
Skriptum zur Vorlesung TU Wien, LVA-Nr. 322.035

STRÖMUNGSLEHRE

Hendrik C. Kuhlmann und Alfred Kluwick

© 2010

Hendrik C. Kuhlmann und Alfred Kluwick

Institut für Strömungslehre und Wärmeübertragung Technische Universität Wien Resselgasse 3 A-1040 Wien Austria

Version: Wintersemester 2010

Das Frontispiz zeigt die Bewegung einer Kugel in Luft mit M=4.01 nach A. C. Charters (Van Dyke 1982). Mit Hilfe des Schattenverfahrens kann die 2. Ableitung der Dichte sichtbar gemacht werden. Neben dem Bug-Stoß (bow shock) ist ein schwacher Stoß zu sehen, der von der Stelle ausgeht, an der die Strömung von der Kugel separiert. Außerdem kann man eine sogenannte N-Welle sehen, ein Stoß, der sich vom turbulenten Nachlauf löst. Die beiden starken Stöße sind als Doppelknall zu hören.

Vorbemerkungen

Die vorliegenden Aufzeichnungen basieren auf dem Skriptum Strömungslehre von Professor Alfred Kluwick, der diese Vorlesung bis 2009 gehalten hat. Ziel des Kurses ist die Vermittlung fundamentaler aerodynamischer Zusammenhänge. Ausgehend von den Grundgleichungen werden stationäre inkompressible reibungsfreie und drehungsfreie Strömungen behandelt, deren Lösungen sich durch Superposition elementarer Lösungen der Potentialgleichung ergeben. Diese Kenntnisse werden genutzt, um die Theorie dünner Tragflügelprofile für ebene inkompressible Strömungen zu entwickeln. Die Betrachtungen werden dann auf Tragflügel endlicher Streckung erweitert. Danach werden Kompressibilitätseffekte betrachtet sowie schiefe Stöße und die Prandtl-Meyer-Expansion. Viskose Effekte werden anhand der Schmierfilmströmung behandelt, wonach die vereinfachten Gleichung auf laminare Grenzschichten erweitert werden. Schließlich wird die Schichtstruktur turbulenter Grenzschichten behandelt.

Die vorliegende Version stellt eine erste überarbeitete Version des Vorläuferskriptums dar. Der Text wurde überarbeitet und viele Abbildungen wurde neu erstellt. An vielen Stellen wurden jedoch noch die ursprünglichen Abbildungen eingebunden. Das Kapitel zur Numerik wurde gänzlich gestrichen, da es mittlerweile entsprechende Vorlesungen gibt, welche die Numerik in größerer Tiefe behandeln.

Die Überarbeitung des Skriptums ist bei weitem noch nicht abgeschlossen. Einige Kapitel wurden textlich auch noch nicht überarbeitet. Außerdem sollen weitere Abbildungen erneuert werden. Für Hinweise und Verbesserungsvorschläge wäre ich dankbar.

H. C. K. im Februar 2011

Inhaltsverzeichnis

	VOL	oemerkungen	111
1.		ndgleichungen	1
	1.1.	Grundgleichungen für stationäre, reibungslose Strömungen in inte-	
		graler Form	1
	1.2.		2
	1.3.	Differentielle Form der Grundgleichungen für stationäre, reibungs-	
		freie Strömungen	
	1.4.	0 1	6
		1.4.1. Stromfunktion	6
		1.4.2. Geschwindigkeitspotential	7
	1.5.	Wirbelsätze für ebene, stationäre Strömungen	10
		1.5.1. Croccoscher Wirbelsatz	10
		1.5.2. Thomsonscher Wirbelsatz	13
2.	Ebe	ne stationäre inkompressible reibungsfreie und drehungsfreie Strö-	
		igen .	17
		Komplexes Potential	17
	2.2.	•	19
		2.2.1. Lineares Geschwindigkeitspotential $F(z) = Az$	19
		2.2.2. Potenz-Potential $F(z) = z^n$	19
		2.2.3. Logarithmisches Potential $F(z) = A \ln z$	23
	2.3.	Superposition von Lösungen	26
		2.3.1. Quelle in Parallelströmung	27
		2.3.2. Quelle und Senke in Parallelströmung	29
		2.3.3. Dipol in Parallelströmung	31
		2.3.4. Rotierender Zylinder in Parallelströmung	34
	2.4.	Methode der Singularitätenbelegung (Profiltheorie)	36
	2.1.	2.4.1. Randbedingungen	37
		2.4.2. Dickeneffekt	40
		2.4.3. Anstelleffekt	45
		2.4.4. Wölbungseffekt	51
		2.4.5. Zusammenfassung der Ergebnisse für dünne Profile	53
		2.4.6. Beliebig dicke Profile und Körper	54
		2.4.0. Deficing the trothe that Norper	04
3.		Tragflügel endlicher Streckung	57
	3.1.	Mathematisch-physikalische Grundlagen	57

