

disp('Creating the movie...')

for j = 1:11

surf(cos(2*pi*(j-1)/10).*Z,Z)

F(j) = getframe;

end

disp('Playing the movie...')

movie(F)

Figure 17.5 shows one intermediate frame from the movie. The set command causes

all surf plots after the �rst to leave unaltered the Axes properties, such as axis

tight and the grid lines. The movie is replayed n times with movie(F,n). The

amount of storage required by the movie depends on the window size but not on the

contents of the window.

The second type of animation is most easily obtained using the functions comet

and comet3. They behave like limited versions of plot and plot3, di�ering in that

the plot is traced out by a \comet" consisting of a head (a circle), a body (in one

color) and a tail (in another color). For example, try

x = linspace(-2,2,500);

y = exp(x).*sin(1./x);

comet(x,y)

8The fact that F in this example is not preallocated (cf. Section 20.2) does not cause any loss of

e�ciency. Since getframe returns a structure, F is a vector of structs and it is only pointers that

need to be deallocated and reallocated.
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Figure 17.5. One frame from a movie.

We give a simple example to illustrate the principle used by comet. This example can

be adapted for use in situations in which the data must be plotted as it is generated,

as when solving a di�erential equation, for example (see the MATLAB demonstration

function lorenz, mentioned at the end of Chapter 1).

x = linspace(-pi,pi,2000);

y = cos(tan(x))-tan(sin(x));

p = plot(x(1),y(1),'.','EraseMode','none','MarkerSize',5);

axis([min(x) max(x) min(y) max(y)])

hold on

for i=2:length(x)

set(p,'XData',x(i),'YData',y(i))

drawnow

end

hold off

This code creates a plot of just one point and then keeps redrawing the point by

changing the XData and YData properties of the corresponding Line object. The key

is to set the EraseMode property to none so that MATLAB does not erase existing

objects when the plot is redrawn by the drawnow command. If EraseMode is set to

background then the old point is erased as the new one is plotted, so a moving dot

is seen. Figure 17.6 shows the �nal result. This �gure is lower resolution than the

others in the book because it was produced by using getframe to save the original

�gure, redisplaying it with image and then saving in the usual way. The reason we

could not save the original �gure directly is that it contains only one dot, the others

being from unerased earlier plots.
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Figure 17.6. Animated �gure upon completion.

17.3. Examples

In this section we give some practical examples of using Handle Graphics to create

customized graphics.

MATLAB's choices of tick marks and axis limits are not always the most appro-

priate. The upper plot in Figure 17.7 shows the relative distance from IEEE single

precision numbers x 2 [1; 16] to the next larger oating point number. The tick marks
on the x-axis do not emphasize the important fact that interesting changes happen

at a power of 2. The lower plot in Figure 17.7 (which is [30, Fig. 2.1]) di�ers from

the upper one in that the following Handle Graphics commands were appended:

set(gca,'XTick',[1 2 4 8 16])

set(gca,'TickLength',[0.02 0.025])

set(gca,'FontSize',14);

The �rst set command speci�es the location of the ticks on the x-axis and the second

increases the length of the ticks (to 0.02 for 2D plots and 0.025 for 3D plots, in units

normalized relative to the longest of the visible x-, y-, or z-axis lines). The last

command sets a 14-point font size for the tick labels and axis labels.

Suppose that you wish to use a nonstandard font size (say, 16) throughout a Figure

object. Explicitly setting the FontSize property for each Text object and each Axes

is tedious. Instead, after creating the �gure, you can type

h = findall(gcf,'type','text'); set(h,'FontSize',16)

h = findall(gcf,'type','axes'); set(h,'FontSize',16)

Note that using findobj in the �rst line would not produce any change to the

xlabel, ylabel or title. The reason is that these text objects are created with

the HandleVisibility property set to off, which makes them invisible to findobj,

but not to findall. (Look at the code with type findall to gain some insight.)
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Figure 17.7. Default (upper) and modi�ed (lower) settings.
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For this reason, however, findall should be used with caution as it may expose to

view handles that have intentionally been hidden by an application, so manipulating

the corresponding objects could produce strange results.

The next example illustrates the use of a cell array (see Section 18.3) to specify

the YTickLabel data and the YDir property to reverse the order of the y-axis values.

The script �le in Listing 17.1 produces Figure 17.8, which shows the most frequently

used words of four letters or more, and their frequencies of occurrence, in a draft of

this book.

Handle Graphics can be used to superimpose two di�erent Axes, using the left

y-axis for one set of data and the right y-axis for another. This is done by the code in

Listing 17.2, which produces Figure 17.9. The comments in the code explain how it

works. Note that the function plotyy automates this process of producing di�erent

left and right y-axes in the case of simple plots.

The �nal example illustrates how diagrams, as opposed to plots of data or func-

tions, can be generated. The script �le in Listing 17.3 produces Figure 17.10. It

uses the line function, which is a low-level routine that creates a line object in

the current Axes. Several of MATLAB's higher level graphics routines make use of

line. The script also uses the rectangle function to draw a circle. The Position

property of rectangle is a vector [x y w h] that speci�es a rectangle of width w

and height h with bottom left corner at the point x, y, all in Axes data units. The

Curvature property determines the curvature of the sides of the rectangle, with ex-

tremes [0 0] for square sides and [1 1] for an ellipse. The HorizontalAlignment

and VerticalAlignment text properties have been used to help position the text.
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Listing 17.1. Script wfreq.

%WFREQ

% Cell array z stores the data:

z = {492, 'matrix'

475, 'that'

456, 'function'

420, 'with'

280, 'this'

273, 'figure'

261, 'example'

226, 'which'

201, 'functions'

169, 'plot'

158, 'using'

154, 'file'

150, 'command'

140, 'from'

135, 'vector'};

% Draw bar graph of first column of z. CAT converts to column vector.

barh(cat(1,z{:,1}))

n = length(z);

set(gca,'YTick',1:n,'YTickLabel',z(:,2))

set(gca,'YDir','reverse') % Reverse order of y-values.

ylim([0 n+1])

grid
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Figure 17.8. Word frequency bar chart created by wfreq.
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Listing 17.2. Script garden to produce Figure 17.9.

%GARDEN

% Cols: Carrots|Broccoli|Green Beans|Cucumbers|Chard. Rows are months.

Y = [0.4 0.3 0.0 0.0 0.9

0.6 0.4 0.0 0.0 1.0

0.7 0.8 0.3 0.2 1.2

0.6 0.5 0.9 0.4 1.1

0.4 0.4 0.7 0.6 0.9];

t = [13 15 22 24 18]; % Temperature.

b = bar(Y,'stacked');

ylabel('Yield (kg)'), ylim([0 4])

h1 = gca; % Handle of first axis.

set(h1,'XTickLabel','May|June|July|August|September')

% Create a second axis at same location as first and plot to it.

h2 = axes('Position',get(h1,'Position'));

p = plot(t,'Marker','square','MarkerSize',12,'LineStyle','-',...

'LineWidth',2,'MarkerFaceColor',[.6 .6 .6]);

ylabel('Degrees (Celsius)')

title('Fran''s vegetable garden','FontSize',14)

% Align second x-axis with first and remove tick labels.

set(h2,'Xlim',get(h1,'XLim'),'XTickLabel',[])

% Locate second y-axis on right, make background transparent.

set(h2,'YAxisLocation','right','Color','none')

% Make second y-axis tick marks line up with those of first.

ylimits = get(h2,'YLim');

yinc = (ylimits(2)-ylimits(1))/4;

set(h2,'Ytick',[ylimits(1):yinc:ylimits(2)])

% Give legend the Axes handles and place top left.

legend([b,p],'Carrots','Broccoli','Green Beans','Cucumbers','Chard',...

'Temperature',2)
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Figure 17.9. Example with superimposed Axes created by script garden.
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Figure 17.10. Diagram created by sqrt ex.
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Listing 17.3. Script sqrt ex.

%SQRT_EX

% Script plotting a point on the unit circle and its two square roots,

% with the right half-plane shaded.

clear i % Ensure i is function, not variable.

z = -1+i; z = z/abs(z); % Point z on unit circle.

s = sqrt(z);

h = axes('XLim',[-2 2],'YLim',[-2 2]); % Create Axes with specified range.

fill([0 2 2 0],[-2 -2 2 2],[.8 .8 .8]) % Shade right half-plane.

hold on

plot(z,'s','MarkerSize',8), line([0 real(z)],[0 imag(z)])

plot(s,'d','MarkerSize',8), line([0 real(s)],[0 imag(s)])

plot(-s,'d','MarkerSize',8), line([0 -real(s)],[0 -imag(s)],'LineStyle',':')

% Unit circle.

rectangle('Position',[-1,-1,2,2],'Curvature',[1,1],'LineStyle','--')

axis square

% Draw x- and y-axes through origin.

plot([-2 2], [0 0], '-'), plot([0 0], [-2 2], '-')

set(h,'XTick',[],'YTick',[])

xlabel('Re \lambda')

ylabel('Im \lambda','Rotation',0,'HorizontalAlignment','right')

text(real(z),imag(z)+0.2,'\lambda','HorizontalAlignment','center')

text(0,0,'0','HorizontalAlignment','right','VerticalAlignment','top')

text(real(s),imag(s)+0.2,'\lambda^{1/2}')

text(-real(s),-imag(s)-0.2,'-\lambda^{1/2}','HorizontalAlignment','right')

hold off

% Reset FontSize for all text.

g = findall(gcf,'type','text'); set(g,'Fontsize',16)
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Words with most meanings in the Oxford English Dictionary:

1. set
.
.
.

6. get

| RUSSELL ASH, The Top 10 of Everything (1994)

Handle Graphics . . .

allows you to display your data and then

\reach in" and manipulate any part of the image you've created,

whether that means changing a color, a line style, or a font.

| The MATLAB EXPO: An Introduction to MATLAB,

SIMULINK and the MATLAB Application Toolboxes (1993)

The best designs . . .

are intriguing and curiosity-provoking,

drawing the viewer into the wonder of the data,

sometimes by narrative power,

sometimes by immense detail,

and sometimes by elegant presentation of simple but interesting data.

| EDWARD R. TUFTE, The Visual Display of Quantitative Information (1983)



Chapter 18

Other Data Types and Multidimensional

Arrays

So far in this book we have identi�ed two of MATLAB's fundamental data types

(or classes): double and sparse. There are several others, including char, cell,

struct, storage and function handle. The storage data types are for memory-

e�cient storage and are of use only in specialized situations. In this chapter we

describe the char, struct and cell data types. All the fundamental types are, in

general, multidimensional arrays; we describe multidimensional arrays in the second

section.

If you want to determine the data type of an object you can use the class function,

which provides the same information as the last column of the output from whos. For

example,

>> class(pi)

ans =

double

>> class(speye(4))

ans =

sparse

You can also use the isa function to test whether a variable is of a particular class:

>> isa(rand(2),'double')

ans =

1

>> isa(eye(2),'sparse')

ans =

0

18.1. Strings

A string, or character array (char array), is an array of characters represented in-

ternally in MATLAB by the corresponding ASCII values. Consider the following

example:

>> s = 'ABCabc'

s =

ABCabc
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>> sd = double(s)

sd =

65 66 67 97 98 99

>> s2 = char(sd)

s2 =

ABCabc

>> whos

Name Size Bytes Class

s 1x6 12 char array

s2 1x6 12 char array

sd 1x6 48 double array

Grand total is 18 elements using 72 bytes

We see that a string can be speci�ed by placing characters between single quotes or

by applying the char function to an array of positive integers. Each character in a

string occupies 2 bytes. Converting a string to a double array produces an array of

ASCII values occupying 8 bytes per element; for example, double('A') is 65.

Strings can also be created by formatting the values of numeric variables, using

int2str, num2str or sprintf, as described in Section 13.2.

MATLAB has several functions for working with strings. Function strcat con-

catenates two strings into one longer string. It removes trailing spaces but leaves

leading spaces:

>> strcat('Hello',' world')

ans =

Hello world

A similar e�ect can be achieved using the square bracket notation:

>> ['Hello ' 'world']

ans =

Hello world

Two strings can be compared using strcmp: strcmp(s,t) returns 1 (true) if s

and t are identical and 0 (false) otherwise. Function strcmpi does likewise but treats

upper and lower case letters as equivalent. Note the di�erence between using strcmp

and the relational operator ==:

>> strcmp('Matlab5','Matlab6')

ans =

0

>> 'Matlab5' == 'Matlab6'

ans =

1 1 1 1 1 1 0

The relational operator can be used only to compare strings of equal length and

it returns a vector showing which characters match. To test whether one string
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is contained in another use findstr: findstr(s,t) returns a vector of indices of

locations where the shorter string appears in the longer:

>> findstr('bc','abcd')

ans =

2

>> findstr('abacad','a')

ans =

1 3 5

A string can be tested for with logical function ischar.

