
319.028 Fluid Mechanics and Heat Transfer Laboratory

Shallow Water Channel

With the aid of a shallow water channel it is possible to visualize phenomena of gas
dynamics. The theoretical foundation is called shallow water analogy, which states that
under certain conditions a two-dimensional compressible gas flow and a flow of a liquid
with a free surface are described by the same equations. Well known phenomena of gas
dynamics like, e.g., Mach lines or shock fronts, can be visualized by a shallow water
channel.

Various bodies are immersed into the supercritical flow and the flow pattern around the
bodies is observed and interpreted.
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Figure 1: Comparison between two-dimensional, compressible gas flow (left) and shal-
low water flow (right). (from: Seminar in Flugantriebe, Karl Wörrlein,
Fachgebiet Gasturbinen und Flugantriebe, TU Darmstadt, 2nd edition)

The shallow water channel basically consists of a flat plate, oriented almost horizontally,
over which a thin film of water is flowing with a free surface. The transition from the
subcritical to the supercritical flow state is accomplished by a Laval nozzle, i.e. by a
narrowing and subsequent widening of the channel’s side walls.

Derivation of the Analogy

In the following a brief outline of the derivation of the shallow water analogy is given.
The flow is assumed to be frictionless. Therefore, e.g., boundary layers are neglected.

We choose the origin of the coordinate system at a place of the fluid at rest. The x-axis
points into the direction of the main flow along the channel bottom. We neglect a
possible small inclination of the channel bottom to the horizontal. The z-axis points
vertically upwards, the y-axis is perpendicular to the drawing’s plane. (see Fig. 2).

Bernoulli’s equation along a streamline between the points P0 (0, y0, z0) and P (x, y, z)
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Figure 2: Definition of the quantities used.

reads
p0

ρ
+ gz0 =

p

ρ
+ gz +

V 2

2

where V 2 ≈ u2 + v2 and u and v are the velocity components in x- and y-direction,
respectively.

If we neglect the effect of the curvature of the streamlines on the pressure distribution,
then we have a hydrostatic pressure distribution in every point of the water film with a
free surface.

p = p∞ + ρg(h − z) .

If we insert this pressure into Bernoulli’s equation, we get

gh0 = gh +
V 2

2
.

Compared to the energy equation of gas dynamics,

cpT0 = cpT +
V 2

2
.

we see that the liquid’s depth in the shallow water channel corresponds to the
temperature in the gas flow:

h

h0

⇐⇒
T

T0

In a similar way we compare the continuity equation of the water flow

∂(hu)

∂x
+

∂(hv)

∂y
= 0

with the corresponding equation for the gas flow

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 .
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The analogy between the depth of the water and the density

h

h0

⇐⇒
ρ

ρ0

is obvious.

For isentropic gas flow
T

ργ−1
= const .

holds. The analogous relation for the shallow water channel is

h

hγ−1
= const .

This requires a specific heat ratio of γ = 2. Such a kind of gas does not exist. This
means that predictions for gas flow behaviour which were obtained from experiments in
the shallow water channel are limited to cases where the value of the specific heat ratio
γ is irrelevant. Therefore observations in the shallow water channel can be interpreted
only qualitatively as gas flow behaviour, but not quantitatively.

A shock or a hydraulic jump, respectively, is no isentropic process. Subsequently,
strictly speaking, of the relations derived, only the relation between the depth of the
water and the density keeps to be valid for the comparison between a hydraulic jump
and a shock.

From the energy and momentum equations for irrotational shallow water flow we get

(u2 − gh)
∂u

∂x
+ uv(

∂v

∂x
+

∂u

∂y
) + (v2 − gh)

∂v

∂y
= 0

A comparison with the corresponding equation from gas dynamics,

(u2 − c2)
∂u

∂x
+ uv(

∂v

∂x
+

∂u

∂y
) + (v2 − c2)

∂v

∂y
= 0

shows the analogy between the speed of sound and the depth of the water,

c2 ⇐⇒ gh

√
gh is the propagation speed of gravitational waves in shallow water.

Finally, from the equation of state for a perfect gas

p

p0

=
ρT

ρ0T0

one finds an analogous relation for the pressure

p

p0

⇐⇒
h2

h2
0

.
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Summary

Gas flow, γ = 2 Shallow water flow

relative temperature T/T0 relative water depth h/h0

relative density ρ/ρ0 relative water depth h/h0

relative pressure p/p0 h2/h2
0

speed of sound c wave propagation speed
√

gh

Mach number M = V
c

Froude number Fr = V/
√

gh

subsonic flow M < 1 subcritical flow Fr < 1

supersonic flow M > 1 supercritical flow Fr > 1

shock hydraulic jump
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Experiments

(1) Determining the Mach number

Mach line

Mach lin
e

2α

Figure 3: Definition of the Mach angle

Put a small disturbance (toothpick, needle, ...) into the flow within the supercitical
area. Measure the angle α between the two waves propagating from the disturbance
and calculate the equivalent to the Mach number (Froude number)

Fr =
V

√
gh

=
1

sinα

Determine the supercritical area in the flow by observing the propagation
of disturbances (in supercritical flow disturbances do not propagate into the
upstream direction).

(2) Flow around a wedge
Draw a sketch (ground view, side view) of the flow pattern around two peaked,
wedge-shaped bodies and compare them to each other.

(3) Flow around a cylinder
Draw a sketch of the wave pattern around a circular cylinder. Compare with the
flow around a wedge.

(4) Flow around an inclined plate
Draw a sketch of the flow around an inclined plate. Compare the different positions
of the point of attack within the subcritical and the supercritical flow area.
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