In halts verzeichn is

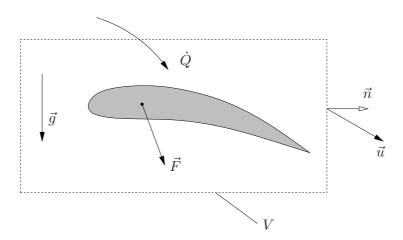
		3.1.1. Helmholtzsche Wirbelsätze	57				
		3.1.2. Biot-Savart Gesetz	60				
		Wirbelsystem eines Tragflügels endlicher, großer Streckung	62				
	3.3.	Prandtlsche Integralgleichung für die Zirkulationsverteilung	64				
4.	Kon	npressible Strömungen	69				
	4.1.	Gasdynamische Gleichung für stationäre Strömungen	69				
		Linearisierte Gasdynamische Gleichung für stationäre Strömungen .	70				
		Prandtl-Glauert Transformation	72				
	4.4.	Gültigkeitsbereich der Prandtl-Glauert Transformation	73				
	4.5.	Schwach gestörte Überschallparallelströmung	77				
5.	Nichtlineare Effekte bei Überschallströmung						
		Schiefer Verdichtungsstoß	87				
	5.2.	Prandtl-Meyer Expansion	95				
	5.3.	Charakteristikenverfahren	102				
		Schwache Stöße	106				
	5.5.	Schlanke Profile (Einfache Wellen)	107				
6.	Dünne Reibungsschichten						
	6.1.	Grundlagen der hydrodynamischen Schmierungstheorie	114				
		6.1.1. Skalierte Gleichungen	114				
		6.1.2. Schleichende Strömung	115				
		6.1.3. Keilspalt	116				
	6.2.	Laminare Grenzschichten	120				
	6.3.	Laminare Grenzschicht an einer ebenen Wand in einer inkompressi-					
		blen Strömung	123				
		6.3.1. Einfluß des Druckgradienten auf das Grenzschichtprofil: Ab-					
		lösung der Strömung	129				
	6.4.	1	131				
	6.5.	T and the second	133				
		Strömungen	100				
Α.	Diag	gramme und Tabellen	141				
Literaturverzeichnis							
Ind	Index						

m V1 5. C. Kuhlmann, H. Kluwit $m Str \ddot{o}$ mungslehre

1. Grundgleichungen

1.1. Grundgleichungen für stationäre, reibungslose Strömungen in integraler Form

Wendet man die Erhaltungssätze der Mechanik für Masse, Impuls und Energie auf ein um einen Körper gelegtes raumfestes *Kontrollvolumen V* an, so ergeben sich für den Fall reibungsloser, stationärer Strömung gewisse Bilanzgleichungen (Abb. 1.1). Wenn im Volumen keine Massequellen vorhanden sind, verschwindet der gesamte Massenstrom durch die Oberfläche S des Volumens und die *Massenbilanz* lautet


$$\oint_{S} \rho \vec{u} \cdot d\vec{S} = \oint_{S} \rho \vec{u} \cdot \vec{n} \, dS = \oint_{S} \rho u_{n} \, dS = 0.$$
(1.1)

Hierbei bezeichnen S die geschlossene Oberfläche des raumfesten Kontrollvolumens V, ρ die Dichte des strömenden Mediums und $u_n = \vec{u} \cdot \vec{n}$ die auf den Normalenvektors \vec{n} projizierte der Strömungsgeschwindigkeit \vec{u} an der betreffenden Stelle der Oberfläche. Der Normalenvektor zeigt konventionsgemäß aus dem Kontrollvolumen heraus.

Für die *Impulsbilanz* gilt

$$\oint_{S} \rho \vec{u} \vec{u} \cdot d\vec{S} = \oint_{S} \rho \vec{u} u_n \, dS = -\oint_{S} p \vec{n} \, dS + \int_{V} \rho \vec{g} \, dV + \vec{F}. \tag{1.2}$$

Der linke Teil der Gleichung beschreibt den Impulsstrom durch S, wobei $\rho \vec{u} \vec{u}$ der Tensor der Impulsstromdichte ist. Auf der rechten Seite stehen Kräfte, die vom ther-

Abbildung 1.1.: Raumfestes Kontrollvolumen V um einen umströmten Körper.

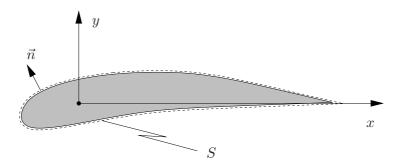


Abbildung 1.2.: Zur Luftkraft um einen umströmten Körper.

modynamischen Drucks p bewirkt werden sowie die Gewichtskraft (Erdbeschleunigung \vec{g}). \vec{F} ist die auf das strömende Medium wirkende Kraft, auch *Haltekraft* genannt, die von einem Körper in der Strömung vermittelt wird. Dementsprechend ist $\vec{R} = -\vec{F}$ die auf den umströmten Körper ausgeübte *Reaktionskraft*.