Function eval executes a string containing any MATLAB expression. Suppose we

want to set up matrices A1, A2, A3, A4, the pth of which is A - p*eye(n). Instead of

writing four assignment statements this can be done in a loop using eval:

for p=1:4

eval(['A', int2str(p), ' = A - p*eye(n)'])

end

When p = 2, for example, the argument to eval is the string 'A2 = A - p*eye(n)'

and eval executes the assignment.

For more functions relating to strings see help strfun.

18.2. Multidimensional Arrays

Arrays of type double, char, cell and struct, but not sparse, can have more

than two dimensions. Multidimensional arrays are de�ned and manipulated using

natural generalizations of the techniques for matrices. For example we can set up a

3-by-2-by-2 array of random normal numbers as follows:

>> A = randn(3,2,2)

A(:,:,1) =

0.8644 0.8735

0.0942 -0.4380

-0.8519 -0.4297

A(:,:,2) =

-1.1027 0.1684

0.3962 -1.9654

-0.9649 -0.7443

>> whos

Name Size Bytes Class

A 3x2x2 96 double array

Grand total is 12 elements using 96 bytes

Notice that MATLAB displays this three-dimensional array a two-dimensional slice

at a time. Functions rand, randn, zeros and ones all accept an argument list of

the form (n 1,n 2,...,n p) or ([n 1,n 2,...,n p]) in order to set up an array

of dimension n 1-by-n 2-. . . -by-n p. An existing two-dimensional array can have its
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dimensionality extended by assigning to elements in a higher dimension; MATLAB

automatically increases the dimensions:

>> B = [1 2 3; 4 5 6];

>> B(:,:,2) = ones(2,3)

B(:,:,1) =

1 2 3

4 5 6

B(:,:,2) =

1 1 1

1 1 1

The number of dimensions can be queried using ndims, and the size function returns

the number of elements in each dimension:

>> ndims(B)

ans =

3

>> size(B)

ans =

2 3 2

To build a multidimensional array by listing elements in one statement use the cat

function, whose �rst argument speci�es the dimension along which to concatenate the

arrays comprising its remaining arguments:

>> C = cat(3,[1 2 3; 0 -1 -2],[-5 -3 -1; 10 5 0])

C(:,:,1) =

1 2 3

0 -1 -2

C(:,:,2) =

-5 -3 -1

10 5 0

Functions that operate in an elementwise sense can be applied to multidimen-

sional arrays, as can arithmetic, logical and relational operators. Thus, for example,

B-ones(size(B)), B.*B, exp(B), 2.^B and B > 0 all return the expected results. The

data analysis functions in Table 5.7 all operate along the �rst nonsingleton dimension

by default and accept an extra argument dim that speci�es the dimension over which

they are to operate. For B as above, compare

>> sum(B)

ans(:,:,1) =

5 7 9

ans(:,:,2) =

2 2 2

>> sum(B,3)

ans =

2 3 4

5 6 7
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Table 18.1. Multidimensional array functions.

cat Concatenate arrays

ndims Number of dimensions

ndgrid Generate arrays for multidimensional functions and

interpolation

permute Permute array dimensions

ipermute Inverse permute array dimensions

shiftdim Shift dimensions

squeeze Remove singleton dimensions

The transpose operator and the linear algebra operations such as diag, inv, eig

and \ are unde�ned for arrays of dimension greater than 2; they can be applied to

two-dimensional sections only.

Table 18.1 lists some functions designed speci�cally for manipulating multidimen-

sional arrays.

18.3. Structures and Cell Arrays

Structures and cell arrays both provide a way to collect arrays of di�erent types

and sizes into a single array. They are MATLAB features of growing importance,

used in many places within MATLAB. For example, structures are used by spline

(p. 138), by solve in the next chapter (p. 229), and to set options for the nonlinear

equation and optimization solvers (Section 11.2) and the di�erential equation solvers

(Sections 12.2{12.3). Structures also play an important role in object-oriented pro-

gramming in MATLAB (which is not discussed in this book). Cell arrays are used

by the varargin and varargout functions (Section 10.3), to specify text in graphics

commands (p. 101), and in the switch-case construct (Section 6.2).

We give only a brief introduction to structures and cell arrays here. See help

datatypes for a list of functions associated with structures and cell arrays, and see

[56] for a tutorial.

Suppose we want to build a collection of 4 � 4 test matrices, recording for each

matrix its name, the matrix elements, and the eigenvalues. We can build an array

structure testmat having three �elds, name, mat and eig:

n = 4;

testmat(1).name = 'Hilbert';

testmat(1).mat = hilb(n);

testmat(1).eig = eig(hilb(n));

testmat(2).name = 'Pascal';

testmat(2).mat = pascal(n);

testmat(2).eig = eig(pascal(n));

Displaying the structure gives the �eld names but not the contents:

>> testmat

testmat =

1x2 struct array with fields:

name
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mat

eig

We can access individual �elds using a period:

>> testmat(2).name

ans =

Pascal

>> testmat(1).mat

ans =

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

>> testmat(2).eig

ans =

0.0380

0.4538

2.2034

26.3047

For array �elds, array subscripts can be appended to the �eld speci�er:

>> testmat(1).mat(1:2,1:2)

ans =

1.0000 0.5000

0.5000 0.3333

Another way to set up the testmat structure is using the struct command:

testmat = struct('name',{'Hilbert','Pascal'},...

'mat',{hilb(n),pascal(n)}, ...

'eig',{eig(hilb(n)),eig(pascal(n))})

The arguments to the struct function are the �eld names, with each �eld name

followed by the �eld contents listed within curly braces (that is, the �eld contents are

cell arrays, which are described next). If the entire structure cannot be assigned with

one struct statement then it can be created with �elds initialized to a particular value

using repmat. For example, we can set up a test matrix structure for �ve matrices

initialized with empty names and zero matrix entries and eigenvalues with

>> testmat = repmat(struct('name',{''}, 'mat',{zeros(n)}, ...

'eig',{zeros(n,1)}),5,1)

testmat =

5x1 struct array with fields:

name

mat

eig

>> testmat(5) % Check last element of structure.

ans =
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name: ''

mat: [4x4 double]

eig: [4x1 double]

For the bene�ts of such preallocation see Section 20.2.

Cell arrays di�er from structures in that they are accessed using array indexing

rather than named �elds. One way to set up a cell array is by using curly braces as

cell array constructors. In this example we set up a 2-by-2 cell array:

>> C = {1:3, pi; magic(2), 'A string'}

C =

[1x3 double] [ 3.1416]

[2x2 double] 'A string.'

Cell array contents are indexed using curly braces, and the colon notation can be used

in the same way as for other arrays:

>> C{1,1}

ans =

1 2 3

>> C{2,:}

ans =

1 3

4 2

ans =

A string.

The test matrix example can be recast as a cell array as follows:

clear testmat

testmat{1,1} = 'Hilbert';

testmat{2,1} = hilb(n);

testmat{3,1} = eig(hilb(n));

testmat{1,2} = 'Pascal';

testmat{2,2} = pascal(n);

testmat{3,2} = eig(pascal(n));

The clear statement is necessary to remove the previous structure of the same name.

Here each collection of test matrix information occupies a column of the cell array, as

can be seen from

>> testmat

testmat =

'Hilbert' 'Pascal'

[4x4 double] [4x4 double]

[4x1 double] [4x1 double]

The celldisp function can be used to display the contents of a cell array:

>> celldisp(testmat)

testmat{1,1} =

Hilbert
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testmat{2,1} =

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

testmat{3,1} =

0.0001

0.0067

0.1691

1.5002

testmat{1,2} =

Pascal

testmat{2,2} =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

testmat{3,2} =

0.0380

0.4538

2.2034

26.3047

Another way to express the assignments to testmat above is by using standard

array subscripting, as illustrated by

testmat(1,1) = {'Hilbert'};

Curly braces must appear on either the left or the right side of the assignment state-

ment in order for the assignment to be valid.

When a component of a cell array is itself an array, its elements can be accessed

using parentheses:

>> testmat{2,1}(4,4)

ans =

0.1429

Although it was not necessary in our example, we could have preallocated the

testmat cell array with the cell command:

testmat = cell(3,2);

After this assignment testmat is a 3-by-2 cell array of empty matrices.

Useful for visualizing the structure of a cell array is cellplot. Figure 18.1 was

produced by cellplot(testmat).

The functions cell2struct and struct2cell convert between cell arrays and

structures, while num2cell creates a cell array of the same size as the given numeric

array. The cat function, discussed in Section 18.2, provides an elegant way to produce

a numeric vector from a structure or cell array. In our test matrix example, if we want

to produce a matrix having as its columns the vectors of eigenvalues, we can type

cat(2,testmat.eig)
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Hilbert Pascal

Figure 18.1. cellplot(testmat).

for the structure testmat, or

cat(2,testmat{3,:})

for the cell array testmat, in both cases obtaining the result

ans =

0.0001 0.0380

0.0067 0.4538

0.1691 2.2034

1.5002 26.3047

Here, the �rst argument of cat causes concatenation in the second dimension, that

is, columnwise. If this argument is replaced by 1 then the concatenation is row-wise

and a long vector is produced. An example of this use of cat is in Listing 17.1, where

it extracts from a cell array a vector that can then be plotted.
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For many applications,

the choice of the proper data structure is really

the only major decision involved in the implementation;

once the choice has been made,

only very simple algorithms are needed.

| ROBERT SEDGEWICK, Algorithms (1988)
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The Symbolic Math Toolbox

The Symbolic Math Toolbox is one of the many toolboxes that extend the functional-

ity of MATLAB, and perhaps the one that does so in the most fundamental way. The

toolbox is provided with the MATLAB Student Version, but must be purchased as

an extra with other versions of MATLAB. You can tell if your MATLAB installation

contains the toolbox by issuing the ver command and seeing if the toolbox is listed.

The toolbox is based upon the Maple kernel, which performs all the symbolic and

variable precision computations. Maple is a symbolic manipulation package produced

by Waterloo Maple, Inc.

To obtain an overview of the functions in the toolbox type help symbolic.

19.1. Equation Solving

The Symbolic Math Toolbox de�nes a new datatype: a symbolic object, denoted by

sym. Symbolic objects can be created with the sym and syms commands. Suppose we

wish to solve the quadratic equation ax2 + bx+ c = 0. We de�ne symbolic variables:

>> syms a b c x

>> whos

Name Size Bytes Class

a 1x1 126 sym object

b 1x1 126 sym object

c 1x1 126 sym object

x 1x1 126 sym object

Grand total is 8 elements using 504 bytes

The same e�ect can be achieved using

>> a = sym('a'); b = sym('b'); c = sym('c'); x = sym('x');

We recommend using the shorter syms form. Now we can solve the quadratic using

the powerful solve command:

>> y = solve(a*x^2+b*x+c)

y =

[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]

MATLAB creates a 2-by-1 symbolic object y to hold the two solutions. We have used

the shortest way to invoke solve. We could also have typed

227
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>> y = solve('a*x^2+b*x+c=0');

>> y = solve(a*x^2+b*x+c,x);

Since we did not specify an equals sign, MATLAB assumed the expression we provided

was to be equated to zero; if an equals sign is explicitly given then the whole expression

must be placed in quotes. Less obvious is how MATLAB knew to solve for x and not

one of the other symbolic variables. Since we did not provide a second argument

specifying the unknown, MATLAB applied its findsym function to the expression

a*x^2+b*x+c to determine the variable closest alphabetically to x, and solved for

that variable. We can solve the same equation for a as follows:

>> solve(a*x^2+b*x+c,a)

ans =

-(b*x+c)/x^2

Suppose we now wish to check that the components of y really do satisfy the quadratic

equation. We evaluate the quadratic at y, using elementwise squaring since y is a

vector:

>> a*y.^2+b*y+c

ans =

[ 1/4/a*(-b+(b^2-4*a*c)^(1/2))^2+1/2*b/a*(-b+(b^2-4*a*c)^(1/2))+c]

[ 1/4/a*(-b-(b^2-4*a*c)^(1/2))^2+1/2*b/a*(-b-(b^2-4*a*c)^(1/2))+c]

The result is not displayed as zero, but we can apply the simplify function to try to

reduce it to zero:

>> simplify(ans)

ans =

[ 0]

[ 0]

It is characteristic of all symbolic manipulation packages that postprocessing is often

required to put the results in the most useful form.

