Ein Gemisch von flüssigem und dampfförmigem Wasser (geg. Anfangszustand 1 des Wassers: $m_1 = 100$ kg, $T_1 = 393,15$ K, $V_1 = 85$ m³) wird mit 25 kg siedendem Wasser gleichen Druckes isobar gemischt (Zustand 2). Das gesamte Gemisch wird anschließend reversibel adiabat komprimiert, bis nur noch eine Phase vorliegt (Zustand 3).

Berechnen Sie:

- a) Den Dampfgehalt x_2 .
- b) Die Temperatur T_3 .
- c) Die Volumenänderungsarbeit W_{23} .
- d) Ist die Zustandsänderung $1 \rightarrow 3$ reversibel? (Begründung!)
- e) Skizzieren Sie die Zustandsänderungen im p,v- und im T,s-Diagramm.

Hinweis: Interpolationen zwischen Werten in der Dampftafel (siehe letztes Blatt) nicht notwendig!

Lösung

spezifisches Volumen im Zustand 1

$$v_1 = V_1/m_1 = 0.85 \, \frac{\text{m}^3}{\text{kg}}$$

Dampfgehalt im Zustand 1:

$$x_1 = \frac{v_1 - v_1'}{v_2'' - v_1'} = 0.9534$$

a) Die Dampfmasse $m_{D_1}=m_1x_1=95{,}34\,\mathrm{kg}$ bleibt bei der isobaren Mischung mit 25 kg siedendem Wassers gleich

$$x_2 = \frac{m_{D_2}}{m_2} = \frac{m_1}{m_2} x_1 = 0.7627$$

b) Zustandsänderung $2 \rightarrow 3$ ist reversibel und adiabat daher isentrop: $s_2 = s_3$

$$s_2 = s_1'(1 - x_1) + x_1 s_1'' = 5,800 \,\text{kJ/kg}$$

 $\Rightarrow s_3 = s_3'', \quad \vartheta_3 \approx 290 \,^{\circ}\text{C}.$

c) Zur Kompression benötigte Arbeit $W_{23} = m_2 w_{23} = m_2 (u_3 - u_2) = m_2 (h_3 - h_2 + p_2 v_2 - p_3 v_3)$.

$$h_2 = 2183.4 \,\mathrm{kJ/kg}, \quad v_2 = 0.6802 \,\mathrm{m^3/kg}, \quad p_2 = 1.9854 \times 10^5 \,\mathrm{Pa}$$
 $h_3 = h_3'' \approx 2767.6 \,\mathrm{kJ/kg}, \quad v_3 = v_3'' \approx 0.02554 \,\mathrm{m^3/kg}, \quad p_3 \approx 7.464 \times 10^6 \,\mathrm{Pa}$
 $\Rightarrow \quad W_{12} = 66.07 \,\mathrm{MJ}$

d) Die zugeführte Menge siedenden Wassers sei Δm_F , sodass $m_2 = m_1 + \Delta m_F$:

$$S_1 = m_1 s_1 + \Delta m_F s_1' = [m_1(1 - x_1) + \Delta m_F] s_1' + m_1 x_1 s_1''$$

$$S_3 = S_2 = m_2[(1 - x_2)s_1' + x_2 s_1'']$$

Mit $x_2 = \frac{m_1}{m_2} x_1$ folgt:

$$S_3 - S_1 = [m_2(1 - x_2) - m_1(1 - x_1) - \Delta m_F]s_1' + [m_2x_2 - m_1x_1]s_1'' = 0$$

Der Prozess ist daher reversibel!