Die Bilanz der Gesamtenergie (kinetische und innere) lautet

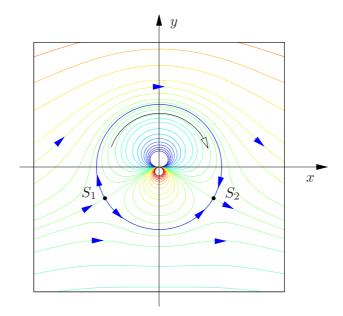
$$\oint_{S} \rho u_n \left(\frac{\vec{u}^2}{2} + e \right) dS = -\oint_{S} p \, u_n \, dS + \int_{V} \rho \vec{g} \cdot \vec{u} \, dV + L + \dot{Q}. \tag{1.3}$$

Hier bedeuten e die spezifische innere Energie (pro Masse), L die pro Zeiteinheit von der Kraft \vec{F} verrichtete Arbeit und \dot{Q} die pro Zeiteinheit zugeführte Wärme (durch Wärmeleitung, Strahlung oder chemischer Reaktion). Verwendet man die aus der Thermodynamik bekannte Beziehung für die spezifische Enthalpie $h=e+p/\rho$, kann man auch schreiben

$$\oint_{S} \rho \, u_n \left(\frac{\vec{u}^2}{2} + h \right) dS = \int_{V} \rho \vec{g} \cdot \vec{u} \, dV + L + \dot{Q}. \tag{1.4}$$

1.2. Luftkräfte

Zieht man das Kontrollvolumen so weit zusammen, daß es der Körperkontur selbst entspricht (Abb. 1.2), so reduziert sich die Impulsbilanz (1.2) auf die Beziehung für die auf den Körper wirkende Kraft ($u_n = 0$ auf der Körperoberfläche, ohne die Gewichtskraft)


$$\vec{R} = -\oint_{S} p \,\vec{n} \,dS = -\oint_{S} (p - p_{\infty}) \vec{n} \,dS.$$
 (1.5)

Die Erweiterung um den (konstanten) Umgebungsdruck p_{∞} in der ungestörten Außenströmung liefert keinen Nettobeitrag zur Kraft, da das entsprechende Integral über die geschlossene Oberfläche S verschwindet.

Häufig wir die $Druckstörung\ p-p_{\infty}$ an der Oberfläche des Körpers in der Form einer dimensionslosen Kenngröße dargestellt. Der Druckbeiwert (Druckkoeffizient) c_p wird definiert als

$$c_p = \frac{p - p_{\infty}}{\rho_{\infty} u_{\infty}^2 / 2}.\tag{1.6}$$

2 3. C. Kuhlmann, M. Kluwid
Strömungslehre

Abbildung 2.14.: Zylinderumströmung mit Zirkulation für $0 > \Gamma = \Gamma_c/2 > \Gamma_c = -4\pi u_{\infty}R$.

kritischen Wert

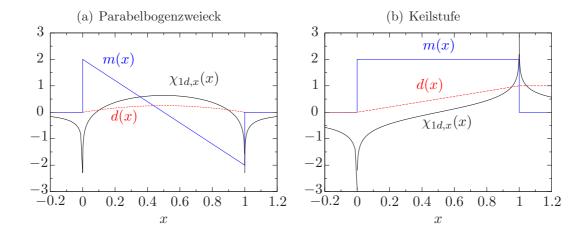
$$\Gamma_c = -4\pi u_{\infty} R \tag{2.75}$$

die beiden Wurzeln von (2.74) (die beiden Staupunkte) bei $\varphi_S = 3\pi/2$ zusammen. Für noch stärker negative Werte von Γ gibt es auf dem Kreis keinen Staupunkt mehr. Dieser bildet sich vielmehr in der freien Strömung aus. Die beiden Situationen sind in Abb. 2.15 illustriert.

Aus der azimutalen Geschwindigkeit (2.73) erhalten wir wie in (2.69) den Druckbeiwert

$$c_p(\varphi) = 1 - \frac{V^2(\varphi)}{u_\infty^2} = 1 - 4\sin^2\varphi + \frac{2\Gamma}{\pi u_\infty R}\sin\varphi - \frac{\Gamma^2}{4\pi^2 u_\infty^2 R^2}.$$
 (2.76)

Für den Widerstandsbeiwert erhält man dann aus (1.8b) unter Berücksichtigung des nach außen gerichteten Normalenvektors $\vec{n} = (\cos \varphi, \sin \varphi)^{T}$


$$c_D = -\frac{1}{2R} \int_0^{2\pi} c_p n_x R \, d\varphi$$

$$= -\frac{1}{2} \int_0^{2\pi} \left[1 - 4\sin^2 \varphi + \frac{2\Gamma \sin \varphi}{\pi u_\infty R} - \left(\frac{\Gamma}{2\pi u_\infty R}\right)^2 \right] \cos \varphi \, d\varphi = 0,$$
(2.77)

in Übereinstimmung mit dem D'Alembertschen Paradoxon. Für den Auftriebsbeiwert gilt nach (1.8a) und mit $n_y=\sin\varphi$

$$c_L = -\frac{1}{2} \int_0^{2\pi} \left[1 - 4\sin^2\varphi + \frac{2\Gamma\sin\varphi}{\pi u_\infty R} - \left(\frac{\Gamma}{2\pi u_\infty R}\right)^2 \right] \sin\varphi \,d\varphi.$$
 (2.78)

3. C. Kuhlmann, A. Kluwick Strömungslehre

Abbildung 2.19.: Umströmung schlanker Körper am Beispiel eines Parabelbogenzweiecks (a) und einer Keilstufe (b). Gezeigt sind das Dickenprofil d(x) rot gestrichelt, die Belegungsfunktion m(x) blau und die x-Komponente der Störgeschwindigkeit $\chi_{1d,x}(x)$ (schwarz). Beachte für (a) die Stammfunktion $\int \xi/(x-\xi) d\xi = -\xi - x \ln(x-\xi)$.