Having computed a symbolic solution, a common requirement is to evaluate it for

numerical values of the parameters. This can be done using the subs function, which

replaces all occurrences of symbolic variables by speci�ed expressions. To �nd the

roots of the quadratic x2 � x� 1 (cf. p. 136) we can type

>> a = 1; b = -1; c = -1;

>> subs(y)

ans =

1.6180

-0.6180

When given one symbolic argument the subs command returns that argument with

all variables replaced by their values (if any) from the workspace. Alternatively, subs

can be called with three arguments in order to assign values to variables without

changing those variables in the workspace:

>> subs(y, {a, b, c}, {1, -1, -1})

ans =

1.6180

-0.6180
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Note that the second and third arguments are cell arrays (see Section 18.3).

Simultaneous equations can be speci�ed one at a time to the solve function. In

general, the number of solutions cannot be predicted. There are two ways to collect

the output. As in the next example, if the same number of output arguments as

unknowns is supplied then the results are assigned to the outputs (alphabetically):

>> syms x y

>> [x,y] = solve('x^2+y^2 = 1','x^3-y^3 = 1')

x =

[ 0]

[ 1]

[ -1+1/2*i*2^(1/2)]

[ -1-1/2*i*2^(1/2)]

y =

[ -1]

[ 0]

[ 1+1/2*i*2^(1/2)]

[ 1-1/2*i*2^(1/2)]

Alternatively, a single output argument can be provided, in which case a structure

(see Section 18.3) containing the solutions is returned:

>> S = solve('y = 1/(1+x^2)','y = 1.001 - 0.5*x')

S =

x: [3x1 sym]

y: [3x1 sym]

>> [S.x(1), S.y(1)]

ans =

[ 1.0633051173985148109357033343229, .46934744130074259453214833283854]

The �elds of the structure have the names of the variables, and in this example we

looked at the �rst of the three solutions. This example illustrates that if solve

cannot �nd a symbolic solution it will try to �nd a numeric one. The number of

digits computed is controlled by the digits function described in Section 19.4; the

default is 32 digits.

When interpreting the results of symbolic computations the precedence rules for

arithmetic operators need to be kept in mind (see Table 4.1). For example:

>> syms a b

>> b=a/2

b =

1/2*a

Parentheses are not needed around the 1/2, since / and * have the same precedence,

but we are used to seeing them included for clarity.

The sym and syms commands have optional arguments for specifying that a vari-

able is real or positive:

syms x real, syms a positive

Both statuses can be cleared with
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syms x a unreal

The information that a variable is real or positive can be vital in symbolic computa-

tions. For example, consider

>> syms p x y

>> y = ((x^p)^(p+1))/x^(p-1);

>> simplify(y)

ans =

(x^p)^p*x

The Symbolic Math Toolbox assumes that the variables x and p are complex and

is unable to simplify y further. With the additional information that x and p are

positive, further simpli�cation is obtained:

>> syms p x positive

>> simplify(y)

ans =

x^(p^2+1)

19.2. Calculus

The Symbolic Math Toolbox provides symbolic integration and di�erentiation through

the int and diff functions.

Here is a quick test that the MATLAB authors use to make sure that the Symbolic

Math Toolbox is \online":

>> int('x')

ans =

1/2*x^2

Note that the constant of integration is always omitted. A more complicated example

is

>> int('sqrt(tan(x))')

ans =

1/2*tan(x)^(1/2)/(cos(x)*sin(x))^(1/2)*cos(x)*2^(1/2)*(pi-...

acos(sin(x)-cos(x)))-1/2*2^(1/2)*log(cos(x)+2^(1/2)*...

tan(x)^(1/2)*cos(x)+sin(x))

This answer is easier to read if we \prettyprint" it:

>> pretty(ans)

1/2 1/2

tan(x) cos(x) 2 (pi - acos(sin(x) - cos(x)))

1/2 --------------------------------------------------

1/2

(cos(x) sin(x))

1/2 1/2 1/2

- 1/2 2 log(cos(x) + 2 tan(x) cos(x) + sin(x))
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Note that we have not de�ned x to be a symbolic variable, so the argument to int

must be enclosed in quotes. Alternatively we can de�ne syms x and omit the quotes.

De�nite integrals
R b
a f(x) dx can be evaluated by appending the limits of integra-

tion a and b. Here is an integral that has a singularity at the left endpoint, but which

nevertheless has a �nite value:

>> int('arctan(x)/x^(3/2)',0,1)

ans =

-1/2*pi+1/2*2^(1/2)*log(2+2^(1/2))-1/2*2^(1/2)*log(2-2^(1/2))+...

1/2*2^(1/2)*pi

The answer is exact and is rather complicated. We can convert it to numeric form:

>> double(ans)

ans =

1.8971

It is important to realize that symbolic manipulation packages cannot \do" all

integrals. This may be because the integral does not have a closed form solution

in terms of elementary functions, or because it has a closed form solution that the

package cannot �nd. Here is an example of the �rst kind:

>> int('sqrt(1+cos(x)^2)')

ans =

-(sin(x)^2)^(1/2)/sin(x)*EllipticE(cos(x),i)

The integral is expressed in terms of an elliptic integral of the second kind, which

itself is not expressible in terms of elementary functions. If we evaluate the same

integral in de�nite form we obtain

>> int('sqrt(1+cos(x)^2)',0,48)

ans =

30*2^(1/2)*EllipticE(1/2*2^(1/2))+...

2^(1/2)*EllipticE(-sin(48),1/2*2^(1/2))

and MATLAB can evaluate the elliptic integrals therein:

>> double(ans)

ans =

58.4705

Next we give some examples of symbolic di�erentiation. We �rst set up the ap-

propriate symbolic variables and so can omit the quotes from the argument to diff:

>> syms a x n

>> diff(x^2)

ans =

2*x

>> diff(x^n,2)

ans =

x^n*n^2/x^2-x^n*n/x^2

>> factor(ans)
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ans =

x^n*n*(n-1)/x^2

>> diff(sin(x)*exp(-a*x^2))

ans =

cos(x)*exp(-a*x^2)-2*sin(x)*a*x*exp(-a*x^2)

>> diff(x^4*exp(x),3)

ans =

24*x*exp(x)+36*x^2*exp(x)+12*x^3*exp(x)+x^4*exp(x)

The result of the second di�erentiation needed simplifying; the simplify function

does not help in this case so we used factor. In the second and last examples a

second argument to diff speci�es the order of the required derivative; the default is

the �rst derivative.

Functions int and diff can both be applied to matrices, in which case they

operate elementwise.

Di�erential equations can be solved symbolically with dsolve. The equations are

speci�ed by expressions in which the letter D denotes di�erentiation, with D2 denoting

a second derivative, D3 a third derivative, and so on. The default independent variable

is t. Initial conditions can optionally be speci�ed after the equations, using the syntax

y(a) = b, Dy(a) = c, etc.; if none are speci�ed then the solutions contain arbitrary

constants of integration, denoted C1, C2, etc. For our �rst example we take the logistic

di�erential equation
d

dt
y(t) = cy � by

2
;

solving it �rst with arbitrary c and b and then with particular values of these param-

eters as an initial value problem:

>> syms b c y t

>> y = dsolve('Dy=c*y-b*y^2')

y =

c/(b+exp(-c*t)*C1*c)

>> y = dsolve('Dy=10*y-y^2','y(0)=0.01')

y =

10/(1+999*exp(-10*t))

We now check that the latter solution satis�es the initial condition and the di�erential

equation:

>> subs(y,t,0)

ans =

0.0100

>> res = diff(y,t)-(10*y-y^2)

res =

99900/(1+999*exp(-10*t))^2*exp(-10*t)-100/(1+999*exp(-10*t))+...

100/(1+999*exp(-10*t))^2

>> simplify(res)
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ans =

0

Next we try to �nd the general solution to the pendulum equation, which we

solved numerically on p. 150:

>> y = dsolve('D2theta + sin(theta) = 0')

Warning: Explicit solution could not be found; implicit solution

returned.

> In C:\MATLAB\toolbox\symbolic\dsolve.m at line 292

y =

[ -Int(1/(2*cos(a)+C1)^(1/2),a=``..theta)-t-C2=0,...

Int(1/(2*cos(a)+C1)^(1/2),a=``..theta)-t-C2=0]

No explicit solution could be found. If � is small we can approximate sin � by �, and

in this case dsolve is able to �nd both general and particular solutions:

>> y = dsolve('D2theta + theta = 0')

y =

C1*cos(t)+C2*sin(t)

>> y = dsolve('D2theta + theta = 0','theta(0) = 1','Dtheta(0) = 1')

y =

cos(t)+sin(t)

Finally, we emphasize that the results from functions such as solve and dsolve

need to be interpreted with care. For example, when we attempt to solve the di�er-

ential equation d
dty = y

2=3 we obtain

>> y = dsolve('Dy = y^(2/3)')

y =

1/27*t^3+1/3*t^2*C1+t*C1^2+C1^3

This is a solution for any value of the constant C1, but it does not represent all

solutions: y(t) = 0 is another solution.

Taylor series can be computed using the function taylor:

>> syms x

>> taylor(log(1+x))

ans =

x-1/2*x^2+1/3*x^3-1/4*x^4+1/5*x^5

By default the Taylor series about 0 up to terms of order 5 is produced. A second

argument speci�es the required order and a third argument the point about which to

expand:

>> pretty(taylor(exp(-sin(x)),3,1))

exp(-sin(1)) - exp(-sin(1)) cos(1) (x - 1)

2 2

+ exp(-sin(1)) (1/2 sin(1) + 1/2 cos(1) ) (x - 1)
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Figure 19.1. taylortool window.

Table 19.1. Calculus functions.

diff Di�erentiate

int Integrate

limit Limit

taylor Taylor series

jacobian Jacobian matrix

symsum Summation of series

A function taylortool provides a graphical interface to taylor, plotting both the

function and the Taylor series. See Figure 19.1, which shows the interesting function

sin(tanx)� tan(sinx).

The Symbolic Math Toolbox contains some other calculus functions; see Ta-

ble 19.1.

19.3. Linear Algebra

Several of MATLAB's linear algebra functions have counterparts in the Symbolic

Math Toolbox that take symbolic arguments. To illustrate we take the numeric and

symbolic representations of the 5-by-5 Frank matrix:

>> A_num = gallery('frank',5); A_sym = sym(A_num);

This illustrates a di�erent usage of the sym function: to convert from a numeric

datatype to symbolic form. Since the Frank matrix has small integer entries the
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conversion is done exactly. In general, when given a oating point number as argument

sym tries to express it as a nearby rational number. For example:

>> t = 1/3; t, sym(t)

t =

0.3333

ans =

1/3

Here, t is a oating point approximation to 1/3, whereas sym(t) exactly represents

1/3. For the precise rules used by sym, and details of arguments that allow control of

the conversion, see help sym.

Continuing our Frank matrix example we can invert the double array A num in

the usual way:

inv(A_num)

ans =

1.0000 -1.0000 -0.0000 0.0000 0

-4.0000 5.0000 -1.0000 -0.0000 0

12.0000 -15.0000 4.0000 -1.0000 0

-24.0000 30.0000 -8.0000 3.0000 -1.0000

24.0000 -30.0000 8.0000 -3.0000 2.0000

The trailing zeros show that the computed elements are not exactly integers. We can

obtain the exact inverse by applying inv to A sym:

inv(A_sym)

ans =

[ 1, -1, 0, 0, 0]

[ -4, 5, -1, 0, 0]

[ 12, -15, 4, -1, 0]

[ -24, 30, -8, 3, -1]

[ 24, -30, 8, -3, 2]

Here, MATLAB has recognized that inv is being called with a symbolic argument

and has invoked a version of inv that is part of the Symbolic Math Toolbox. The

mechanism that allows di�erent versions of a function to handle di�erent types of

arguments is called overloading. You can tell whether a given function is overloaded

from its help entry. Assuming the Symbolic Math Toolbox is present, help inv

produces

INV Matrix inverse.

INV(X) is the inverse of the square matrix X.

A warning message is printed if X is badly scaled or

nearly singular.

See also SLASH, PINV, COND, CONDEST, NNLS, LSCOV.