Schließlich können wir noch die Druckverteilung aus der Bernoulligleichung berechnen. Wie in (2.69) erhält man für den Druckbeiwert

$$c_p = 1 - \frac{\vec{u}^2}{u_\infty^2} = 1 - \frac{u^2 + v^2}{u_\infty^2} = 1 - \frac{(u_\infty + u_\infty \chi_x)^2 + (u_\infty \chi_y)^2}{u_\infty^2}$$
$$= 1 - 1 - 2\chi_x - \chi_x^2 - \chi_y^2.$$

In erster Näherung gilt daher $(\chi = \tau \chi_1 + \varepsilon \chi_2 \text{ mit } \tau, \varepsilon \ll 1)$

$$c_p = -2\chi_x + O(\tau^2, \varepsilon^2, \tau\varepsilon) = -2\frac{u - u_\infty}{u_\infty} + O(\tau^2, \varepsilon^2, \tau\varepsilon).$$
 (2.117)

Der Druckbeiwert ist demnach proportional zur Geschwindigkeitsstörung $\chi_x(x,0^{\pm})$.

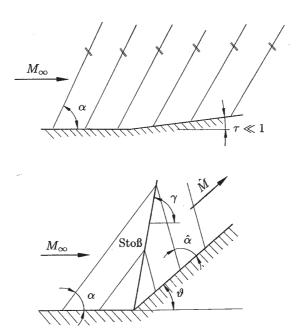
2.4.3. Anstelleffekt

Die Strömung um eine Platte verschwindender Dicke kann durch eine Quellverteilung nicht erzeugt werden. Auf die Platte wirkt aber eine Auftriebskraft und diese ist nach dem Satz von Kutta-Joukowski (2.80) mit einer Zirkulation Γ verbunden. Daher werden wir den Anstelleffekt mit Hilfe einer Wirbelverteilung beschreiben.

Dazu betrachten wir einen einzelnen Punktwirbel bei $(x,y)=(\xi,0)$ mit der Wirbelstärke d Γ . Der Beitrag d χ_2 zu χ_2 ist dann nach (2.35)

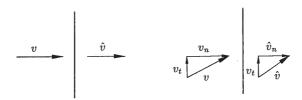
$$d\chi_2 = \frac{d\Gamma}{2\pi} \arctan \frac{y}{x - \xi}.$$
 (2.118)

Wir wollen nun Punktwirbel kontinuierlich auf der x-Achse in dem Intervall [0,1] verteilen. Die Wirbelstärkenverteilung wird zweckmäßigerweise durch eine Bele-


3. C. Kuhimann, A. Kluwid Strömungslehre

5. Nichtlineare Effekte bei Überschallströmung

5.1. Schiefer Verdichtungsstoß


Wie wir im letzten Kapitel gesehen haben, ist die Neigung der Machlinien im Fall schwach gestörter Parallelströmung nur von der Anströmmachzahl abhängig, sie wird von der Profilform selbst nicht beeinflußt (lineare Theorie). Wird die Überschallströmung jedoch einer merklichen Umlenkung um den Strömungswinkel ϑ durch eine konkave Ecke unterzogen, bildet sich von der Ecke her ein schiefer Verdichtungsstoß unter dem Stoßwinkel γ im Strömungsfeld aus, hinter dem die Machlinien unter einem Winkel $\hat{\alpha} \neq \alpha$ geneigt sind (Abb. 5.1).

Um die Feldgrößen vor und nach dem schiefen Verdichtungsstoß miteinander in Beziehung setzen zu können, benutzen wir die Eigenschaft, daß die Tangentialkomponente der Strömungsgeschwindigkeit über den Stoß hinweg stetig ist, das heißt daß $u_t = \hat{u}_t$ ist. Demnach kann man sich einen schiefen Verdichtungsstoß dadurch zustandegekommen vorstellen, daß man einen senkrechten Stoß von einem Koor-

Abbildung 5.1.: Machlinien und schiefer Verdichtungsstoß im Rahmen der linearen Theorie (kleine Störung, oben) und der nichtlinearen Theorie (große Störung, unten).

5. Nichtlineare Effekte bei Überschallströmung

Abbildung 5.2.: Zerlegung der Anströmung in Komponenten normal und senkrecht zur Stoßebene.

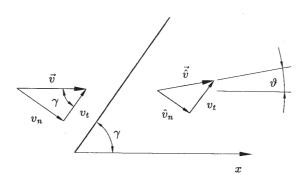
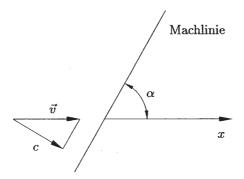


Abbildung 5.3.: Strömungsumlenkung hinter einem schiefen Verdichtungsstoß.