Overloaded methods

help sym/inv.m

As indicated, to obtain help for the version of inv called for a symbolic argument we

type help sym/inv. We have already used an overloaded function in this chapter:

diff in the previous section.
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Just as for numeric matrices, the backslash operator can be used to solve linear

systems with a symbolic coe�cient matrix. For example, we can compute the (5,1)

element of the inverse of the Frank matrix with

>> [0 0 0 0 1]*(A_sym\[1 0 0 0 0]')

ans =

24

For a symbolic argument the eig function tries to compute the exact eigensystem.

We know from Galois theory that this is not always possible in a �nite number of

operations for matrices of order 5 or more. For the 5-by-5 Frank matrix eig succeeds:

>> e = eig(A_sym)

e =

[ 1]

[ 7/2+1/2*10^(1/2)+1/2*(55+14*10^(1/2))^(1/2)]

[ 7/2+1/2*10^(1/2)-1/2*(55+14*10^(1/2))^(1/2)]

[ 7/2-1/2*10^(1/2)+1/2*(55-14*10^(1/2))^(1/2)]

[ 7/2-1/2*10^(1/2)-1/2*(55-14*10^(1/2))^(1/2)]

>> double(e)

ans =

1.0000

10.0629

0.0994

3.5566

0.2812

As we noted in the example in Section 9.7, the eigenvalues come in reciprocal pairs.

To check we can type

>> [e(2)*e(3); e(4)*e(5)]

ans =

[ (7/2+1/2*10^(1/2)+1/2*(55+14*10^(1/2))^(1/2))*...

[ (7/2-1/2*10^(1/2)+1/2*(55-14*10^(1/2))^(1/2))*...

Note that we have had to truncate the output. Attempting to simplify these expres-

sions using simplify fails. Instead we use the function simple, which tries several

di�erent simpli�cation methods and reports the shortest answer:

>> s = simple(ans)

s =

[ 1]

[ 1]

(If simple(ans) is typed without an output argument then all intermediate at-

tempted simpli�cations are displayed.) Finally, while we computed the characteristic

polynomial numerically in Section 9.7, we can now obtain it exactly:

>> poly(A_sym)

ans =

x^5-15*x^4+55*x^3-55*x^2+15*x-1

A complete list of linear algebra functions in the toolbox is given in Table 19.2.
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Table 19.2. Linear algebra functions.

diag Diagonal matrices and diagonals of matrix

tril Extract lower triangular part

triu Extract upper triangular part

inv Matrix inverse

det Determinant

rank Rank

rref Reduced row echelon form

null Basis for null space (not orthonormal)

eig Eigenvalues and eigenvectors

svd Singular values and singular vectors

poly Characteristic polynomial

expm Matrix exponential

colspace� Basis for column space

jordan� Jordan canonical (normal) form
� Functions existing in Symbolic Math Toolbox only.

19.4. Variable Precision Arithmetic

In addition to MATLAB's double precision oating point arithmetic and symbolic

arithmetic, the Symbolic Math Toolbox supports variable precision oating point

arithmetic, which is carried out within the Maple kernel. This is useful for problems

where an accurate solution is required and an exact solution is impossible or too time-

consuming to obtain. It can also be used to experiment with the e�ect of varying the

precision of a computation.

The function digits returns the number of signi�cant decimal digits to which

variable precision computations are carried out:

>> digits

Digits = 32

The default of 32 digits can be changed to n by the command digits(n). Variable

precision computations are based on the vpa command. The simplest usage is to

evaluate constants to variable accuracy:

>> vpa(pi)

ans =

3.1415926535897932384626433832795

>> vpa(pi,50)

ans =

3.1415926535897932384626433832795028841971693993751

As the second command illustrates, vpa takes a second argument that overrides the

current number of digits speci�ed by digits. In the next example we compute e to

40 digits and then check that taking the logarithm gives back 1:

>> d = 40;
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>> x = vpa(sym('exp(1)'),d)

x =

2.718281828459045235360287471352662497757

>> vpa(log(x),d)

ans =

1.0000000000000000000000000000000

A minor modi�cation of this example illustrates a pitfall:

>> y = vpa(sym(exp(1)),d)

y =

2.718281828459045534884808148490265011787

>> vpa(log(y),d)

ans =

1.0000000000000001101889132838495

We omitted the quotes around exp(1), so MATLAB evaluated exp(1) in double

precision oating point arithmetic, converted that 16 digit result to 40 digits|thereby

adding 24 meaningless digits|and then evaluated the exponential. In the original

version the quotes enable exp(1) to pass through the MATLAB interpreter to be

evaluated by Maple.

Variable precision linear algebra computations are performed by calling functions

with variable precision arguments. For example, we can compute the eigensystem of

pascal(4) to 32 digits by

>> [V,E] = eig(vpa(pascal(4))); diag(E)

ans =

[ .38016015229139947237513500399910e-1]

[ 26.304703267097871286055226455525]

[ .45383455002566546509718436703856]

[ 2.2034461676473233016100756770374]

19.5. Other Features

The Symbolic Math Toolbox contains many other functions, covering Fourier and

Laplace transforms, special functions, conversions, and pedagogical tools. Of partic-

ular interest are functions that provide access to Maple (these are not available with

the Student Edition). Function mfun gives access to many special functions for which

MATLAB M-�les are not provided; type mfunlist to see a list of such functions.

Among these functions are the Fresnel integrals; thus commands of the form

x = mfun('FresnelC',t); y = mfun('FresnelS',t);

provide another way to evaluate the Fresnel spiral in Figure 12.2. More generally,

function maple sends a statement to the Maple kernel and returns the result. Maple

help on Maple function mfoo can be obtained by typing mhelp mfoo.

The maple command is used in the following example, in which we obtain a de�nite

integral that evaluates to the Catalan constant; we use Maple to evaluate the constant,

since it is not known to MATLAB.
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>> int('log(x)/(1+x^2)',0,1)

ans =

-Catalan

>> maple('evalf(Catalan)')

ans =

.91596559417721901505460351493238

Useful functions for postprocessing are ccode, fortran and latex, which produce

C, Fortran and LATEX representations, respectively, of a symbolic expression.

I'm very good at integral and di�erential calculus,

I know the scienti�c names of beings animalculous;

In short, in matters vegetable, animal, and mineral,

I am the very model of a modern Major-General.

| WILLIAM SCHWENCK GILBERT, The Pirates of Penzance. Act 1 (1879)

Maple will sometimes \go away" for quite a while to do its calculations.

| ROB CORLESS, Essential Maple (1995)

The particular form obtained by applying an analytical integration method

may prove to be unsuitable for practical purposes.

For instance, evaluating the formula may be

numerically unstable (due to cancellation, for instance) or even

impossible (due to division by zero).

| ARNOLD R. KROMMER and CHRISTOPH W. UEBERHUBER,

Computational Integration (1998)

Maple has bugs. It has always had bugs . . .

Every other computer algebra system also has bugs,

often di�erent ones,

but remarkably many of these bugs are seen

throughout all computer algebra systems,

as a result of common design shortcomings.

Probably the most useful advice I can give for dealing with this is

be paranoid.

Check your results at least two ways (the more the better).

| ROB CORLESS, Essential Maple (1995)





Chapter 20

Optimizing M-Files

Most users of MATLAB �nd that computations are completed fast enough that execu-

tion time is not usually a cause for concern. Some computations, though, particularly

when the problems are large, require a signi�cant time and it is natural to ask whether

anything can be done to speed them up. This chapter describes some techniques that

produce better performance from M-�les. They all exploit the fact that MATLAB is

an interpreted language with dynamic memory allocation. Another approach to opti-

mization is to compile rather than interpret MATLAB code. The MATLAB Compiler,

available from The MathWorks as a separate product, translates MATLAB code into

C and compiles it with a C compiler. External C or Fortran codes can also be called

from MATLAB via the MEX interface; see [54], [55].

Vectorization, discussed in the �rst section, has bene�ts beyond simply increas-

ing speed of execution. It can lead to shorter and more readable MATLAB code.

Furthermore, it expresses algorithms in terms of high-level constructs that are more

appropriate for high-performance computing.

MATLAB's pro�ler is a useful tool when you are optimizing M-�les, as it can help

you decide which parts of the code to optimize. See Section 16.2 for details.

All timings in this chapter are for a 500Mhz Pentium III.

20.1. Vectorization

Since MATLAB is a matrix language, many of the matrix-level operations and func-

tions are carried out internally using compiled C or assembly code and are therefore

executed at near optimum e�ciency. This is true of the arithmetic operators *, +, -, \,

/ and of relational and logical operators. However, for loops are executed relatively

slowly. One of most important tips for producing e�cient M-�les is to avoid for loops

in favor of vectorized constructs, that is, to convert for loops into equivalent vector

or matrix operations. Consider the following example:

>> n = 5e5; x = randn(n,1);

>> tic, s = 0; for i=1:n, s = s + x(i)^2; end, toc

elapsed_time =

8.3500

>> tic, s = sum(x.^2); toc

elapsed_time =

0.0600

In this example we compute the sum of squares of the elements in a random vector

in two ways: with a for loop and with an elementwise squaring followed by a call to

sum. The latter vectorized approach is two orders of magnitude faster.

241
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The for loop in Listing 10.2 on p. 128 can be vectorized, assuming that f returns

a vector output for a vector argument. The loop and the statement before it can be

replaced by

x = linspace(0,1,n);

p = x*f(1) + (x-1)*f(0);

max_err = max(abs(f(x)-p));

For a slightly more complicated example of vectorization, consider the inner loop

of Gaussian elimination applied to an n-by-n matrix A, which can be written

for i = k+1:n

for j = k+1:n;

A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k);

end

end

Both loops can be avoided, simply by deleting the two fors and ends:

i = k+1:n;

j = k+1:n;

A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k);

The approximately (n � k)2 scalar multiplications and additions have now been ex-

pressed as one matrix multiplication and one matrix addition. With n = 300 and k

= 1 we timed the two-loop code at 3.46 seconds and the vectorized version at 0.11

seconds|again vectorization yields a substantial improvement.

The next example concerns premultiplication of a matrix by a Givens rotation in

the (j; k) plane, which replaces rows j and k by linear combinations of themselves. It

might be coded as

temp = A(j,:);

A(j,:) = c*A(j,:) - s*A(k,:);

A(k,:) = s*temp + c*A(k,:);

By expressing the computation as a single matrix multiplication we can shorten the

code and dispense with the temporary variable:

A([j k],:) = [c -s; s c] * A([j k],:);

The second version is approximately twice as fast for n = 500.

Try to maximize the use of built-in MATLAB functions. Consider, for example,

this code to assign to row_norm the 1-norms of the rows of A:

for i=1:n

row_norms(i) = norm(A(i,:), inf);

end

It can be replaced by the single statement

row_norms = max(abs(A),[],2);

(see p. 54), which is shorter and runs much more quickly. Similarly, the factorial n!

is more quickly computed by prod(1:n) than by
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Figure 20.1. Approximate Brownian path.

p = 1; for i = 1:n, p = p*i; end

(in fact, there is a MATLAB function factorial that uses prod in this way).

As a �nal example, we start with the following code to generate and plot an

approximate Brownian (standard Wiener) path [40], which produces Figure 20.1.

randn('state',20)

N = 1e4; dt = 1/N;

w(1) = 0;

for j = 2:N+1

w(j) = w(j-1) + sqrt(dt)*randn;

end

plot([0:dt:1],w)

This computation can be speeded up by preallocating the array w (see the next section)

and by computing sqrt(dt) outside the loop. However, we obtain a more dramatic

improvement by vectorizing with the help of the cumulative sum function, cumsum:

randn('state',20)

N = 1e4; dt = 1/N;

w = sqrt(dt)*cumsum([0;randn(N,1)]);

plot([0:dt:1],w)

This produces Figure 20.1 roughly 10 times more quickly than the original version.

20.2. Preallocating Arrays

One of the attractions of MATLAB is that arrays need not be declared before �rst

use: assignment to an array element beyond the upper bounds of the array causes



244 Optimizing M-Files

MATLAB to extend the dimensions of the array as necessary. If overused, this exi-

bility can lead to ine�ciencies, however. Consider the following implementation of a

recurrence:

% x has not so far been assigned.

x(1:2) = 1;

for i=3:n, x(i) = 0.25*x(i-1)^2 - x(i-2); end

On each iteration of the loop, MATLAB must increase the length of the vector x by

1. In the next version x is preallocated as a vector of precisely the length needed, so

no resizing operations are required during execution of the loop:

% x has not so far been assigned.

x = ones(n,1);

for i=3:n, x(i) = 0.25*x(i-1)^2 - x(i-2); end

With n = 1e4, the �rst piece of code took 5.88 seconds and the second 0.38 seconds,

showing that the �rst version spends most of its time doing memory allocation rather

than oating point arithmetic.