dinatensystem aus betrachtet, das sich gegenüber dem ursprünglichen mit u_t in der Stoßebene bewegt (Galileitransformation der Stoßbeziehungen für den senkrechten Verdichtungsstoß). Folglich können die entsprechenden Ergebnisse für den senkrechten Verdichtungsstoß aus der Grundlagen-Vorlesung hier sofort verwendet werden, wenn man berücksichtigt, daß diese im Fall des schiefen Stoßes für die Normalkomponente der Strömungsgeschwindigkeit gelten (Abb. 5.2 und 5.3). Die Normalkomponente berechnet sich über den Stoßwinkel aus

$$\frac{v_n}{c} = \frac{v}{c}\sin\gamma = M\sin\gamma,\tag{5.1}$$


es ist daher in den Gleichungen für den senkrechten Stoß die Machzahl M
 durch M $\sin\gamma$ zu ersetzen, um die für den schiefen Verdichtungsstoß gültigen Gleichungen (für ideale Gase) zu erhalten

$$\frac{\rho}{\hat{\rho}} = \frac{\hat{v}_n}{v_n} = 1 - \frac{2}{\varkappa + 1} \left(1 - \frac{1}{M^2 \sin^2 \gamma} \right),$$
 (5.2a)

$$\frac{\hat{p}}{p} = 1 + \frac{2\varkappa}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1 \right), \tag{5.2b}$$

$$\frac{\hat{T}}{T} = \frac{\hat{c}^2}{c^2} = \frac{1}{M^2 \sin^2 \gamma} \left[1 + \frac{2\varkappa}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1 \right) \right] \left[1 + \frac{\varkappa - 1}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1 \right) \right], \tag{5.2c}$$

88 Strömungslehre

Abbildung 5.4.: Beim infinitesimal schwachen Stoß fällt der Stoß mit einer Machlinie zusammen.

$$\frac{\hat{p}_0}{p_0} = \frac{\hat{\rho}_0}{\rho_0} = \left[1 + \frac{2\varkappa}{\varkappa + 1} \left(M^2 \sin^2 \gamma - 1\right)\right]^{-\frac{1}{\varkappa - 1}} \left[1 - \frac{2}{\varkappa + 1} \left(1 - \frac{1}{M^2 \sin^2 \gamma}\right)\right]^{-\frac{\varkappa}{\varkappa - 1}},$$
(5.2d)

$$\frac{\hat{s} - s}{c_v} = \ln \frac{\hat{p}}{p} + \varkappa \ln \frac{\hat{\rho}}{\rho}. \tag{5.2e}$$

Ein senkrechter Stoß kann nur in einer Überschallströmung existieren, auf den schiefen Stoß übertragen bedeutet dies

$$M\sin\gamma > 1,\tag{5.3}$$

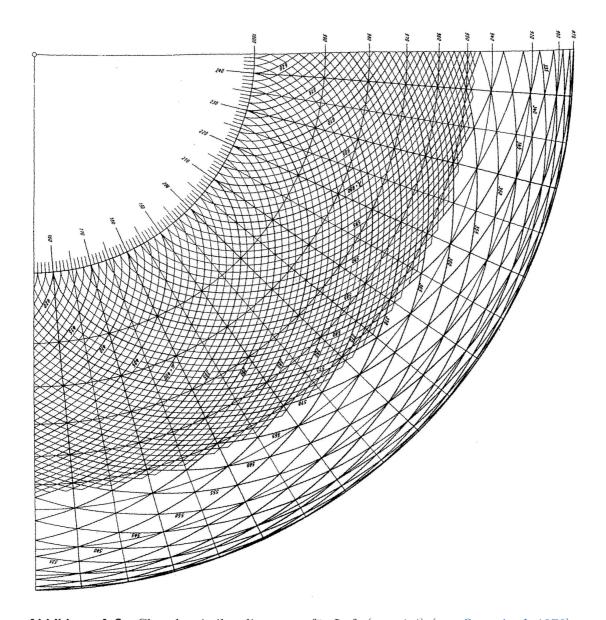
was den Wertebereich des Stoßwinkels

$$\arcsin\frac{1}{M} < \gamma < \frac{\pi}{2} \tag{5.4}$$

festlegt. Die untere Grenze ergibt mit (5.2a) einen Stoß verschwindender Stärke, er geht in eine Machlinie mit $\gamma=\alpha$ über (Abb. 5.4), während die obere Grenze den Stoß mit dem größtmöglichen Druckanstieg darstellt, das ist der senkrechte Verdichtungsstoß.

Benutzt man die erste Beziehung von (5.2a) und den Energiesatz, erhält man

$$v_n \hat{v}_n = v_n^2 \frac{\hat{v}_n}{v_n} = \frac{v_n^2}{M^2 \sin^2 \gamma} \left(\frac{\varkappa - 1}{\varkappa + 1} M^2 \sin^2 \gamma + \frac{2}{\varkappa + 1} \right) =$$
 (5.5)


$$\frac{\varkappa - 1}{\varkappa + 1}v_n^2 + \frac{2}{\varkappa + 1}c^2 + \frac{\varkappa - 1}{\varkappa + 1}u_t^2 - \frac{\varkappa - 1}{\varkappa + 1}u_t^2 = c^{*2} - \frac{\varkappa - 1}{\varkappa + 1}u_t^2,\tag{5.6}$$

also

$$v_n \hat{v}_n + \frac{\varkappa - 1}{\varkappa + 1} u_t^2 = c^{*2}, \tag{5.7}$$

dies stellt eine Verallgemeinerung der Prandtl-Relation, dar $(v\hat{v}=c^{*2}$ für den senkrechten Verdichtungsstoß).