Preallocation has the added advantage of reducing the fragmentation of memory

resulting from dynamic memory allocation and deallocation.

You can preallocate an array structure with repmat(struct(...)) and a cell

array with the cell function; see Section 18.3.

20.3. Miscellaneous Optimizations

Suppose you wish to set up an n-by-n matrix of 2s. The obvious assignment is

A = 2*ones(n);

The n2 oating point multiplications can be avoided by using

A = repmat(2,n);

The repmat approach is much faster for large n. This use of repmat is essentially the

same as assigning

A = zeros(n); A(:) = 2;

in which scalar expansion is used to �ll A.

There is one optimization that is automatically performed by MATLAB. Argu-

ments that are passed to a function are not copied into the function's workspace

unless they are altered within the function. Therefore there is no memory penalty

for passing large variables to a function provided the function does not alter those

variables.

20.4. Case Study: Bifurcation Diagram

For a practical example of optimizing M-�les we consider a problem from nonlinear

dynamics. We wish to examine the long-term behavior of the iteration

yk = F (yk�1); k � 2; y1 given;
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Listing 20.1. Script bif1.

%BIF1 Bifurcation diagram for modified Euler/logistic map.

% Computes a numerical bifurcation diagram for a map of the form

% y_k = F(y_{k-1}) arising from the modified Euler method

% applied to a logistic ODE.

%

% Slow version using multiple for loops.

for h = 1:0.005:4

for iv = 0.2:0.5:2.7

y(1) = iv;

for k = 2:520

y(k) = y(k-1) + h*(y(k-1)+0.5*h*y(k-1)*(1-y(k-1)))*...

(1-y(k-1)-0.5*h*y(k-1)*(1-y(k-1)));

end

plot(h*ones(20,1),y(501:520),'.'), hold on

end

end

title('Modified Euler/logistic map','FontSize',14)

xlabel('h'), ylabel('last 20 y')

grid on, hold off

where the function F is de�ned by

F (y) = y + h
�
y + 1

2
hy(1� y)

� �
1� y � 1

2
hy(1� y)

�
:

Here h > 0 is a parameter. (This map corresponds to the midpoint or modi�ed Euler

method [69] with stepsize h applied to the logistic ODE dy(t)=dt = y(t)(1�y(t)) with
initial value y1.) For a range of h values and for a few initial values, y1, we would like

to run the iteration for a \long time", say as far as k = 500, and then plot the next

20 iterates fyig520i=501. For each h on the x-axis we will superimpose fyig520i=501 onto the

y-axis to produce a so-called bifurcation diagram.

Choosing values of h given by 1:0.005:4 and using initial values 0.2:0.5:2.7we

arrive at the M-�le bif1.m in Listing 20.1. This is a straightforward implementation

that uses three nested for loops and does not preallocate the array y before the �rst

time around the inner loop. Figure 20.2 shows the result.

The M-�le bif2.m in Listing 20.2 is an equivalent, but much faster, implementa-

tion. Two of the loops have been removed and a single plot command is used. Here,

we stack the iterates corresponding to all h and y1 values into one long vector, and

use elementwise multiplication to perform the iteration simultaneously on the com-

ponents of this vector. The array Ydata, which is used to store the data for the plot,

is preallocated to the correct dimensions before use. The vectorized code produces

Figure 20.2 about 200 times more quickly than the original version.
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Figure 20.2. Numerical bifurcation diagram.

Listing 20.2. Script bif2.

%BIF2 Bifurcation diagram for modified Euler/logistic map.

% Computes a numerical bifurcation diagram for a map of the form

% y_k = F(y_{k-1}) arising from the modified Euler method

% applied to a logistic ODE.

%

% Fast, vectorized version.

h = (1:0.005:4)';

iv = [0.2:0.5:2.7];

hvals = repmat(h,length(iv),1);

Ydata = zeros((length(hvals)),20);

y = kron(iv',ones(size(h)));

for k=2:500

y = y + hvals.*(y+0.5*hvals.*y.*(1-y)).*(1-y-0.5*hvals.*y.*(1-y));

end

for k=1:20

y = y + hvals.*(y+0.5*hvals.*y.*(1-y)).*(1-y-0.5*hvals.*y.*(1-y));

Ydata(:,k) = y;

end

plot(hvals,Ydata,'.')

title('Modified Euler/Logistic Map','FontSize',14)

xlabel('h'), ylabel('last 20 y'), grid on
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Entities should not be multiplied unnecessarily.

| WILLIAM OF OCCAM (c. 1320)

Life is too short to spend writing for loops.

| Getting Started with MATLAB (1998)

In our six lines of MATLAB,

not a single loop has appeared explicitly,

though at least one loop is implicit in every line.

| LLOYD N. TREFETHEN and DAVID BAU, III, Numerical Linear Algebra (1997)

Make it right before you make it faster.

| BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

A useful rule-of-thumb is that the

execution time of a MATLAB function is

proportional to the number of statements executed,

no matter what those statements actually do.

| CLEVE B. MOLER, MATLAB News & Notes (Spring 1996)





Chapter 21

Tricks and Tips

Our approach in this book has been to present material of interest to the majority

of MATLAB users, omitting topics of more specialized interest. In this chapter we

relax this philosophy and describe some tricks and tips that, while of limited use, can

be invaluable when they are needed and are of general interest as examples of more

advanced MATLAB matters.

21.1. Empty Arrays

The empty matrix [], mentioned in several places in this book, has dimension 0-by-0.

MATLAB allows multidimensional arrays with one or more dimensions equal to zero.

These are created by operations such as

>> 1:0

ans =

Empty matrix: 1-by-0

>> zeros(2,0)

ans =

Empty matrix: 2-by-0

>> ones(1,0,3)

ans =

Empty array: 1-by-0-by-3

Operations on empty arrays are de�ned by extrapolating the rules for normal arrays

to the case of a zero dimension. Consider the following example:

>> k = 5; A = ones(2,k); B = ones(k,3); A*B

ans =

5 5 5

5 5 5

>> k = 0; A = ones(2,k); B = ones(k,3); A*B

ans =

0 0 0

0 0 0

Matrix multiplication A*B is de�ned in MATLAB whenever the number of columns

of A equals the number of rows of B, even if this number is zero|and in this case the

elements of the product are set to zero.

Empty arrays can facilitate loop vectorization. Consider the nested loops
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for i = j-1:-1:1

s = 0;

for k=i+1:j-1

s = s + R(i,k)*R(k,j);

end

end

The inner loop can be vectorized to give

for i = j-1:-1:1

s = R(i,i+1:j-1)*R(i+1:j-1,j);

end

What happens when i = j-1 and the index vector i+1:j-1 is empty? Fortunately

R(i,i+1:j-1) evaluates to a 1-by-0 matrix and R(i+1:j-1,j) to a 0-by-1 matrix,

and s is assigned the desired value 0. In versions of MATLAB prior to MATLAB 5

there was only one empty array, [], and the vectorized loop in this example did not

work as intended.

21.2. Exploiting In�nities

The in�nities inf and -inf can be exploited to good e�ect.

Suppose you wish to �nd the maximum value of a function f on a grid of points

x(1:n) and f does not vectorize, so that you cannot write max(f(x)). Then you need

to write a loop, with a variable fmax (say) initialized to some value at least as small

as any value of f that can be encountered. Simply assign -inf:

fmax = -inf;

for i=1:n

fmax = max(fmax, f(x(i)));

end

Next, suppose that we are given p with 1 � p � 1 and wish to evaluate the dual

of the vector p-norm, that is, the q-norm, where p�1 + q
�1 = 1. If we solve for q we

obtain

q =
1

1� 1=p
:

This formula clearly evaluates correctly for all 1 < p < 1. For p = 1 it yields the

correct value 1, since 1=1 = 0, and for p = 1 it yields q = 1=0 =1. So in MATLAB

we can simply write norm(x,1/(1-1/p)) without treating the cases p = 1 and p =

inf specially.

21.3. Permutations

Permutations are important when using MATLAB for data processing and for matrix

computations. A permutation can be represented as a vector or as a matrix. Consider

�rst the vector form, which is produced by (for example) the sort function:

>> x = [10 -1 3 9 8 7]

x =

10 -1 3 9 8 7



21.3 Permutations 251

>> [s,ix] = sort(x)

s =

-1 3 7 8 9 10

ix =

2 3 6 5 4 1

The output of sort is a sorted vector s and a permutation vector ix such that x(ix)

equals s. To regenerate x from s we need the inverse of the permutation ix. This

can be obtained as follows:

>> ix_inv(ix) = 1:length(ix)

ix_inv =

6 1 2 5 4 3

>> s(ix_inv)

ans =

10 -1 3 9 8 7

In matrix computations it is sometimes necessary to convert between the vector

and matrix representations of a permutation. The following example illustrates how

this is done, and shows how to permute the rows or columns of a matrix using either

form:

>> p = [4 1 3 2]

p =

4 1 3 2

>> I = eye(4);

>> P = I(p,:);

P =

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

>> A = magic(4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> P*A

ans =

4 14 15 1

16 2 3 13

9 7 6 12

5 11 10 8

>> A(p,:)

ans =
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4 14 15 1

16 2 3 13

9 7 6 12

5 11 10 8

>> A*P'

ans =

13 16 3 2

8 5 10 11

12 9 6 7

1 4 15 14

>> A(:,p)

ans =

13 16 3 2

8 5 10 11

12 9 6 7

1 4 15 14

>> p_from_P = (1:4)*P'

p_from_P =

4 1 3 2

21.4. Rank 1 Matrices

A rank 1 matrix has the form A = xy
�, where x and y are both column vectors. Often

we need to deal with special rank 1 matrices where x or y is the vector of all 1s. For

y = ones(n,1) we can form A as an outer product as follows:

>> n = 4; x = (1:n)'; % Example choice of n and x.

>> A = x*ones(1,n)

A =

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

Recall that x(:,1) extracts the �rst column of x. Then x(:,[1 1]) extracts the �rst

column of x twice, giving an n-by-2 matrix. Extending this idea, we can form A using

only indexing operations

A = x(:,ones(n,1))

(This operation is known to MATLAB a�cionados as \Tony's trick".) The revised

code avoids the multiplication and is therefore faster.

Another way to construct the matrix is as

A = repmat(x,1,n);
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21.5. Set Operations

Suppose you need to �nd out whether any element of a vector x equals a scalar

a. This can be done using any and an equality test, taking advantage of the way

that MATLAB expands a scalar into a vector when necessary in an assignment or

comparison:

>> x = 1:5; a = 3;

>> x == a

ans =

0 0 1 0 0

>> any(x == a)

ans =

1

More generally, a might itself be a vector and you need to know how many of the

elements of a occur within x. The test above will not work. One possibility is to loop

over the elements of a, carrying out the comparison any(x == a(i)). Shorter and

faster is to use the set function ismember:

>> x = 1:5; a = [-1 3 5];

>> ismember(a,x)

ans =

0 1 1

>> ismember(x,a)

ans =

0 0 1 0 1

As this example shows, ismember(a,x) returns a vector with ith element 1 if a(i) is

in x and 0 otherwise. The number of elements of a that occur in x can be obtained as

sum(ismember(a,x)) or nnz(ismember(a,x)), the latter being faster as it involves

no oating point operations. MATLAB has several set functions: see help ops.

21.6. Subscripting Matrices as Vectors

MATLAB allows a two-dimensional array to be subscripted as though it were one-

dimensional, as we saw in the example of find applied to a matrix on p. 60. If A is

m-by-n and j is a scalar then A(j) means the same as a(j), where a = A(:); in other

words, A(j) is the jth element in the vector made up of the columns of A stacked one

on top of the other.