3. C. Kuhlmann, A. Kluwid Strömungslehre

Abbildung A.3.: Charakteristikendiagramm für Luft ($\varkappa=1.4$) (aus Oswatitsch 1976).

^t h	Ð	M	M *	α	$\frac{p}{p_0}$	<u>e</u> e _o	$\frac{T}{T_0}$	<u>e</u> #c*
		4.000	4.000		0.700.0	0.4990		1.0000
000	0	1,000	1,000	90°	0,5283	0,6339	0,8333	1,0000
99	í	1,082	1,067	67°33′	0,4789	0,5910	0,8103	0,9947
98	2	1,133	1,107	61°58′	0,4496	0,5649	0,7957	0,9864
97	3	1,177	1,141	58°10′	0,4249	0,5426	0,7830	0,9765
96	4	1,218	1,171	55°11′	0,4028	0,5223	0,7712	0,9654
95	5	1,256	1,200	52° 46 ′	0,3830	0,5038	0,7602	0,9534
94	6	1,293	1,227	50° 4 0′	0,36 44	0,4862	0,7494	0,9404
93	7	1,330	1,252	48°45′	0,3464	0,4690	0,7389	0,9263
92	8	1,365	1,276	47° 6′	0,3300	0,4530	0,7285	0,9120
91	9	1,400	1,300	45°35′	0,3142	0,4374	0,7184	0,8970
90	10	1,435	1,323	44°11′	0,2990	0,4222	0,7083	0,8811
89	11	1,469	1,345	42°54′	0,2847	0,4077	0,6986	0,8651
88	12	1,502	1,366	41°45′	0,2711	0,3937	0,6888	0,8487
87	13	1,537	1,387	40°35′	0,2580	0,3800	0,6792	0,8318
86	14	1,570	1,409	39°34′	0,2456	0,3669	0,6696	0,8148
85	15	1,604	1,429	38°34′	0,2337	0,3541	0,6601	0,7975
84	16	1,638	1,448	37°37′	0,2221	0,3415	0,6506	0,7797
	17	1,673	1,467	36°42′	0,2111	0,3294	0,6412	0,7621
83			1,407			0,3175	0,6319	0,7441
82	18	1,707	1,486	35°52′	0,2006			
81	19	1,741	1,505	35° 3′	0,1905	0,3060	0,6226	0,7262
80	20	1,775	1,523	34°17′	0,1808	0,2948	0,6134	0,7081
79	21	1,809	1,541	33°34′	0,1715	0,2839	0,6043	0,6899
78	22	1,844	1,559	32°50′	0,1627	0,2733	0,5951	0,6718
77	23	1,879	1,576	32° 9′	0,1540	0,2629	0,5860	0,6536
76	24	1,915	1,593	31°29′	0.1459	0,2529	0,5769	0,6355
75	25	1,950	1,610	30°51′	0,1380	0,2430	0,5679	0,6174
74	26	1,986	1,627	30°14′	0,1306	0,2335	0,5590	0,5995
73	27	2,023	1,643	29°37′	0,1234	0,2243	0,5499	0,5815
72	28	2,060	1,659	29° 2′	0,1166	0,2153	0,5411	0,5637
72 71	29	2,096	1,675	28°30′	0,1099	0,2066	0,5322	0,5461
70	30	2,134	1,691	27°57′	0,1037	0,1982	0,5233	0,5286
69	31	2,172	1,706	27°25′	0,09770	0,1899	0,5146	0,5113
68	32	2,211	1,722	26°53′	0,09200	0,1819	0,5058	0,4942
67	33	2,249	1,738	26°24′	0,08656	0,1741	0,4971	0,4773
66	34	2,289	1,753	25°54′	0,08137	0,1666	0,4884	0,4607
		2,329	1,767	25°26′	0,07644	0,1593	0,4798	0,4442
65	35	2,329						
64	36	2,369	1,782	24°58′	0,07174	0,1522	0,4711	0,4280
63	37	2,411	1,796	24°30′	0,06726	0,1454	0,4626	0,4121
62 61	38 39	2,453 2,495	1,810 1,824	24° 4′ 23°38′	0,06301 0,05898	0,1389 0,1325	0,4540 0,4455	0,3964 0,3811
60	40	2,538	1,838	23°12′	0,05517	0,1263	0,4370	0,3660
	41	2,581	1,852	22°47′	0,05153	0,1203	0,4286	0,3513
59				22°23′		0,1145	0,4203	0,3368
58	42	2,626	1,865		0,04811			
57	43	2,671	1,878	21°59′	0,04488	0,1089	0,4121	0,3228
56	44	2,718	1,891	21°35′	0,04181	0,1035	0,4038	0,3090
55	45	2,764	1,904	21°13′	0,03890	0,09835	0,3955	0,2955
54	46	2,812	1,917	20°50′	0,03616	0,09336	0,3873	0,2824
53	47	2,861	1,931	20°27′	0,03357	0,08853	0,3792	0,2695
52	48	2,911	1,943	20° 5′	0,03114	0,08391	0,3712	0,2571
51	49	2,961	1,955	19°44′	0,02886	0,07946	0,3632	0,2451
50	50	3,013	1,967	19°23′	0,02670	0,07518	0,3552	0,2333
49	51	3,066	1,979	19° 2′	0,02467	0,07106	(),3472	0,2128
48	52	3,119	1,991	18°42′	0,02277	0,06711	0,3394	0,2108
47	53	3,174	2,003	18°22′	0,02101	0,06334	0,3317	0,2001
46	54	3,230	2,014	187 2'	0,01935	0,05973	0,3240	0,1898
45	55	3,287	2,025	17°43′	0,01781	0,05628	0,3163	0,1798
40	60	3,594	2,080	16° 9′	0,01148	0,04114	0,2790	0,1349
35	65	3,941	2,131	14°42′	0,007 131	0,02926	0,2435	0,09835
30	70	4,339	2,177	13°20′	0,004 233	0,02017	0,2098	0,06929
25	75	4,802	2,221	12° 1′	0,002391	0,01341	0,1782	0,04697
020	80	5,348	2,260	10°47′	0,001 271	0,008541	0,1488	0,03045
915	85	6,007	2,296	9°35′	0,0006291	0,005341	0,1217	0,03043
			2,328	8°26′	0,0002849		0,09706	0,01078
)10)05	90 95	6,820 7,852	2,328 2,356	7°19′	0,0002849	0,002935 0,001541	0,09706	0,01078
					0.000040.00	•		0.000#4#
900 895	100 105	9,210 11,095	2,380 2,401	6°14′ 5°10′	0,00004069 0,00001175	0,0007310 0,0003010	0,05566 0,03903	0,002745 0,001140
390	110	13,87	2,4183	4° 8′	0,000002587	0,0001021	0.02533	0,0003896
385	115	18,435	2.4317	3° 6′	0,0000003670	0,0001021	0,01450	0,00009710
	120	27,35	2.4413	2° 6′	0,00000002385	0,000003593	0,006640	0,00001384
		77 (5						
880 875	125	52,48	2,4473	1° 6′	0,00000002383	0,0000001481	0,000 812	0,00001334

Abbildung A.4.: Tabelle zum Charakteristikengramm für Luft ($\varkappa=1.4$) (aus Oswatitsch 1976).

144
5. C. Kuhlmann, H. Kluwid
Strömungslehre

Literaturverzeichnis

- Blasius, P. R. H. (1908), 'Boundary layers in fluids with little friction', Z. Math. Phys. **56**, 1–37. **125**
- Cameron, A. (1976), Basic lubrication theory, J. Wiley, Chichester, New York. 119, 120
- Durst, F. (2006), *Grundlagen der Strömungsmechanik*, Springer, Berlin, Heidelberg.
- Gersten, K. & Herwig, H. (1992), *Strömungsmechanik*, Vieweg, Braunschweig. 130, 138
- Klein, F. (1910), 'Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten', Z. Math. Phys. **59**, 259–262. **58**
- Landau, L. D. & Lifschitz, E. M. (1991), *Hydrodynamik*, Vol. VI of *Lehrbuch der Theoretischen Physik*, Akademie Verlag. 126
- Liepmann, H. & Roshko, A. (1957), *Elements of gasdynamics*, Galcit Aeronautical Series, J. Wiley, New York. 142
- Oswatitsch, K. (1976), Grundlagen der Gasdynamik, Springer, Wien, New York. 141, 143, 144
- Saffman, P. G. (1992), Vortex Dynamics, Cambridge University Press. 60
- Schlichting, H. & Gersten, K. (1997), *Grenzschicht-Theorie*, Springer, Berlin, Heidelberg. 138, 139
- Schlichting, H. & Truckenbrodt, E. (1967), Aerodynamik des Flugzeugs, Springer, Berlin, Heidelberg. 68
- Schneider, W. (1978), Mathematische Methoden der Strömungsmechanik, Vieweg Verlag, Braunschweig. 55
- Taneda, S. (1955), Rep. Res. Inst. Appl. Mech. Kyushu Univ. 4, 29–40. 132
- Taneda, S. (1956), J. Phys. Soc. Jpn. 11, 302–307. 132
- Van Dyke, M. (1982), An Album of Fluid Motion, Parabolic Press, Stanford, California. ii, 132

3. C. Kuhlmann, A. Kluwið Strömungslehre

Literatur verzeichn is

von Kármán, T. (1921), 'Über laminare und turbulente Reibung', Z. Angew. Math. Mech. 1, 233–252. 133

Werlé, H. & Gallon, M. (1972), 'Controle d'écoulements par jet transversal', Aéronaut. Astronaut. 34, 21–33. 132