To see how one-dimensional subscripting can be exploited suppose we wish to

assign an n-vector v to the leading diagonal of an existing n-by-n matrix A. This can

be done by

A = A - diag(diag(A)) + diag(v);

but this code is not very elegant or e�cient. We can take advantage of the fact that

the diagonal elements of A are equally spaced in the vector A(:) by writing

A(1:n+1:n^2) = v;
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or

A(1:n+1:end) = v;

The main antidiagonal can be set in a similar way, by

A(n:n-1:n^2-n+1) = v;

For example,

>> A = spiral(5)

A =

21 22 23 24 25

20 7 8 9 10

19 6 1 2 11

18 5 4 3 12

17 16 15 14 13

>> A(1:6:25) = -ones(5,1)

A =

-1 22 23 24 25

20 -1 8 9 10

19 6 -1 2 11

18 5 4 -1 12

17 16 15 14 -1

>> A(5:4:21) = zeros(5,1)

A =

-1 22 23 24 0

20 -1 8 0 10

19 6 0 2 11

18 0 4 -1 12

0 16 15 14 -1

One use of this trick is to shift a matrix by a multiple of the identity matrix: A  
A� �I , a common operation in numerical analysis. This is accomplished with

>> A(1:n+1:end) = A(1:n+1:end)-alpha

21.7. Triangular and Symmetric Matrices

Some linear algebra functions perform di�erent computations depending on the prop-

erties of their arguments. For example, when A is triangular MATLAB computes A\b

by substitution, but when A is full it is �rst LU-factorized. The eig command per-

forms the symmetric QR algorithm for symmetric arguments and the nonsymmetric

QR algorithm for nonsymmetric arguments. If your matrix is known to be triangu-

lar or symmetric it usually makes sense to enforce the property in the presence of

roundo�, in order to reduce computation and preserve mathematical properties. For

example, the eigenvectors of a symmetric matrix can always be taken to be orthog-

onal and eig returns eigenvectors orthogonal to within rounding error when applied

to a symmetric matrix. But if a matrix has a nonzero nonsymmetric part, however

tiny, then eig applies the nonsymmetric QR algorithm and can return nonorthogonal

eigenvectors:
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>> A = ones(4); [V,D] = eig(A); norm(V'*V-eye(4))

ans =

3.9639e-016

>> Q = gallery('orthog',4,2); % Orthogonal matrix.

>> B = Q'*A*Q; norm(B-B')

ans =

3.1683e-016

>> [V,D] = eig(B); norm(V'*V-eye(4))

ans =

0.5023

Here, the matrix B should be symmetric, but it is not quite symmetric because of

rounding errors. There is no question of eig having performed badly here; even

the exact eigenvector matrix is far from being orthogonal. In this situation it would

normally be preferable to symmetrize B before applying eig:

>> C = (B + B')/2; [V,D] = eig(C); norm(V'*V-eye(4))

ans =

5.6514e-016

This discussion raises the question of how to test whether a matrix is symmetric

or (upper) triangular. One possibility is to evaluate

norm(A-A',p), norm(A-triu(A),p)

taking care to use p=1 or p=inf, since the 1- and 1-norms are much quicker to

evaluate than the 2-norm. A better way is to use the logical expressions

isequal(A,A'), isequal(A,triu(A))

which do not involve any oating point arithmetic.

A technique is a trick that works.

| GIAN-CARLO ROTA

And none of this would have been any fun without MATLAB.

| NO�EL M. NACHTIGAL, SATISH C. REDDY and LLOYD N. TREFETHEN,

How Fast are Nonsymmetric Matrix Iterations? (1992)





Appendix A

Changes in MATLAB

Recent releases of MATLAB have introduced many changes, which are documented

in the Release Notes available from the Help Browser. The changes include new

language features, new functions, and alterations to function names or syntax that

require M-�les to be rewritten for future compatibility. In this appendix we give a

highly selective summary of changes introduced in versions 5.0 onwards of MATLAB.

Our aim is to point out important changes that may be overlooked by users upgrading

from earlier versions and that may cause M-�les written for earlier versions to behave

di�erently in MATLAB 6.

A.1. MATLAB 5.0

� New, improved random number generators introduced. Previously, the state of

the random number generators was set with

rand('seed',j), randn('seed',j)

If this syntax is used now it causes the old generators to be used. The state

should now be set with

rand('state',j), randn('state',j)

A.2. MATLAB 5.3

Functions renamed as follows: fmin ! fminbnd, fmins ! fminsearch, nnls !
lsqnonneg.

A.3. MATLAB 6

� Matrix computations based on LAPACK, rather than LINPACK as previously.

MATLAB now takes advantage of Hermitian structure when computing the

eigensystem of a complex Hermitian matrix, and of Hermitian de�nite structure

when computing the eigensystem of a Hermitian de�nite generalized eigenvalue

problem. Eigenvalues may be returned in a di�erent order than with earlier ver-

sions of MATLAB, eigenvectors may be normalized di�erently, and the columns

of unitary matrices may di�er by scale factors of modulus unity.

� As a result of the switch to LAPACK, the flops function is no longer operative.

(In earlier versions of MATLAB, flops provided a count of the total number

of oating point operations performed.)
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� Some of the arguments of the eigs function have changed (this function is now

an interface to ARPACK rather than an M-�le).

� The precedence of the logical and and or operators, which used to be the same,

has been changed so that and has higher precedence (see p. 59).

� Function handles (\@fun") have been introduced for passing functions as argu-

ments; they are preferred to the passing of function names in strings.

� The quadrature function quad8 had been superseded by quadl. The default

error tolerance for quad is now of order eps rather than 10�3.

� The way in which the ODE solvers are called has been changed to exploit

function handles (the \ODE �le" format, documented in help odefile, is no

longer used).



Appendix B

Toolboxes

A toolbox is a collection of functions that extends the capabilities of MATLAB in a

particular area. The functions are normally collected in a single directory, are well

documented, and include demonstrations.

In this book we have described one MATLAB toolbox: the Symbolic Math Tool-

box. Many other toolboxes are marketed by The MathWorks. Table B.1 lists the

Application Toolboxes; there are other toolboxes not in this category, for example re-

lated to the Simulink system. Various other toolboxes and M-�les are freely available

over the Internet.

Table B.1. Application toolboxes marketed by The MathWorks.

Area Toolboxes

Signal and image

processing

Frequency Domain System Identi�cation,

Higher-Order Spectral Analysis, Image Pro-

cessing, Quantized Filtering, Signal Process-

ing, Wavelet

Control design Control System, Fuzzy Logic, LMI Control

�-Analysis and Synthesis, Model Predictive

Control, Nonlinear Control Design Blockset,

QFT Control Design, Robust Control, System

Identi�cation

General Datafeed, Financial, Financial Time Series,

GARCH, Mapping, NAG Foundation, Neu-

ral Network, Optimization, Partial Di�er-

ential Equation, Spline, Statistics, Sym-

bolic/Extended Symbolic Math
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Appendix C

Resources

The �rst port of call for information about MATLAB resources should be the Web

page of The MathWorks, at

http://www.mathworks.com

This Web page can be accessed from the Web menu item of the MATLAB desktop

or by typing support at the command line. It includes FAQs (frequently asked

questions), technical notes, a large collection of user-contributed M-�les, a search

facility, and details of MATLAB toolboxes.

The newsgroup comp.soft-sys.matlab is devoted to MATLAB. (Newsgroups can

be read in various ways, including from Netscape.) It contains problems and solutions

from MATLAB users, with occasional contributions from MathWorks employees.

Full contact details for The MathWorks can be obtained by typing info at the

MATLAB prompt. For reference we give the details here:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Phone: General: +508-647-7000

Sales: +508-647-7000

Technical Support: +508-647-7000

Fax: +508-647-7101

Web: www.mathworks.com

Newsgroup: comp.soft-sys.matlab

FTP: ftp.mathworks.com

E-mail:

info@mathworks.com Sales, pricing, and general information

support@mathworks.com Technical support for all products

doc@mathworks.com Documentation error reports

bugs@mathworks.com Bug reports

service@mathworks.com Order status, license renewals

updates@mathworks.com Microcomputer updates and subscriptions

access@mathworks.com MATLAB Access Program

suggest@mathworks.com Product enhancement suggestions

news-notes@mathworks.com MATLAB News & Notes Editor

finance@mathworks.com Financial products information

connections@mathworks.com MATLAB Connections Program
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Array Editor. A tool allowing array contents to be viewed and edited in tabular

format.

Command History. A tool that lists MATLAB commands previously typed in the

current and past sessions and allows them to be copied or executed.

Command Window. The window in which the MATLAB prompt >> appears and

in which commands are typed. It is part of the MATLAB desktop.

Current Directory Browser. A browser for viewing M-�les and other �les and

performing operations on them.

Editor/Debugger. A tool for creating, editing and debugging M-�les.

FIG-�le. A �le with a .fig extension that contains a representation of a �gure that

can be reloaded into MATLAB.

�gure. A MATLAB window for displaying graphics.

function M-�le. A type of M-�le that can accept input arguments and return out-

put arguments and whose variables are local to the function.

Handle Graphics. An object-oriented graphics system that underlies MATLAB's

graphics. It employs a hierarchical organization of objects that are manipulated

via their handles.

Help Browser. A browser that allows you to view and search the documentation

for MATLAB and other MathWorks products.

IEEE arithmetic. A standard for oating point arithmetic [32], to which MATLAB's

arithmetic conforms.

LAPACK. A Fortran 77 library of programs for linear equation, least squares, eigen-

value and singular value computations [3]. Many of MATLAB's linear algebra

functions are based on LAPACK.

Launchpad. A window providing access to tools, demonstrations and documentation

for MathWorks products.

M-�le. A �le with a .m extension that contains a sequence of MATLAB commands.

It is of one of two types: a function or a script.

MAT-�le. A �le with a .mat extension that contains MATLAB variables. Created

and accessed with the save and load commands.

MATLAB desktop. A user interface for managing �les, tools, and applications

associated with MATLAB.
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MEX-�le. A subroutine produced from C or Fortran code whose name has a platform-

speci�c extension. It behaves like an M-�le or built-in function.

script M-�le. A type of M-�le that takes no input or output arguments and operates

on data in the workspace.

toolbox. A collection of M-�les built on top of MATLAB that extends its capabilities,

usually in a particular application area.

Workspace Browser. A browser that lists variables in the workspace and allows

operations to be performed on them.
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Index

The 18th century saw the advent of the professional indexer.

He was usually of inferior status|a Grub Street hack|

although well-read and occasionally a university graduate.

| G. NORMAN KNIGHT, Book Indexing in Great Britain: A Brief History (1968)

I �nd that a great part of the information I have was acquired by

looking up something and �nding something else on the way.

| FRANKLIN P. ADAMS

A su�x \t" after a page number denotes a table, \f" a �gure, \n" a footnote, and \`"

a listing. Entries in typewriter font beginning with lower case letters are MATLAB

functions; those beginning with capital letters are Handle Graphics property names.

! (system command), 29

' (conjugate transpose), 49

' (string delimiter), 6

'', 62, 179

(:), 46

, (comma), 4, 5, 21, 41

.' (transpose), 49

.* (array multiplication), 48, 70

... (continuation), 26

./ (array right division), 48

.\ (array left division), 48

.^ (array exponentiation), 48

/ (right division), 47

: (colon), 40 t, 45{47

; (semicolon), 1, 2, 4, 5, 21, 41

<, 57

<=, 57

== (logical equal), 57

>, 57

>=, 57

@ (function handle), 125, 258

[..] (matrix building), 5, 40{41

[] (empty matrix), 46, 54, 87, 141, 249

% (comment), 10, 22, 68

& (logical and), 58

\ (left division), 4, 47, 109{111, 191,

236

^, 48{49

| (logical or), 58

>> (prompt), 1, 21, 22

~ (logical not), 58

~= (logical not equal), 57

3x+ 1 problem, 10

aborting a computation, 26

abs, 38 t

acos, 38 t

acosh, 38 t

acot, 38 t

acoth, 38 t

acsc, 38 t

acsch, 38 t

addpath, 73

airy, 38 t

algebraic equations, see linear equations;

nonlinear equations

all, 58, 59

and, 59

angle, 38 t

animation, 207{208

ans, 2, 4, 21

any, 58, 59, 253

area, 89 t, 102

area graph, 102
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ARPACK, 122, 258

array

empty, 249{250

testing for, 58 t

generation, 4{6, 39{45

logical, 60{61

multidimensional, 219{221

preallocating, 243{244

subscripts start at 1, 45, 187

Array Editor, 28, 28 f

array operations

elementary, 47 t

elementwise, 3, 48, 70

ASCII �le

loading from, 28

saving to, 28

asec, 38 t

asech, 38 t

asin, 38 t

asinh, 38 t

atan, 38 t

atan2, 38 t

atanh, 38 t

Axes object, 201, 202, 206

axes, superimposing, 211

axis, 16, 80{81

options, 81 t

balancing, 118

bar, 89 t, 99

bar graph, 12, 99{100

bar3, 97 t, 100

bar3h, 97 t, 100

barh, 89 t, 99

bench, 29 t

bessel, 38 t

beta, 38 t

Bezier curve, 85

bicg, 120, 122 t

bicgstab, 122 t

bifurcation diagram, 244{245

Black{Scholes PDE, 172

blkdiag, 41, 51 t

boundary value problem, two-point, 163

Box, 204

box, 80, 90, 204

break, 63{64

Brownian path, 243

BVP solver, 163{170

dealing with an unknown param-

eter, 166{168

example �les, 170

input and output arguments, 164{

165

bvp4c, 163{170

bvpget, 170

bvpinit, 165, 170

bvpset, 165, 170

bvpval, 170

calculus functions, symbolic, 234 t

cardioid, 106

cart2pol, 38 t

cart2sph, 38 t

case, 64

case sensitivity, 1, 22, 24, 27

cat, 220, 221 t, 224{225

Catalan constant, 238

Cayley{Hamilton theorem, 136

ccode, 239

cd, 29

ceil, 38 t

cell, 221, 224, 244

cell array, 101, 129, 221{225

converting to and from, 224

displaying contents, 223{224

indexing, 223

preallocating, 224, 244

cell2struct, 224

celldisp, 223

cellplot, 224

cgs, 122 t

char (function), 218

char data type, 217

characteristic polynomial, 116, 136, 236

Children, 206

chol, 113, 192

Cholesky factorization, 109, 113, 192

cholinc, 121

cholupdate, 113

circle, drawing with rectangle, 211

clabel, 91{92

class, see data type

class, 217

clc, 26

clear, 9, 28, 75, 186, 223

clearing

Command Window, see clc

�gure window, see clf



Index 273

workspace, see clear

clf, 80, 186

close, 80, 186

colamd, 192

Collatz iteration, 10

colmmd, 192

colon notation, 5{6, 45{47

colorbar, 93

colormap, 93

colperm, 192

colspace, 237 t

comet, 89 t, 207{208

comet3, 97 t, 207{208

comma

to separate matrix elements, 5, 41

to separate statements, 4, 21

Command History, 26

command line, editing, 24, 27 t

Command Window, 1, 21

clearing, 26

command/function duality, 75, 104, 149

comment line, 10, 22, 68

compan, 42 t

complex, 12, 26

complex arithmetic, 27, 32{33

complex numbers, entering, 26

complex variable, visualizing function

of a, 96

computer, 35

cond, 108, 112

condeig, 117

condest, 108{109, 112, 192

condition number (of eigenvalue), 117

condition number (of matrix), 108

estimation, 108

conj, 38 t

conjugate transpose, 49

continuation line, 26

continue, 64

continued fraction, 7

contour, 91, 97 t

contour3, 97 t

contourf, 12, 97 t

conv, 136{137

copyfile, 29

cos, 38 t

cosh, 38 t

cot, 38 t

coth, 38 t

cov, 134

cplxroot, 96

cross, 49

cross product, 49

csc, 38 t

csch, 38 t

ctranspose, 49

ctrl-c, 26

cumprod, 55 t

cumsum, 55 t, 146, 243

Curvature, 211

Cuthill{McKee ordering, 192

data analysis functions, basic, 55 t

data �tting

interpolation, see interpolation

least squares polynomial, 137

data type

cell, 221

char, 217

determining, 217

double, 35, 39

function handle, 125, 217

fundamental types, 217

sparse, 189

storage, 217

struct, 221

dbclear, 185

dbcont, 185

dbdown, 185

dblquad, 148

dbquit, 185

dbstop, 185

dbtype, 185

dbup, 185

debugger, 185

debugging, 185{187

deconv, 136{137

delete, 29, 206

demo, 29 t

depfun, 196

det, 111, 237 t

determinant, 111

diag, 51 t, 51{52, 237 t

diagonal matrix, 51{52

diagonals

of matrix, 51{52

assigning to, 253{254

of sparse matrix, 190{191

diary, 29
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diff, 54, 55 t, 231{232, 234 t

di�erential equations

numerical solution, 12, 148{174

symbolic solution, 232{233

digits, 237{238

dimension of array/matrix, 32, 39, 220

dir, 9, 29

disp, 29, 178

division, 48

left, 47

right, 47

doc, 24

dot, 2, 49

dot product, 2, 49

double (function), 218, 231

double data type, 35, 39

double integral, 148

drawnow, 208

dsolve, 232{234

echo, 177

edit, 9, 73

Editor/Debugger, 9, 73, 74 f, 134, 185,

195

eig, 5, 116{119, 236, 237 t, 254{255

eigenvalue, 116

generalized, 118

eigenvalue problem

generalized, 118

Hermitian de�nite, 119

numerical solution

direct, 116{120

iterative, 121{123

polynomial, 120

quadratic, 120

standard, 116

symbolic solution, 236

eigenvector, 116

generalized, 118

eigs, 122{123

elementary functions, 38 t

elementary matrix functions, 40 t

elliptic integral, 231

empty array, 249{250

testing for, 58 t

empty matrix, 46, 54, 87, 141, 249, see

also empty array

as subscript, 249{250

encapsulated PostScript, 104

end (ow control), 62{64

end (subscript), 45

epicycloid, 82

eps, 35

equations

algebraic, see linear equations; non-

linear equations

di�erential, see di�erential equa-

tions

linear, see linear equations

nonlinear, see nonlinear equations

EraseMode, 208

erf, 38 t

error, 154, 184

error messages, understanding, 183{184

errorbar, 89 t

errors, 183{185

eval, 219

event location, 155{157

exist, 74

exit, 1, 22

exp, 38 t

expint, 38 t

expm, 123, 237 t

exponential, of matrix, 123

exponentiation, 48{49

eye, 6, 39, 40 t

ezcontour, 90

ezplot, 89 t, 125

ezpolar, 89 t

factor, 38 t, 232

factorial, 243

fast Fourier transform, 143

fcnchk, 126, 127

feval, 126

fft, 143

fft2, 143

fftn, 143

Fibonacci sequence, 184 `

random, 7

FIG-�le, 104

figure, 80

Figure object, 201

�gure window, 77

clearing, 80

closing, 80

creating new, 80

fill, 85{86, 89 t, 164

fill3, 97 t

find, 59{61, 190
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findall, 206, 209

findobj, 201, 206, 209

findstr, 219

findsym, 228

fix, 38 t

fliplr, 51 t

flipud, 51 t

oating point arithmetic, 35

IEEE standard, 35

range, 35

subnormal number, 36

unit roundo�, 35

floor, 38 t

flops (obsolete), 257

ow control, 62{65

fminbnd, 134, 141

fminsearch, 142

FontAngle, 84

FontSize, 84, 209

FontWeight, 206

fopen, 180

for, 7, 62{63

for loops, avoiding by vectorizing, 241{

243

format, 3, 23, 24 t, 37

fortran, 239

Fourier transform, discrete, 143

fplot, 86{88, 89 t

fprintf, 178{180

fractal landscape, 94

Frank matrix, 117, 234{236

fread, 181

Fresnel integrals, 146, 238

fscanf, 180

full, 189

func2str, 125

function, 67{75, 125{134

arguments, copying of, 244

arguments, multiple input and out-

put, 31{32, 69{73

built-in, determining, 74

de�nition line, 68

documenting, 68{69

evaluating with feval, 126

existence of, testing, 74

H1 line, 68{69, 74

handle, 125, 128, 135, 217, 258

of a matrix, 50, 123{124

passing as argument, 125{128

recursive, 12{16, 94, 131{132

subfunction, 127{128

function/command duality, 75

funm, 123

fwrite, 181

fzero, 140, 141, 168

gallery, 42, 42 t, 43 t, 192, 234

gamma, 38 t

Gaussian elimination, see LU factor-

ization

gca, 206

gcd, 38 t

gcf, 206

gco, 206

generalized eigenvalue problem, 118

generalized real Schur decomposition,

120

generalized Schur decomposition, 119

generalized singular value decomposi-

tion, 115{116

get, 201, 204{206

getframe, 207, 208

ginput, 177

Givens rotation, 242

global, 67, 129{131

global variables, 129{131

glossary, 263{264

gmres, 121, 122 t

Graphical User Interface tools, 207

graphics, 77{105

2D, 77{88

summary of functions, 89 t

3D, 88{96

summary of functions, 97 t

animation, 207{208

Handle Graphics, see Handle Graph-

ics

labelling, 80, 90

legends, 82{84

NaN in function arguments, 96

Plot Editor, 77

Property Editor, 206

saving and printing, 102{104

specialized, 99{102

grid, 12, 82

griddata, 138{139

gsvd, 116, 134

gtext, 84
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GUI (Graphical User Interface) tools,

207

H1 line, 68{69, 74

hadamard, 42 t, 134

handle

to function, see function handle

to graphics object, 201

Handle Graphics, 201{211

hierarchical object structure, 202 f,

206

HandleVisibility, 209

hankel, 42 t

help, 1, 23, 69

for subfunctions, 128

Help Browser, 24, 26 f, 196

helpbrowser, 24

helpwin, 24

Hermitian matrix, 107

hess, 118

Hessenberg factorization, 118

hidden, 92

hilb, 42, 42 t

Hilbert matrix, 42

hist, 7, 89 t, 100{101

histogram, 7, 100{101

hold, 80

HorizontalAlignment, 211

Horner's method, 135

humps, 146, 147 f

i (
p
�1), 26, 186

identity matrix, 39

sparse, 190

IEEE arithmetic, 35{37

if, 10, 62

early return evaluation, 62

ifft, 143

ifft2, 143

ifftn, 143

imag, 38 t

image, 105, 208

imaginary unit (i or j), 5, 26

indexing, see subscripting

inf, 35

exploiting, 250

info, 29 t

inline, 125{127

inline object, 125{126

vectorizing, 127

inmem, 196

inner product, 2, 49

input

from �le, 180{181

from the keyboard, 177

via mouse clicks, 177

input, 10, 177

int, 230{232, 234 t

int2str, 104, 179, 218, 219

integration

double, 148

numerical, see quadrature

symbolic, 230{231

interp1, 138

interp2, 138

interp3, 139

interpn, 139

interpolation

1D (interp1), 138

2D (interp2, griddata), 138

multidimensional (interp3, interpn),

139

polynomial, 137

spline, 137

intro, 29 t

inv, 23, 111, 235, 237 t

inverse matrix, 111

symbolic computation, 235

invhilb, 42, 42 t

ipermute, 221 t

isa, 217

ischar, 58 t, 219

isempty, 58 t

isequal, 57, 58 t

isfinite, 58 t, 60

isieee, 35, 58 t

isinf, 58 t

islogical, 58 t

ismember, 253

isnan, 57, 58 t

isnumeric, 58 t

isprime, 38 t

isreal, 58 t

issparse, 58 t, 191

iterative eigenvalue problem solvers, 121{

123

iterative linear equation solvers, 120{

121, 122 t

j (
p
�1), 26, 186
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jacobian, 234 t

jordan, 237 t

keyboard, 185

keypresses for command line editing,

27 t

Koch curves, 131{132

Koch snowake, 131{132

kron, 49

Kronecker product, 49

LAPACK, 107, 108, 257

lasterr, 185

lastwarn, 185

latex, 239

lcm, 38 t

least squares data �tting, by polyno-

mial, 137

least squares solution to overdetermined

system, 109

legend, 82{84

legendre, 38 t

length, 39

limit, 234 t

line, 211

Line object, 202, 208

linear algebra functions, symbolic, 237 t

linear equations, 109{111, see also overde-

termined system; underdeter-

mined system

numerical solution

direct, 109{111

iterative, 120{121

symbolic solution, 236

LineStyle, 203

LineWidth, 79

LINPACK, 257

linspace, 12, 40 t, 46

load, 28, 43

Load Wizard, 28

log, 38 t

log10, 38 t

log2, 38 t

logarithm, of matrix, 123

logical, 60{61

logical array, 60{61

logical operators, 58{61

logistic di�erential equation, 232

loglog, 79, 89 t

logm, 123

logspace, 40 t

lookfor, 24, 74

loop structures, see for, while

lorenz, 12, 208

Lorenz equations, 12

ls, 9, 29

lsqnonneg, 110

lsqr, 122 t

lu, 112, 192

LU factorization

partial pivoting, 109, 112{113, 192

threshold pivoting, 192

luinc, 121

M-�le, 67{75, 125{134, 195{198

determining M-�les it calls, 196

editing, 73

function, 67{75, 125{134, see also

function

optimizing, 241{245

script, 9, 22, 67{68

search path, 73

style, 195{196

vectorizing, 241{243

magic, 42, 42 t

Mandelbrot set, 12

Maple, 227

accessing from MATLAB, 238

maple, 238

Marker, 203

MarkerEdgeColor, 79

MarkerFaceColor, 79

MarkerSize, 79, 203

MAT-�le, 28, 105

(The) MathWorks, Inc., contact details,

261

MATLAB, changes in, 257{258

MATLAB Compiler, 241

MATLAB desktop, 2 f

matrix

block diagonal, 41

block form, 41

condition number, 108

conjugate transpose, 49

deleting a row or column, 46

diagonal, 51{52

empty, see empty matrix

exponential, 123

Frank, 117, 234{236

function of, 50, 123{124
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generation, 4{6, 39{43