Wieghardt, K. (1965), Theoretische Stromungslehre, Teubner, Stuttgart. 60

146

Strömungslehre

Index

δ -Funktion	Druckbeiwert, 2, 71
Diracsche, 42	Druckpunkt, 50
Ähnlichkeitsansatz, 125	Druckpunktwanderung, 84
Ähnlichkeitsgesetz	Druckwiderstand, 131
schallnahes, 75	
Ähnlichkeitsparameter	Ecke
schallnaher, 74	Umströmung einer, 21
Ähnlichkeitsvariablen, 124	Einflußgebiet, 77
	Energie
Ablösepunkt, 131	spezifische innere, 2
Ablösung, 130	Energiebilanz
Ackeretsche Formel, 81	differentielle, 6
Anfahrwirbel, 63	Energiesatz, 113
Anstellwinkel, 37, 50	Entropiedefinition, 6
effektiver, 64	Eulergleichung
geometrischer, 64	stationäre, 5
induzierter, 64	Expansionsfächer, 95
Anströmmachzahl	
untere kritische, 75	Falkner-Skan-Gleichung, 129
Auftriebsbeiwert, 3, 35, 50	Flügelpolare, 68
Auftriebsbeiwert, örtlicher, 64	Flügelstreckung, 67
D.1. (* 1.1)	Flügeltiefe, 66
Belegungsfunktion, 41	Fluidelement
Bewegungsgleichungen, 4	substantielles, 5
Biot-Savart-Gesetz, 60	Formparameter, 133
Blasius-Gleichung, 125	Formwiderstand, 131
Blasius-Profil, 126	Funktion
D'Alembertsches Paradoxon, 33	analytische, 18
	goodynamicaka Claichung
Differentialgleichungen	gasdynamische Gleichung
Cauchy-Riemannsche, 17, 18	linearisierte, 71
Dipol, 31	Geschwindigkeitsdefizit, 126
Dipolmoment, 31	Geschwindigkeitspotential, 9
Dipolströmung, 31	komplexes, 19
Divergenzform, 4	Gleichung
Drehung, 8	gasdynamische, 70
Drehungsfreiheit, 8	Grenzschicht, 121

ქ. C. Kuhimann, A. Kiuwid Strömungslehre

Grenzschichtdicke, 122, 124, 125	Platte
Grenzschichten	angestellte, 22
Impulssatz für, 133	Potentialfunktion, 7
Grenzschichtgleichungen, 122	Potentialwirbel, 25
Grenzschichtströmung, 126	Prandtl-Faktor, 72
	Prandtl-Glauert-Transformation, 73
Haltekraft, 2	Prandtl-Meyer-Fächer, 95
Hauptwert	Prandtl-Relation
Cauchyscher, 43	verallgemeinerte, 89
Helmholtzscher Wirbelsatz	Prandtlsche Integralgleichung, 66
erster, 58	Punktwirbel, 26
zweiter, 59	
Hodographenebene, 90, 100	Quellenströmung, 24
Impulshilang 1	Quellpunkt, 24
Impulsbilanz, 1	Quellstärke, 24
Impulsverlustdicke, 133 Integralgleichung	Reaktionskraft, 2
Betzsche, 46	Reibungsbeiwert, lokaler, 128
isentrop, 6	Reibungswiderstand, 131
Isentrope, o Isentropentabelle, 91	Reynoldsgleichung, 116
Isentropieheziehung, 69	Reynoldszahl, 120
isentropiebezienung, 09	lokale, 128
Körperstromlinien, 28	reduzierte, 115
Kontinuitätsgleichung, 4	Richtungsbedingung, 104
Kontrollvolumen, 1	Tuchtungsbedingung, 101
Kutta-Joukowski	Satz
Satz von, 36, 50	Gaußscher, 3
Kutta-Joukowski-Bedingung, 48, 56	Stokessche, 13
	Thomsonscher, 15
Laplace-Gleichung, 27	Schallgeschwindigkeit, 69
Ml.lii. 70	Schallkreis, 90
Machlinie, 78	Schubspannungsgeschwindigkeit, 135
Machreflexion, 94	Senkenströmung, 24
Machwinkel, 78	Separationslinie, 21
Machzahl, 71	Sommerfeldzahl, 119
Massenbilanz, 1	spezifische Enthalpie, 2
Mittelpunktsregel, 55	Störpotential, 37
Momentenbeiwert, 50	Staupunkt, 20, 21
Nasensog, 51	Stoß
Newtonsches Fluid, 112	Bug-, <mark>ii</mark>
Trown dollated Trainer, Trainer,	Stoßpolare, 90
Panel-Methode, 55	Strömung
Paradoxon	isoenergetische, 11
D'Alembertsches, 35, 51	schleichende, 115
Pfriemsche Regel, 107	Stromfunktion, 6, 124

148
5. C. Kuhlmann, H. Kluwid
Strömungslehre

Stromlinie, 7 Summenkonvention Einsteinsche, 4 Superpositionsprinzip, 27 Tragflügeltheorie Hauptaufgaben der, 66 Tragflügelverwindung, 66 Transformation affine, 72 Trennstromlinie, 21	Zirkulation, 13 Zirkulationsverteilung elliptische, 66 Zirlulationstheorem von Kelvin, 15
Vektorpotential, 60 Verdrängung, 131 Verdrängungsdicke, 126, 127 Verträglichkeitsbedingung, 104 Verzweigungspunkt, 28 Viskosität dynamische, 112 kinematische, 120 Volumenstrom, 24 Vortizität, 8, 57	
Wärmeleitung Fouriersche, 113 Wandgesetz logarithmisches, 136 Wandschicht, 135 Wandschubspannung, 128 Wellengleichung D'Alembertsche Lösung der, 80 Widerstand induzierter, 65 Widerstandsbeiwert, 3, 35, 128 Wirbel gebundener, 63 Wirbelfaden, 57 Wirbellinie, 57 Wirbelsatz von Crocco, 11 Wirbelschicht, 57, 63	
Zeitableitung substantielle, 5	

S. C. Kuhlmann, A. Kluwick 149