Hermitian, 107

Hermitian positive de�nite, 109

identity, 39

shifting by multiple of, 254

sparse, 190

inverse, 111

logarithm, 123

manipulation functions, 51 t

norm, 107{108

orthogonal, 107

preserving triangular and symmet-

ric structure, 254{255

rank 1, forming, 252

reshaping, 50

square root, 123

submatrix, 6, 45

subscripting as vector, 253{254

symmetric, 107

transpose, 49

triangular, 52

unitary, 107

Wathen, 121

matrix operations

elementary, 47 t

elementwise, 3, 48, 70

max, 32, 53{54, 55 t, 242

mean, 55 t

median, 55 t

membrane, 93, 196

mesh, 92, 97 t

meshc, 92, 97 t

meshgrid, 12, 40 t, 91, 138, 139

meshz, 94, 97 t

method of lines, 161

MEX interface, 38, 241

mfun, 238

mfunlist, 238

mhelp, 238

min, 53{54, 55 t

minimization of nonlinear function, 141{

143

minimum degree ordering, 192

minres, 122 t

mkdir, 29

mkpp, 138

mod, 38 t

more, 74

movie, 207

movies, 207

multidimensional arrays, 219{221

functions for manipulating, 221 t

multiplication, 47{48

NaN (Not a Number), 36

in graphics function arguments, 96

nargin, 72

nargout, 72, 129

nchoosek, 38 t

ndgrid, 221 t

ndims, 220, 221 t

Nelder{Mead simplex algorithm, 143

nextpow2, 38 t

nnz, 189, 253

nonlinear equations

numerical solution, 139{141

symbolic solution, 227{229

nonlinear minimization, 141{143

norm

evaluating dual, 250

matrix, 107{108

vector, 31{32, 107

norm, 31{32, 107{108, 250

normally distributed random numbers,

6, 40

normest, 108

not, 59

null, 115, 237 t

num2cell, 224

num2str, 179, 218

number theoretic functions, 38 t

ODE solvers, 160 t

error control, 152

error tolerances, 152

event location, 155{157

example �les, 163

input and output arguments, 149,

151

Jacobian, specifying, 160{161

mass matrix, specifying, 161{163

obtaining solutions at speci�c times,

150

option setting with odeset, 152

symbolic, 232{234

tolerance proportionality, 152

ode113, 160 t

ode15s, 157, 160 t, 161, 163, 171

ode23, 160 t
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ode23s, 160 t

ode23t, 160 t, 163

ode23tb, 160 t

ode45, 12, 149{153, 160 t

behavior on sti� problems, 157{

160

odedemo, 163

odefile, 149, 258

odeget, 163

odephas2, 163

odeset, 152, 155, 159, 163, 172

ones, 6, 39, 40 t, 219

open, 104

openvar, 28

operator precedence, 59, 59 t

arithmetic, 37, 37 t

change to and and or, 59, 258

operators

logical, 58{61

relational, 57{61

Optimization Toolbox, 139n, 143

optimizing M-�les, 241{245

optimset, 141, 142

or, 59

ordinary di�erential equations (ODEs),

12, 148{170

boundary value problem, 163

higher order, 150

initial value problem, 148

pursuit problem, 154{157

Robertson problem, 157

R�ossler system, 152{153

simple pendulum equation, 150

sti�, 157{163

orth, 115

otherwise, 64

outer product, 2

output

to �le, 180{181

to screen, 178{179

overdetermined system, 109{110

basic solution, 109

minimal 2-norm solution, 109

overloading, 235

Parent, 206

Partial Di�erential Equation Toolbox,

174

partial di�erential equations (PDEs),

161, 170{174

pascal, 42 t

path, 73

path (MATLAB search path), 73{75

Path Browser, 73

pathtool, 73

pause, 177

pcg, 121, 122 t, 134

pdepe, 170{174

pdeval, 172

peaks, 96

perms, 38 t

permutations, 250{252

permute, 221 t

pi, 26

pie, 89 t, 101

pie charts, 101{102

pie3, 97 t, 101

pinv, 109, 110, 112

pitfalls, 186{187

plot, 7, 77{79, 89 t

options, 78 t

Plot Editor, 77

plot3, 88, 97 t

plotedit, 77

plotting functions

2D, 89 t

3D, 97 t

plotyy, 89 t, 211

point, 79

pol2cart, 38 t

polar, 89 t

poly, 116, 136, 236, 237 t

polyder, 136

polyeig, 120

polyfit, 137

polynomial

division, 136

eigenvalue problem, 120

evaluation, 135{136

evaluation of derivative, 136

multiplication, 136

representation, 135

root �nding, 136

polyval, 135, 136

polyvalm, 135, 136

Position, 204, 211

positive de�nite matrix, 109

testing for, 113

PostScript, 104
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pow2, 38 t

power method, 108

ppval, 138

preallocating arrays, 243{244

precedence

of arithmetic operators, 37, 37 t

of operators, 59, 59 t

change to and and or, 59, 258

precision, 23, 35

preconditioning, 120, 121

pretty, 230

primes, 38 t, 46

print, 102{104

printing

a �gure, 102{104

to �le, 180{181

to screen, 178{179

prod, 55 t, 242

profile, 196{198

pro�ling, 196{198

Property Editor, 206

pseudo-inverse matrix, 112

pursuit problem, 154{157

pwd, 9, 29

qmr, 120, 122 t

qr, 113, 192

QR algorithm, 118

QR factorization, 113{114

column pivoting, 109, 114

of sparse matrix, 192

qrdelete, 114

qrinsert, 114

qrupdate, 114

quad, quadl, 132, 134, 145{148, 258

error tolerance, 145

quad8 (obsolete), 258

quadratic eigenproblem, 120

quadrature, 145{148

adaptive, 146

double integral, 148

quit, 1, 22

quiver, 89 t, 151

quote mark, representing within string,

62, 179

qz, 120

QZ algorithm, 119, 120

rand, 6, 22, 40, 40 t, 219

randn, 6, 40, 40 t, 219

random number generators

period, 40

'seed' argument (obsolete), 257

state, 6, 40

rank, 115, 237 t

rat, 38 t

rats, 38 t

rcond, 108, 109, 111, 112

reaction-di�usion equations, 172{174

real, 38 t, 124, 187

real Schur decomposition, 118

generalized, 120

realmax, 35

realmin, 36

rectangle, 211

recursive function, 12{16, 94, 131{132

relational operators, 57{61

rem, 38 t

repmat, 40 t, 41, 222, 244, 252

reshape, 50, 51 t

return, 71, 185

Riemann surface, 96, 98 f

Robertson ODE problem, 157

Root object, 201

roots, 136

rosser, 42 t

R�ossler ODE system, 152{153

rot90, 51 t

round, 38 t

rounding error, 23

rref, 115, 237 t

run, 74

Runge{Kutta method, 149

save, 28

saveas, 104

scalar expansion, 50

scatter, 89 t

scatter3, 97 t

schur, 118

Schur decomposition, 118

generalized, 119

generalized real, 120

real, 118

script �le, 9, 22, 67{68

search path, 73

sec, 38 t

sech, 38 t

semicolon

to denote end of row, 2, 4, 5, 41
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to suppress output, 1, 4, 21

semilogx, 80, 89 t

semilogy, 9, 80, 89 t

set, 202{203, 209

set operations, 253

shading, 93

shiftdim, 221 t

Sierpinski gasket, 12{16

sign, 38 t

simple, 236

simplify, 228

Simpson's rule, 146

sin, 38 t

singular value decomposition (SVD), 115{

116

generalized, 115{116

sinh, 38 t

size, 32, 39, 220

solve, 227{229

sort, 53{54, 55 t, 250

descending order, 53

sparse (function), 189{190

sparse data type, 189

sparse matrix, 120{123, 189{194

reordering, 192

storage required, 190

visualizing, 191

spdiags, 161, 190{191

special functions, 38 t

special matrix functions, 42 t

speye, 190

sph2cart, 38 t

spiral, 254

spline, 137

spline interpolation, 137

spones, 190

sprand, 191

sprandn, 191

sprintf, 179, 218

spy, 191

sqrt, 50

sqrtm, 50, 123

square root of a matrix, 123

squeeze, 221 t

std, 55 t

stem3, 97 t

sti� ordinary di�erential equation, 157{

163

storage data type, 217

storage allocation, automatic, 31

str2func, 125

strcat, 218

strcmp, 218

strcmpi, 218

string, 217{219

TEX notation in, 84, 85 t

comparison, 218

concatenation, 218

conversion, 218

representation, 217

struct, 221, 222, 244

struct2cell, 224

structure, 221{225, 229

bvpset, for BVP solver options,

165

odeset, for ODE solver options,

152

optimset, for nonlinear equation

solver options, 141

accessing �elds, 222

preallocating, 222{223, 244

subfunction, 127{128

submatrix, 6, 45

subnormal number, 36

subplot, 86{88

irregular grid, 88

subs, 228

subscripting, 45{47

end, 45

single subscript for matrix, 60, 253{

254

subscripts start at 1, 45, 187

sum, 53{54, 55 t

support, 261

surf, 93, 97 t

surfc, 93, 96, 97 t

svd, 115, 237 t

svds, 123

switch, 64{65, 134

sym, 227, 229{230, 234{235

symamd, 192

Symbolic Math Toolbox, 227{239

symbolic object, 227

symmetry, enforcing, 254{255

symmlq, 122 t

symmmd, 192

symrcm, 192

syms, 227, 229{230
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symsum, 234 t

tan, 38 t

tanh, 38 t

taylor, 233, 234 t

Taylor series, 233{234

taylortool, 234

test matrix

functions, 42 t, 43 t

properties, 44 t

TEX commands, in text strings, 84, 85 t

texlabel, 84

text, 84

The MathWorks, Inc., contact details,

261

3D plotting functions, 97 t

tic, 123, 131, 241

tick marks, 209

TickLength, 209

timing a computation, 123

title, 12, 80

toc, 123, 131, 241

toeplitz, 42 t

tolerance, mixed absolute/relative, 145

Tony's trick, 252

Toolboxes, 259

Optimization Toolbox, 139n, 143

Symbolic Math Toolbox, 227{239

transpose, 49

trapezium rule, 148

trapz, 148

triangular matrix, 109

testing for, 255

triangular parts, 52

triangularity, enforcing, 254{255

trigonometric functions, 38 t

tril, 51 t, 52, 237 t

triu, 51 t, 52, 237 t

2D plotting functions, 89 t

type, 74

underdetermined system, 110{111

basic solution, 110

minimal 2-norm solution, 110

uniformly distributed random numbers,

6, 40

unit roundo�, 35

unitary matrix, 107

Units, 204

unmkpp, 138

vander, 42 t

var, 55 t, 134

varargin, 128{129, 134

varargout, 128{129

variable names, 27

choosing, 131, 196

variable precision arithmetic, 237{238

vector

�eld, 151

generation, 5

linearly spaced, see linspace

logarithmically spaced, see log-

space

logical, 60{61

norm, 107

product, 49

vectorize, 127

vectorizing

empty subscript produced, 249{250

inline object, string expression, 127

M-�les, 241{243

ver, 29 t

version, 29 t

VerticalAlignment, 211

view, 93, 94

vpa, 237

waitbar, 12, 207

warning, 109, 184{185

waterfall, 93, 97 t

Wathen matrix, 121, 192

what, 74

whatsnew, 29 t

which, 74, 186

while, 10, 63{64

who, 6, 27

whos, 7, 27, 189

why, 76, 134

wilkinson, 42 t

workspace

listing variables, 6, 27

loading variables, 28

removing variables, 9, 28

saving variables, 28

testing for existence of variable, 74

workspace, 28

Workspace Browser, 28, 28 f

XData, 207, 208

xlabel, 12, 80
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xlim, 81, 81 t

xor, 58, 59

XScale, 203

XTick, 209

XTickLabel, 204

YData, 207, 208

YDir, 211

ylabel, 12, 80

ylim, 81, 81 t

YTickLabel, 211

ZData, 207

zeros, 6, 39, 40 t, 219

zlabel, 90

zoom, 80


